12345...


Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling

Trust Is Growing…
Before we get to this week’s cryptocurrency news, analysis, and our cryptocurrency price forecast, I want to share an experience from this past week. I was at home watching the NBA playoffs, trying to ignore the commercials, when a strange advertisement caught my eye.

It followed a tomato from its birth on the vine to its end on the dinner table (where it was served as a bolognese sauce), and a diamond from its dusty beginnings to when it sparkled atop an engagement ring.

The voiceover said: “This is a shipment passed 200 times, transparently tracked from port to port. This is the IBM blockchain.”

Let that sink in—IBM.

The post Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling appeared first on Profit Confidential.

Read the original post:

Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Another Crypto Hack Derails Recovery
Since our last report, hackers broke into yet another cryptocurrency exchange. This time the target was Bithumb, a Korean exchange known for high-flying prices and ultra-active traders.

While the hackers made off with approximately $31.5 million in funds, the exchange is working with relevant authorities to return the stolen tokens to their respective owners. In the event that some is still missing, the exchange will cover the losses. (Source: “Bithumb Working With Other Crypto Exchanges to Recover Hacked Funds,”.

The post Cryptocurrency News: Looking Past the Bithumb Crypto Hack appeared first on Profit Confidential.

See the rest here:

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Cryptocurrency News
On the whole, cryptocurrency prices are down from our previous report on cryptos, with the market slipping on news of an exchange being hacked and a report about Bitcoin manipulation.

However, there have been two bright spots: 1) an official from the U.S. Securities and Exchange Commission (SEC) said that Ethereum is not a security, and 2) Coinbase is expanding its selection of tokens.

Let’s start with the good news.
SEC Says ETH Is Not a Security
Investors have some reason to cheer this week. A high-ranking SEC official told attendees of the Yahoo! All Markets Summit: Crypto that Ethereum and Bitcoin are not.

The post Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More appeared first on Profit Confidential.

Continued here:

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Ripple vs SWIFT: The War Begins
While most criticisms of XRP do nothing to curb my bullish Ripple price forecast, there is one obstacle that nags at my conscience. Its name is SWIFT.

The Society for Worldwide Interbank Financial Telecommunication (SWIFT) is the king of international payments.

It coordinates wire transfers across 11,000 banks in more than 200 countries and territories, meaning that in order for XRP prices to ascend to $10.00, Ripple needs to launch a successful coup. That is, and always has been, an unwritten part of Ripple’s story.

We’ve seen a lot of progress on that score. In the last three years, Ripple wooed more than 100 financial firms onto its.

The post Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More appeared first on Profit Confidential.

Go here to read the rest:

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News
Although cryptocurrency prices were heating up last week (Bitcoin, especially), regulators poured cold water on the rally by rejecting calls for a Bitcoin exchange-traded fund (ETF). This is the second time that the proposal fell on deaf ears. (More on that below.)

Crypto mining ran into similar trouble, as you can see from Advanced Micro Devices, Inc.‘s (NASDAQ:AMD) most recent quarterly earnings. However, it wasn’t all bad news. Investors should, for instance, be cheering the fact that hedge funds are ramping up their involvement in cryptocurrency markets.

Without further ado, here are those stories in greater detail.
ETF Rejection.

The post Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds appeared first on Profit Confidential.

Read more:

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News: What You Need to Know This Week

Cryptocurrency News
Cryptocurrencies traded sideways since our last report on cryptos. However, I noticed something interesting when playing around with Yahoo! Finance’s cryptocurrency screener: There are profitable pockets in this market.

Incidentally, Yahoo’s screener is far superior to the one on CoinMarketCap, so if you’re looking to compare digital assets, I highly recommend it.

But let’s get back to my epiphany.

In the last month, at one point or another, most crypto assets on our favorites list saw double-digit increases. It’s true that each upswing was followed by a hard crash, but investors who rode the trend would have made a.

The post Cryptocurrency News: What You Need to Know This Week appeared first on Profit Confidential.

Continue reading here:

Cryptocurrency News: What You Need to Know This Week

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News & Market Summary
Investors finally saw some light at the end of the tunnel last week, with cryptos soaring across the board. No one quite knows what kicked off the rally—as it could have been any of the stories we discuss below—but the net result was positive.

Of course, prices won’t stay on this rocket ride forever. I expect to see a resurgence of volatility in short order, because the market is moving as a single unit. Everything is rising in tandem.

