12345...102030...


Nanomedicinelab

Advanced Materials, 2018, in press

Molecular Therapy, 2018, in press

Biomaterials, 2018, published online 13 October

Archives of Toxicology, 2018, published online 26 September

ACS Nano, 2018, in press

Carbon, 2018, published online 5 October

2D Materials, 2018, 5: 035020

Journal of Controlled Release, 2018, 276: 157-167

ACS Nano, 2018, 12(2): 1373-1389

2D Materials, 2018, 5: 035014

Originally posted here:

Nanomedicinelab

jo lab – Cardiovascular Mechanobiology and Nanomedicine

Our lab studies the mechanisms by which blood flow regulates endothelial biology and dysfunction, which leads to atherosclerosis and aortic valve calcification. In addition to in vitro (a cone-and-plate bioreactor) systems, the lab also developed an in vivomodel (a mouse partial carotid ligation model) in conjunction with OMICs approaches to understand how disturbed flow vs. stable flow differently regulate vascular and valve endothelial biology and pathobiology at the genome-, epigenome-, and metabolome-wide level.With these methods, we have been able to carry out several OMICs studies that have allowed us to identify mechanosensitive mRNAs, microRNAs, epigenetic DNA methylome, metabolites, and long non-coding RNAs (on-going work). These genome-, epigenome- and metabolome-wide OMICs studies have guided us not only to identify mechanosensitive genes, metabolites and epigenetic changes, but to demonstrate the critical role that some of these flow-sensitive molecular transducers play a role in controlling endothelial biology, atherosclerosis and aortic valve disease

Postdoctoral Fellow in Mechanobiology and Disease at Emory

A postdoctoral position is available immediately to study the mechanisms by which mechano-sensitive genes and epigenetics regulate vascular biology, atherosclerosis and aortic valve disease, and to develop gene-based therapies and targeted delivery methods in Coulter Department of Biomedical Engineering at Emory University in Atlanta, Georgia, USA. We are looking for a motivated and talented biomedical scientist or engineer with PhD or MD in related fields and with strong publication record. Please apply here: https://faculty-emory.icims.com/jobs/18016/job, and also send your CV by e-mail to Professor Jo. Applications will be reviewed on a rolling basis until filled but by June 10, 2018.

More here:

jo lab – Cardiovascular Mechanobiology and Nanomedicine

Nanoengineering – Wikipedia

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

The first nanoengineering program was started at the University of Toronto within the Engineering Science program as one of the options of study in the final years. In 2003, the Lund Institute of Technology started a program in Nanoengineering. In 2004, the College of Nanoscale Science and Engineering at SUNY Polytechnic Institute was established on the campus of the University at Albany. In 2005, the University of Waterloo established a unique program which offers a full degree in Nanotechnology Engineering. [1] Louisiana Tech University started the first program in the U.S. in 2005. In 2006 the University of Duisburg-Essen started a Bachelor and a Master program NanoEngineering. [2] Unlike early NanoEngineering programs, the first Nanoengineering Department in the world, offering both undergraduate and graduate degrees, was established by the University of California, San Diego in 2007.In 2009, the University of Toronto began offering all Options of study in Engineering Science as degrees, bringing the second nanoengineering degree to Canada. Rice University established in 2016 a Department of Materials Science and NanoEngineering (MSNE).DTU Nanotech – the Department of Micro- and Nanotechnology – is a department at the Technical University of Denmark established in 1990.

