How Space Station Tech Is Helping the Fight Against Cancer

One of the tools used in the fight against cancer is, quite literally, out of this world.

Research performed on the International Space Station and its predecessors, along with technology developed initially for work in space, play important roles in understanding the disease and improving treatments.

When the Soviet Union launched Salyut 1, the first space station, into orbit in the 1970s, humans began spending more and more time in extremely low-gravity environments. On the International Space Station today, gravity ranges from 1,000 to 1,000,000 times less than the force experienced on Earth. These weightless environments are also known as "microgravity" environments, offering an invaluable platform for cancer research in space.

In a recent article published in the journal Nature Reviews Cancer, cell biologist Jeanne Becker, of Nano3D biosciences in Houston, explored how microgravity environments in space stations of the past and present allow biologists to study the cells in three-dimensional growth environments similar to those experienced in the human body. [Space Shuttle Science: What It Did for You]

On Earth, gravityflattens the cells in a lab, but in space they retain their rounded shapes. At the same time, in microgravity, the cells arrange themselves into three-dimensional groupings, or aggregates, that bear a strong resemblance to what happens inside the human body. Becker was the principle investigatorfor a space station experiment that focused on ovarian cancer cells, according to a NASA statement.

Since 2003, the Japan Aerospace Exploration Agency (JAXA), has studied the high-quality crystals formed by protein molecules in space, where microgravity no longer causes flows based on density differences and the sinking of heavier particles. The resulting orderly formation of protein crystals may hold the key to treating diseases. One newfound protein, H-PGDS, plays a useful role in the treatment of muscular dystrophy.

Another study, Cellbox-Thyroid, examines cancer at a cellular level. Building on findings from a previous investigation, Cellbox-Thyroid studies the spherical structure of cancer cells in microgravity and how they spread, potentially providing an improved understanding on what drives the cells.

Not all space research requires a station.

One team of scientists, led by Daniela Grimm, a researcher with the Laboratory of Space Medicine and Space Pharmacology at Aarhus University in Denmark, studied the Science in Microgravity Box (SIMBOX) on the Shenzhou 8 spacecraft, an unmanned Chinese spacecraft that docked with that country's Tiangong 1 space module in 2011. The team determined that some tumors seem to become less aggressive in microgravity than they are on Earth. Grimm and her colleagues continue to search for as many genes and proteins as possible that are affected by microgravity. [10 Do's and Don'ts to Reduce Your Risk of Cancer]

Doctors have plenty of experience fighting cancer on the ground. But astronauts in space are constantly bombarded by cosmic rays, a different form of radiation than is experienced on Earth, where gamma and X-ray radiation prevail. The different types of radiation can produce different changes in human DNA, the genetic material present in nearly every cell in the body.

Go here to read the rest:

How Space Station Tech Is Helping the Fight Against Cancer

Related Posts

Comments are closed.