This tells me that investors are simply “buying the dip” rather than identifying which cryptos have enough real-world value to outlive the crash.

So if you want to know when.

The post Cryptocurrency News: XRP Validators, Malta, and Practical Tokens appeared first on Profit Confidential.

Go here to see the original:

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News
This was a bloody week for cryptocurrencies. Everything was covered in red, from Ethereum (ETH) on down to the Basic Attention Token (BAT).

Some investors claim it was inevitable. Others say that price manipulation is to blame.

We think the answers are more complicated than either side has to offer, because our research reveals deep contradictions between the price of cryptos and the underlying development of blockchain projects.

For instance, a leading venture capital (VC) firm launched a $300.0-million crypto investment fund, yet liquidity continues to dry up in crypto markets.

Another example is the U.S. Securities and Exchange Commission’s.

The post Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto appeared first on Profit Confidential.

Excerpt from:

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News
While headline numbers look devastating this week, investors might take some solace in knowing that cryptocurrencies found their bottom at roughly $189.8 billion in market cap—that was the low point. Since then, investors put more than $20.0 billion back into the market.

During the rout, Ethereum broke below $300.00 and XRP fell below $0.30, marking yearly lows for both tokens. The same was true down the list of the top 100 biggest cryptos.

Altcoins took the brunt of the hit. BTC Dominance, which reveals how tightly investment is concentrated in Bitcoin, rose from 42.62% to 53.27% in just one month, showing that investors either fled altcoins at higher.

The post Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs appeared first on Profit Confidential.

Read this article:

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Cryptocurrency News
Even though the cryptocurrency news was upbeat in recent days, the market tumbled after the U.S. Securities and Exchange Commission (SEC) rejected calls for a Bitcoin (BTC) exchange-traded fund (ETF).

That news came as a blow to investors, many of whom believe the ETF would open the cryptocurrency industry up to pension funds and other institutional investors. This would create a massive tailwind for cryptos, they say.

So it only follows that a rejection of the Bitcoin ETF should send cryptos tumbling, correct? Well, maybe you can follow that logic. To me, it seems like a dramatic overreaction.

I understand that legitimizing cryptos is important. But.

The post Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity appeared first on Profit Confidential.

Continue reading here:

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Dublin Aerospace

Dublin Aerospace is based at Dublin International Airport, Ireland. Our facility is 20,000m2 in size and covers Hangar 1, 4 and 5. We operate a 4 bay base maintenance facility that can presently handle approx 70 aircraft per annum, an APU overhaul centre that can handle 400 APUs a year and a Landing Gear services centre that has capacity for 250 legs annually.

Original post:

Dublin Aerospace

Home – Aerospace Industries Association

Now more than ever, membership in AIA is the right decision.

As we all know, this is a turbulent time for the nation and the aerospace and defense industrywe face numerous economic and political challenges, both domestically and internationally.

In times like these, AIAs strong representation and advocacy is essential to protecting the business interests of the nations aerospace and defense industry and helping to establish new opportunities.

We help youand all levels of your organizationget closer to your customers and competitors by providing numerous networking opportunities through meetings, international air shows, and an extensive network of councils, committees, and working groups.

Learn More

Follow this link:

Home – Aerospace Industries Association

North American Aerospace Defense Command (NORAD)

U.S. Air Force Gen. Terrence J. OShaughnessy receives the North American Aerospace Defense Commands flag from the Canadian Armed Forces Chief of the Defence Staff, Gen. J.H. Vance, signifying his acceptance of command, May 24, 2018 on Peterson U.S. Air Force Base, Colorado OShaughnessy is the 25th NORAD commander. (DoD Photo by N&NC Public Affairs)

See the original post here:

North American Aerospace Defense Command (NORAD)

AsMA | Aerospace Medical Association

AsMA | Aerospace Medical Association

This website uses cookies to ensure the best possible web experience. By continuing and using the site, you consent to the use of cookies. If you wish to disable them or to learn more about how we use cookies, please view our Cookies Policy. Got it!

Learn about the history and mission of Aerospace Medicine by watching the professionals making it happen!

Military aviation operations present numerous unique Aerospace Medicine and Human Performance issues. Sustained acceleration, fatigue, orientation problems, and attention management issues are just a few.

Commercial aviation presents Aerospace Medicine problems for the aircrew, ground support crews, and the passengers they serve.