In 2013, Wayne State University began offering a Nanoengineering Undergraduate Certificate Program, which is funded by a Nanoengineering Undergraduate Education (NUE) grant from the National Science Foundation. The primary goal is to offer specialized undergraduate training in nanotechnology. Other goals are: 1) to teach emerging technologies at the undergraduate level, 2) to train a new adaptive workforce, and 3) to retrain working engineers and professionals.[3]

Continued here:

Nanoengineering – Wikipedia

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

Read more:

UC San Diego NanoEngineering Department

The NANO-ENGINEERING FLAGSHIP initiative

Nano-Engineering introduces a novel key-enabling non-invasive broadband technology, the Nano-engineered Interface (NaI), realising omni -connectivity and putting humans and their interactions at the center of the future digital society.Omni-connectivity encompasses real-time communication, sensing, monitoring, and data processing among humans, objects, and their environment. The vision of Omni-connectivity englobes people in a new sphere of extremely simplified, intuitive and natural communication.The Nano-engineered Interface (NaI) a non-invasive wireless ultraflat functional system will make this possible. NaI will be applicable to any surface on any physical item and thereby exponentially diversify and increase connections among humans, wearables, vehicles, and everyday objects. NaI will communicate with other NaI-networks from local up to satellites by using the whole frequency spectrum from microwave frequency to optics

Read the original here:

The NANO-ENGINEERING FLAGSHIP initiative

NETS – What are Nanoengineering and Nanotechnology?

is one billionth of a meter, or three to five atoms in width. It would take approximately 40,000 nanometers lined up in a row to equal the width of a human hair. NanoEngineering concerns itself with manipulating processes that occur on the scale of 1-100 nanometers.

The general term, nanotechnology, is sometimes used to refer to common products that have improved properties due to being fortified with nanoscale materials. One example is nano-improved tooth-colored enamel, as used by dentists for fillings. The general use of the term nanotechnology then differs from the more specific sciences that fall under its heading.

NanoEngineering is an interdisciplinary science that builds biochemical structures smaller than bacterium, which function like microscopic factories. This is possible by utilizing basic biochemical processes at the atomic or molecular level. In simple terms, molecules interact through natural processes, and NanoEngineering takes advantage of those processes by direct manipulation.

SOURCE:http://www.wisegeek.com/what-is-nanoengineering.htm

Link:

NETS – What are Nanoengineering and Nanotechnology?

Undergraduate Degree Programs | NanoEngineering

The Department of NanoEngineering offers undergraduate programs leading to theB.S. degreesinNanoengineeringandChemical Engineering. The Chemical Engineering and NanoEngineering undergraduate programs areaccredited by the Engineering Accreditation Commission of ABET. The undergraduate degree programs focus on integrating the various sciences and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.These two degree programshave very different requirements and are described in separate sections.

B.S. NanoEngineering

TheNanoEngineering Undergraduate Program became effective Fall 2010.Thismajor focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. The program includes affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The NanoEngineering undergraduate program is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanoengineers who are multidisciplinary and can work in a broad spectrum of industries.

B.S. Chemical Engineering

The Chemical Engineering undergraduate program is housed within the NanoEngineering Department. The program is made up of faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, the Department of Bioengineering and the Department of NanoEngineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). As of Fall 2008, the Department of NanoEngineering has taken over the administration of the B.S. degree in Chemical Engineering.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering website for their program of study, and their undergraduate/graduate advisor if they have questions. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the departments student affairs advisors on an annual basis.

Students can meet with the academic advisors during walk-in hours, schedule an appointment, or send messages through the Virtual Advising Center (VAC).

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken.

Independent Study

Students may take NANO 199 or CENG 199, Independent Study for Undergraduates, under the guidance of a NANO or CENG faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division Technical Elective or Nanoengineering Elective course requirements for the major. Students interested in this alternative must have completed at least 90 units and earned a UCSD cumulative GPA of 3.0 or better. Eligible students must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. Please visit the Student Affairs office for more information.

Read the original:

Undergraduate Degree Programs | NanoEngineering

About the NANO-ENGINEERING FLAGSHIP

Turning the NaI concept into reality necessitates an extraordinary and long-term effort. This requires the integration of nanoelectronics, nanophotonics, nanophononics, nanospintronics, topological effects, as well as the physics and chemistry of materials. This also requires operations in an extremely broad range of science and technology, including Microwaves, Millimeter waves, TeraHertz, Infrared and Optics, and will exploit various excitations, such as surface waves, spin waves, phonons, electrons, photons, plasmons, and their hybrids, for sensing, information processing and storage. Integrating

This high level of integration, which goes beyond individual functionalities, components and devices and requires cooperation across a range of disciplines, makes the Nano Engineering Flagship unique in its approach. It will be crucial in tackling the 6 strategic challenges identified as:

See the original post:

About the NANO-ENGINEERING FLAGSHIP

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

Stand Up Guy

For 10 years, Roy Palmer had no feeling in his lower extremities. Two days after receiving a stem cell transplant, he cried tears of joy because he could feel a cramp in his leg.

The technical term for the procedure the British man underwent is hematopoietic stem cell transplantation (HSCT). And while risky, it’s offering new hope to people like Palmer, who found himself wheelchair-bound after multiple sclerosis (MS) caused his immune system to attack his nerves’ protective coverings.

Biological Reboot

Ever hear the IT troubleshooting go-to of turning a system off and on again to fix it? The HSCT process is similar, but instead of a computer, doctors attempt to reboot a patient’s immune system.

To do this, they first remove stem cells from the patient’s body. Then the patient undergoes chemotherapy, which kills the rest of their immune system. After that, the doctors use the extracted stem cells to reboot the patient’s immune system.

It took just two days for the treatment to restore some of the feeling in Palmer’s legs. Eventually, he was able to walk on his own and even dance. He told the BBC in a recent interview that he now feels like he has a second chance at life.

“We went on holiday, not so long ago, to Turkey. I walked on the beach,” said Palmer. “Little things like that, people do not realize what it means to me.”

Risk / Reward

Still, HSCT isn’t some miracle cure for MS. Though it worked for Palmer, that’s not always the case, and HSCT can also cause infections and infertility. The National MS Society still considers HSCT to be an experimental treatment, and the Food and Drug Administration has yet to approve the therapy in the U.S.

However, MS affects more than 2.3 million people, and if a stem cell transplant can help even some of those folks the way it helped Palmer, it’s a therapy worth exploring.

READ MORE: Walking Again After Ten Years With MS [BBC]

More on HCST: New Breakthrough Treatment Could “Reverse Disability” for MS Patients

Read this article:

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

AI Dreamed Up These Nightmare Fuel Halloween Masks

Nightmare Fuel

Someone programmed an AI to dream up Halloween masks, and the results are absolute nightmare fuel. Seriously, just look at some of these things.

“What’s so scary or unsettling about it is that it’s not so detailed that it shows you everything,” said Matt Reed, the creator of the masks, in an interview with New Scientist. “It leaves just enough open for your imagination to connect the dots.”

A selection of masks featured on Reed’s twitter. Credit: Matt Reed/Twitter

Creative Horror

To create the masks, Reed — whose day job is as a technologist at a creative agency called redpepper — fed an open source AI tool 5,000 pictures of Halloween masks he sourced from Google Images. He then instructed the tool to generate its own masks.

The fun and spooky project is yet another sign that AI is coming into its own as a creative tool. Just yesterday, a portrait generated by a similar system fetched more than $400,000 at a prominent British auction house.

And Reed’s masks are evocative. Here at the Byte, if we looked through the peephole and saw one of these on a trick or treater, we might not open our door.

READ MORE: AI Designed These Halloween Masks and They Are Absolutely Terrifying [New Scientist]

More on AI-generated art: Generated Art Will Go on Sale Alongside Human-Made Works This Fall

Originally posted here:

AI Dreamed Up These Nightmare Fuel Halloween Masks

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

Over and Over

“The security robot is patrolling. Ding-ding. Ding-ding. The security robot is patrolling. Ding-ding. Ding-ding.”

That’s what Olympic attendees will hear ad nauseam when they step onto the platforms of Tokyo’s train stations in 2020. The source: Perseusbot, a robot security guard Japanese developers unveiled to the press on Thursday.

Observe and Report

According to reporting by Kyodo News, the purpose of the AI-powered Perseusbot is to lower the burden on the stations’ staff when visitors flood Tokyo during the 2020 Olympics.