General aviation aircraft present unique Aerospace Medicine and Human Performance problems. Human Performance factors continue to be leading causes of General Aviation mishaps.

The ability for humans to perform under extreme environmental conditions poses challenging problems for Aerospace Medicine professionals. Altitude, thermal issues, fatigue, acceleration, and numerous other environmental stressors must be appropriately managed to ensure optimized human performance. Managing the mission environment through technology requires a process of human-centered design and acquisition known as Human Systems Integration.

Human participation in space operations presents some of the most interesting and challenging Aerospace Medicine and Human Performance problems. Microgravity, bone density and muscle atrophy issues, radiation exposure, and thermal stressors are just some of the space medicine problems.

AsMA is a scientific forum providing a setting for many different disciplines to come together and share their expertise for the benefit of all persons involved in air and space travel. The Association has provided its expertise to a multitude of Federal and international agencies on a broad range of issues, including aviation and space medical standards, the aging pilot, and physiological stresses of flight. AsMA’s membership includes aerospace medicine specialists, flight nurses, physiologists, psychologists, human factors specialists, physician assistants, and researchers in this field. Most are with industry, civil aviation regulatory agencies, departments of defense and military services, the airlines, space programs, and universities.

Approximately 30% of the membershiporiginate from outside the United States.

Through the efforts of the AsMA members, safety in flight and man’s overall adaptation to adverse environments have been more nearly achieved.

Lifestyle Diseases conference, Lifestyle Diseases workshop, Global Lifestyle Diseases Conference, Lifestyle Diseases symposium, Lifestyle Diseases congress, Lifestyle Diseases meeting, Lifestyle Di…Read More

The peer-reviewed monthly journal provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications…

The AsMA Global Connection Story with IACRoland Vermeiren, M.D., FAsMA

So youre looking online for a particular article from Aerospace Medicine and Human Performance (AMHP). How do you find it?

AsMAs staff were deeply saddened to hear of the death of L. Edward Antosek, M.D.

The Aerospace Human Factors Association (AsHFA) President, Dr. Annette Sobel, has published a visioning statement related to the application of Aerospace Human Factors to Space Missions. Read more

The Translational Research Institute for Space Health (TRISH) is offering several funding opportunities:

Call for 2019 TRISH Postdoctoral Fellowships Now open!Read more

More Announcements

The Aerospace Medical Association offers free information publications for passengers preparing for commercial airline travel. We also offer more detailed medical guidelines for physicians that can be used to advise patients with preexisting illness planning to travel by air.

Which of the following is NOT included in an examination of the sensorium?

a.Orientation to time, place, and personb.Retention of three unrelated memory items for five minutesc.General knowledged.Depressed or elated moode.Proverb interpretation: concrete or abstract.

Read the Answer More Questions

Go here to see the original:

AsMA | Aerospace Medical Association

Eugenics – Wikipedia

Eugenics (; from Greek eugenes ‘well-born’ from eu, ‘good, well’ and genos, ‘race, stock, kin’)[2][3] is a set of beliefs and practices that aims at improving the genetic quality of a human population.[4][5] The exact definition of eugenics has been a matter of debate since the term was coined by Francis Galton in 1883. The concept predates this coinage, with Plato suggesting applying the principles of selective breeding to humans around 400BCE.

Frederick Osborn’s 1937 journal article “Development of a Eugenic Philosophy”[6] framed it as a social philosophythat is, a philosophy with implications for social order. That definition is not universally accepted. Osborn advocated for higher rates of sexual reproduction among people with desired traits (positive eugenics), or reduced rates of sexual reproduction and sterilization of people with less-desired or undesired traits (negative eugenics).

Alternatively, gene selection rather than “people selection” has recently been made possible through advances in genome editing,[7] leading to what is sometimes called new eugenics, also known as neo-eugenics, consumer eugenics, or liberal eugenics.