The robot is roughly 5.5 feet tall and equipped with security cameras that allow it to note suspicious behaviors, such as signs of violence breaking out or unattended packages, as it autonomous patrols the area. It can then alert security staff to the issues by sending notifications directly to their smart phones.

Prior Prepration

Just like the athletes who will head to Tokyo in 2020, Perseusbot already has a training program in the works — it’ll patrol Tokyo’s Seibu Shinjuku Station from November 26 to 30. This dry run should give the bot’s developers a chance to work out any kinks before 2020.

If all goes as hoped, the bot will be ready to annoy attendees with its incessant chant before the Olympic torch is lit. And, you know, keep everyone safe, too.

READ MORE: Robot Station Security Guard Unveiled Ahead of 2020 Tokyo Olympics [Kyodo News]

More robot security guards: Robot Security Guards Are Just the Beginning

Read more from the original source:

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Snap Decisions

On first glance, a site that collects people’s opinions about whose life an autonomous car should favor doesn’t tell us anything we didn’t already know. But look closer, and you’ll catch a glimpse of humanity’s dark side.

The Moral Machine is an online survey designed by MIT researchers to gauge how the public would want an autonomous car to behave in a scenario in which someone has to die. It asks questions like: “If an autonomous car has to choose between killing a man or a woman, who should it kill? What if the woman is elderly but the man is young?”

Essentially, it’s a 21st century update on the Trolley Problem, an ethical thought experiment no doubt permanently etched into the mind of anyone who’s seen the second season of “The Good Place.”

Ethical Dilemma

The MIT team launched the Moral Machine in 2016, and more than two million people from 233 countries participated in the survey — quite a significant sample size.

On Wednesday, the researchers published the results of the experiment in the journal Nature, and they really aren’t all that surprising: Respondents value the life of a baby over all others, with a female child, male child, and pregnant woman following closely behind. Yawn.

It’s when you look at the other end of the spectrum — the characters survey respondents were least likely to “save” — that you’ll see something startling: Survey respondents would rather the autonomous car kill a human criminal than a dog.

moral machine
Image Credit: MIT

Ugly Reflection

While the team designed the survey to help shape the future of autonomous vehicles, it’s hard not to focus on this troubling valuing of a dog’s life over that of any human, criminal or not. Does this tell us something important about how society views the criminal class? Reveal that we’re all monsters when hidden behind the internet’s cloak of anonymity? Confirm that we really like dogs?

The MIT team doesn’t address any of these questions in their paper, and really, we wouldn’t expect them to — it’s their job to report the survey results, not extrapolate some deeper meaning from them. But whether the Moral Machine informs the future of autonomous vehicles or not, it’s certainly held up a mirror to humanity’s values, and we do not like the reflection we see.

READ MORE: Driverless Cars Should Spare Young People Over Old in Unavoidable Accidents, Massive Survey Finds [Motherboard]

More on the Moral Machine: MIT’s “Moral Machine” Lets You Decide Who Lives & Dies in Self-Driving Car Crashes

Excerpt from:

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Scientists Say New Material Could Hold up an Actual Space Elevator

Space Elevator

It takes a lot of energy to put stuff in space. That’s why one longtime futurist dream is a “space elevator” — a long cable strung between a geostationary satellite and the Earth that astronauts could use like a dumbwaiter to haul stuff up into orbit.

The problem is that such a system would require an extraordinarily light, strong cable. Now, researchers from Beijing’s Tsinghua University say they’ve developed a carbon nanotube fiber so sturdy and lightweight that it could be used to build an actual space elevator.

Going Up

The researchers published their paper in May, but it’s now garnering the attention of their peers. Some believe the Tsinghua team’s material really could lead to the creation of an elevator that would make it cheaper to move astronauts and materials into space.

“This is a breakthrough,” colleague Wang Changqing, who studies space elevators at Northwestern Polytechnical University, told the South China Morning Post.

Huge If True

There are still countless galling technical problems that need to be overcome before a space elevator would start to look plausible. Wang pointed out that it’d require tens of thousands of kilometers of the new material, for instance, as well as a shield to protect it from space debris.

But the research brings us one step closer to what could be a true game changer: a vastly less expensive way to move people and spacecraft out of Earth’s gravity.

READ MORE: China Has Strongest Fibre That Can Haul 160 Elephants – and a Space Elevator? [South China Morning Post]

More on space elevators: Why Space Elevators Could Be the Future of Space Travel

See the original post:

Scientists Say New Material Could Hold up an Actual Space Elevator

Scientists Are Hopeful AI Could Help Predict Earthquakes

Quake Rate

Earlier this year, I interviewed U.S. Geological Survey geologist Annemarie Baltay for a story about why it’s incredibly difficult to predict earthquakes.

“We don’t use that ‘p word’ — ‘predict’ — at all,” she told me. “Earthquakes are chaotic. We don’t know when or where they’ll occur.”

Neural Earthwork

That could finally be starting to change, according to a fascinating feature in The New York Times.

By feeding seismic data into a neural network — a type of artificial intelligence that learns to recognize patterns by scrutinizing examples — researchers say they can now predict moments after a quake strikes how far its aftershocks will travel.

And eventually, some believe, they’ll be able to listen to signals from fault lines and predict when an earthquake will strike in the first place.

Future Vision

But like Baltay, some researchers aren’t convinced we’ll ever be able to predict earthquakes.University of Tokyo seismologist Robert Geller told the Times that until an algorithm actually predicts an upcoming quake, he’ll remain skeptical.

“There are no shortcuts,” he said. “If you cannot predict the future, then your hypothesis is wrong.”

READ MORE: A.I. Is Helping Scientist Predict When and Where the Next Big Earthquake Will Be [The New York Times]

More on earthquake AI: A New AI Detected 17 Times More Earthquakes Than Traditional Methods

See the original post here:

Scientists Are Hopeful AI Could Help Predict Earthquakes

This AI Lie Detector Flags Falsified Police Reports

Minority Report

Imagine this: You file a police report, but back at the station, they feed it into an algorithm — and it accuses you of lying, as though it had somehow looked inside your brain.

That might sound like science fiction, but Spain is currently rolling out a very similar program, called VeriPol, in many of its police stations. VeriPol’s creators say that when it flags a report as false, it turns out to be correct more than four-fifths of the time.

Lie Detector

VeriPol is the work of researchers at Cardiff University and Charles III University of Madrid.

In a paper published earlier this year in the journal Knowledge-Based Systems, they describe how they trained the lie detector with a data set of more than 1,000 robbery reports — including a number that police identified as false — to identify subtle signs that a report wasn’t true.

Thought Crime

In pilot studies in Murcia and Malaga, Quartz reported, further investigation showed that the algorithm was correct about 83 percent of the time that it suspected a report was false.

Still, the project raises uncomfortable questions about allowing algorithms to act as lie detectors. Fast Company reported earlier this year that authorities in the United States, Canada, and the European Union are testing a separate system called AVATAR that they want to use to collect biometric data about subjects at border crossings — and analyze it for signs that they’re not being truthful.

Maybe the real question isn’t whether the tech works, but whether we want to permit authorities to act upon what’s essentially a good — but not perfect — assumption that someone is lying.

READ MORE: Police Are Using Artificial Intelligence to Spot Written Lies [Quartz]

More on lie detectors: Stormy Daniels Took a Polygraph. What Do We Do With the Results?

See the rest here:

This AI Lie Detector Flags Falsified Police Reports

These Bacteria Digest Food Waste Into Biodegradable Plastic

Factory Farm

Plastics have revolutionized manufacturing, but they’re still terrible for the environment.

Manufacturing plastics is an energy-intensive slog that ends in mountains of toxic industrial waste and greenhouse gas emissions. And then the plastic itself that we use ends up sitting in a garbage heap for thousands of years before it biodegrades.