While eugenic principles have been practiced as far back in world history as ancient Greece, the modern history of eugenics began in the early 20th century when a popular eugenics movement emerged in the United Kingdom[8] and spread to many countries including the United States, Canada[9] and most European countries. In this period, eugenic ideas were espoused across the political spectrum. Consequently, many countries adopted eugenic policies with the intent to improve the quality of their populations’ genetic stock. Such programs included both “positive” measures, such as encouraging individuals deemed particularly “fit” to reproduce, and “negative” measures such as marriage prohibitions and forced sterilization of people deemed unfit for reproduction. People deemed unfit to reproduce often included people with mental or physical disabilities, people who scored in the low ranges of different IQ tests, criminals and deviants, and members of disfavored minority groups. The eugenics movement became negatively associated with Nazi Germany and the Holocaust when many of the defendants at the Nuremberg trials attempted to justify their human rights abuses by claiming there was little difference between the Nazi eugenics programs and the U.S. eugenics programs.[10] In the decades following World War II, with the institution of human rights, many countries gradually began to abandon eugenics policies, although some Western countries, among them the United States and Sweden, continued to carry out forced sterilizations.

Since the 1980s and 1990s, when new assisted reproductive technology procedures became available such as gestational surrogacy (available since 1985), preimplantation genetic diagnosis (available since 1989), and cytoplasmic transfer (first performed in 1996), fear has emerged about a possible revival of eugenics.

A major criticism of eugenics policies is that, regardless of whether “negative” or “positive” policies are used, they are susceptible to abuse because the criteria of selection are determined by whichever group is in political power at the time. Furthermore, negative eugenics in particular is considered by many to be a violation of basic human rights, which include the right to reproduction. Another criticism is that eugenic policies eventually lead to a loss of genetic diversity, resulting in inbreeding depression due to lower genetic variation.

Seneca the Younger

The concept of positive eugenics to produce better human beings has existed at least since Plato suggested selective mating to produce a guardian class.[12] In Sparta, every Spartan child was inspected by the council of elders, the Gerousia, which determined if the child was fit to live or not. In the early years of ancient Rome, a Roman father was obliged by law to immediately kill his child if they were physically disabled.[13] Among the ancient Germanic tribes, people who were cowardly, unwarlike or “stained with abominable vices” were put to death, usually by being drowned in swamps.[14][15]

The first formal negative eugenics, that is a legal provision against birth of inferior human beings, was promulgated in Western European culture by the Christian Council of Agde in 506, which forbade marriage between cousins.[16]

This idea was also promoted by William Goodell (18291894) who advocated the castration and spaying of the insane.[17][18]

The idea of a modern project of improving the human population through a statistical understanding of heredity used to encourage good breeding was originally developed by Francis Galton and, initially, was closely linked to Darwinism and his theory of natural selection.[19] Galton had read his half-cousin Charles Darwin’s theory of evolution, which sought to explain the development of plant and animal species, and desired to apply it to humans. Based on his biographical studies, Galton believed that desirable human qualities were hereditary traits, though Darwin strongly disagreed with this elaboration of his theory.[20] In 1883, one year after Darwin’s death, Galton gave his research a name: eugenics.[21] With the introduction of genetics, eugenics became associated with genetic determinism, the belief that human character is entirely or in the majority caused by genes, unaffected by education or living conditions. Many of the early geneticists were not Darwinians, and evolution theory was not needed for eugenics policies based on genetic determinism.[19] Throughout its recent history, eugenics has remained controversial.

Eugenics became an academic discipline at many colleges and universities and received funding from many sources.[24] Organizations were formed to win public support and sway opinion towards responsible eugenic values in parenthood, including the British Eugenics Education Society of 1907 and the American Eugenics Society of 1921. Both sought support from leading clergymen and modified their message to meet religious ideals.[25] In 1909 the Anglican clergymen William Inge and James Peile both wrote for the British Eugenics Education Society. Inge was an invited speaker at the 1921 International Eugenics Conference, which was also endorsed by the Roman Catholic Archbishop of New York Patrick Joseph Hayes.[25]

Three International Eugenics Conferences presented a global venue for eugenists with meetings in 1912 in London, and in 1921 and 1932 in New York City. Eugenic policies were first implemented in the early 1900s in the United States.[26] It also took root in France, Germany, and Great Britain.[27] Later, in the 1920s and 1930s, the eugenic policy of sterilizing certain mental patients was implemented in other countries including Belgium,[28] Brazil,[29] Canada,[30] Japan and Sweden.

In addition to being practiced in a number of countries, eugenics was internationally organized through the International Federation of Eugenics Organizations. Its scientific aspects were carried on through research bodies such as the Kaiser Wilhelm Institute of Anthropology, Human Heredity, and Eugenics, the Cold Spring Harbour Carnegie Institution for Experimental Evolution, and the Eugenics Record Office. Politically, the movement advocated measures such as sterilization laws. In its moral dimension, eugenics rejected the doctrine that all human beings are born equal and redefined moral worth purely in terms of genetic fitness. Its racist elements included pursuit of a pure “Nordic race” or “Aryan” genetic pool and the eventual elimination of “unfit” races.