Scientists have spent years investigating ways to manufacture plastics without ruining the planet, and a Toronto biotech startup called Genecis says it’s found a good answer: factories where vats of bacteria digest food waste and use it to form biodegradable plastic in their tiny microbial guts.

One-Two Punch

The plastic-pooping bacteria stand to clean up several kinds of pollution while churning out usable materials, according to Genecis.

That’s because the microbes feed on waste food or other organic materials — waste that CBC reported gives off 20 percent of Canada’s methane emissions as it sits in landfills.

Then What?

The plastic that the little buggers produce isn’t anything new. It’s called PHA and it’s used in anything that needs to biodegrade quickly, like those self-dissolving stitches. What’s new here is that food waste is much cheaper than the raw materials that usually go into plastics, leading Genecis to suspect it can make the same plastics for 40 percent less cost.

There are a lot of buzzworthy new alternative materials out there, but with a clear environmental and financial benefit, it’s possible these little bacteria factories might be here to stay.

READ MORE: Greener coffee pods? Bacteria help turn food waste into compostable plastic [CBC]

More on cleaning up plastics: The EU Just Voted to Completely ban Single-Use Plastics

Read the original here:

These Bacteria Digest Food Waste Into Biodegradable Plastic

You Can Now Preorder a $150,000 Hoverbike

Please, Santa?

It’s never too early to start writing your Christmas wish list, right? Because we know what’s now at the top of ours: a hoverbike.

We’ve had our eyes on Hoversurf’s Scorpion-3 since early last year — but now, the Russian drone start-up is accepting preorders on an updated version of the vehicle.

Flying Bike

The S3 2019 is part motorcycle and part quadcopter. According to the Hoversurf website, the battery-powered vehicle weighs 253 pounds and has a flight time of 10 to 25 minutes depending on operator weight. Its maximum legal speed is 60 mph — though as for how fast the craft can actually move, that’s unknown. Hoversurf also notes that the vehicle’s “safe flight altitude” is 16 feet, but again, we aren’t sure how high it can actually soar.

What we do know: The four blades that provide S3 with its lift spin at shin level, and while this certainly looks like it would be a safety hazard, the U.S. Department of Transportation’s Federal Aviation Administration approved the craft for legal use as an ultralight vehicle in September.

That means you can only operate an S3 for recreational or sports purposes — but you can’t cruise to work on your morning commute.

Plummeting Bank Account

You don’t need a pilot’s license to operate an S3, but you will need a decent amount of disposable income — the Star Wars-esque craft will set you back $150,000.

If that number doesn’t cause your eyes to cross, go ahead and slap down the $10,000 deposit needed to claim a spot in the reservation queue. You’ll then receive an email when it’s time to to place your order. You can expect to receive your S3 2019 two to six months after that, according to the company website.

That means there’s a pretty good chance you won’t be able to hover around your front yard this Christmas morning, but a 2019 jaunt is a genuine possibility.

READ MORE: For $150,000 You Can Now Order Your Own Hoverbike [New Atlas]

More on Hoversurf: Watch the World’s First Rideable Hoverbike in Flight

Continued here:

You Can Now Preorder a $150,000 Hoverbike

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Ups and Downs

Can we please get off Mr. Musk’s Wild Ride now? We don’t know how much more of this Tesla rollercoaster we can take.

In 2018 alone, Elon Musk’s clean energy company has endured a faulty flufferbot, furious investors, and an SEC probe and settlement. But there was good news, too. Model 3 deliveries reportedly increased, and just this week, we found out that Tesla had a historic financial quarter, generating $312 million in profit.

And now we’re plummeting again.

Closing In

On Friday, The Wall Street Journal reported that the Federal Bureau of Investigation (FBI) is deepening a criminal probe into whether Tesla “misstated information about production of its Model 3 sedans and misled investors about the company’s business going back to early 2017.”

We’ve known about the FBI’s Tesla criminal probe since September 18, but this is the first report confirming that Model 3 production is at the center of the investigation.

According to the WSJ’s sources, FBI agents have been reaching out to former Tesla employees in recent weeks to ask if they’d be willing to testify in the criminal case, though no word yet on whether any have agreed.

Casual CEO

We might be having trouble keeping up with these twists and turns, but Musk seems to be taking the FBI’s Tesla criminal probe all in stride — he spent much of Friday afternoon joking around with his Twitter followers about dank memes.

Clearly he has the stomach for this, but it’d be hard to blame any Tesla investors for deciding they’d had enough.

READ MORE: Tesla Faces Deepening Criminal Probe Over Whether It Misstated Production Figures [The Wall Street Journal]

More on Tesla: Elon Musk Says Your Tesla Will Earn You Money While You Sleep

Go here to see the original:

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

Danger, Will Robinson

As famous Canadian astronaut Chris Hadfield demonstrated with his extraterrestrial sob session, fluids behave strangely in space.

And while microgravity makes for a great viral video, it also has terrifying medical implications that we absolutely need to sort out before we send people into space for the months or years necessary for deep space exploration.

Specifically, research published Thursday In the New England Journal of Medicine demonstrated that our brains undergo lasting changes after we spend enough time in space. According to the study, cerebrospinal fluid — which normally cushions our brain and spinal cord — behaves differently in zero gravity, causing it to pool around and squish our brains.

Mysterious Symptoms

The brains of the Russian cosmonauts who were studied in the experiment mostly bounced back upon returning to Earth.

But even seven months later, some abnormalities remained. According to National Geographic, the researchers suspect that high pressure  inside the cosmonauts’ skulls may have squeezed extra water into brain cells which later drained out en masse.

Now What?

So far, scientists don’t know whether or not this brain shrinkage is related to any sort of cognitive or other neurological symptoms — it might just be a weird quirk of microgravity.

But along with other space hazards like deadly radiation and squished eyeballs, it’s clear that we have a plethora of medical questions to answer before we set out to explore the stars.

READ MORE: Cosmonaut brains show space travel causes lasting changes [National Geographic]

More on space medicine: Traveling to Mars Will Blast Astronauts With Deadly Cosmic Radiation, new Data Shows

Originally posted here:

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth

Check Yourself

The agriculture industry needs to get its priorities straight.

According to a newly published study, the world food system is producing too many unhealthy foods and not enough healthy ones.

“We simply can’t all adopt a healthy diet under the current global agriculture system,” said study co-author Evan Fraser in a press release. “Results show that the global system currently overproduces grains, fats, and sugars, while production of fruits and vegetables and, to a smaller degree, protein is not sufficient to meet the nutritional needs of the current population.”

Serving Downsized

For their study, published Tuesday in the journal PLOS ONE, researchers from the University of Guelph compared global agricultural production with consumption recommendations from Harvard University’s Healthy Eating Plate guide. Their findings were stark: The agriculture industry’s overall output of healthy foods does not match humanity’s needs.

Instead of the recommended eight servings of grains per person, it produces 12. And while nutritionists recommend we each consume 15 servings of fruits and vegetables daily, the industry produces just five. The mismatch continues for oils and fats (three servings instead of one), protein (three servings instead of five), and sugar (four servings when we don’t need any).

Overly Full Plate

The researchers don’t just point out the problem, though — they also calculated what it would take to address the lack of healthy foods while also helping the environment.

“For a growing population, our calculations suggest that the only way to eat a nutritionally balanced diet, save land, and reduce greenhouse gas emission is to consume and produce more fruits and vegetables as well as transition to diets higher in plant-based protein,” said Fraser.

A number of companies dedicated to making plant-based proteins mainstream are already gaining traction. But unfortunately, it’s unlikely that the agriculture industry will decide to prioritize growing fruits and veggies over less healthy options as long as people prefer having the latter on their plates.

READ MORE: Not Enough Fruits, Vegetables Grown to Feed the Planet, U of G Study Reveals [University of Guelph]

More on food scarcity: To Feed a Hungry Planet, We’re All Going to Need to Eat Less Meat

Read the original post:

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth


12345...102030...