Early critics of the philosophy of eugenics included the American sociologist Lester Frank Ward,[39] the English writer G. K. Chesterton, the German-American anthropologist Franz Boas, who argued that advocates of eugenics greatly over-estimate the influence of biology,[40] and Scottish tuberculosis pioneer and author Halliday Sutherland. Ward’s 1913 article “Eugenics, Euthenics, and Eudemics”, Chesterton’s 1917 book Eugenics and Other Evils, and Boas’ 1916 article “Eugenics” (published in The Scientific Monthly) were all harshly critical of the rapidly growing movement. Sutherland identified eugenists as a major obstacle to the eradication and cure of tuberculosis in his 1917 address “Consumption: Its Cause and Cure”,[41] and criticism of eugenists and Neo-Malthusians in his 1921 book Birth Control led to a writ for libel from the eugenist Marie Stopes. Several biologists were also antagonistic to the eugenics movement, including Lancelot Hogben.[42] Other biologists such as J. B. S. Haldane and R. A. Fisher expressed skepticism in the belief that sterilization of “defectives” would lead to the disappearance of undesirable genetic traits.[43]

Among institutions, the Catholic Church was an opponent of state-enforced sterilizations.[44] Attempts by the Eugenics Education Society to persuade the British government to legalize voluntary sterilization were opposed by Catholics and by the Labour Party.[45] The American Eugenics Society initially gained some Catholic supporters, but Catholic support declined following the 1930 papal encyclical Casti connubii.[25] In this, Pope Pius XI explicitly condemned sterilization laws: “Public magistrates have no direct power over the bodies of their subjects; therefore, where no crime has taken place and there is no cause present for grave punishment, they can never directly harm, or tamper with the integrity of the body, either for the reasons of eugenics or for any other reason.”[46]

As a social movement, eugenics reached its greatest popularity in the early decades of the 20th century, when it was practiced around the world and promoted by governments, institutions, and influential individuals. Many countries enacted[47] various eugenics policies, including: genetic screenings, birth control, promoting differential birth rates, marriage restrictions, segregation (both racial segregation and sequestering the mentally ill), compulsory sterilization, forced abortions or forced pregnancies, ultimately culminating in genocide.

The scientific reputation of eugenics started to decline in the 1930s, a time when Ernst Rdin used eugenics as a justification for the racial policies of Nazi Germany. Adolf Hitler had praised and incorporated eugenic ideas in Mein Kampf in 1925 and emulated eugenic legislation for the sterilization of “defectives” that had been pioneered in the United States once he took power. Some common early 20th century eugenics methods involved identifying and classifying individuals and their families, including the poor, mentally ill, blind, deaf, developmentally disabled, promiscuous women, homosexuals, and racial groups (such as the Roma and Jews in Nazi Germany) as “degenerate” or “unfit”, and therefore led to segregation, institutionalization, sterilization, euthanasia, and even mass murder. The Nazi practice of euthanasia was carried out on hospital patients in the Aktion T4 centers such as Hartheim Castle.

By the end of World War II, many discriminatory eugenics laws were abandoned, having become associated with Nazi Germany.[50] H. G. Wells, who had called for “the sterilization of failures” in 1904,[51] stated in his 1940 book The Rights of Man: Or What are we fighting for? that among the human rights, which he believed should be available to all people, was “a prohibition on mutilation, sterilization, torture, and any bodily punishment”.[52] After World War II, the practice of “imposing measures intended to prevent births within [a national, ethnical, racial or religious] group” fell within the definition of the new international crime of genocide, set out in the Convention on the Prevention and Punishment of the Crime of Genocide.[53] The Charter of Fundamental Rights of the European Union also proclaims “the prohibition of eugenic practices, in particular those aiming at selection of persons”.[54] In spite of the decline in discriminatory eugenics laws, some government mandated sterilizations continued into the 21st century. During the ten years President Alberto Fujimori led Peru from 1990 to 2000, 2,000 persons were allegedly involuntarily sterilized.[55] China maintained its one-child policy until 2015 as well as a suite of other eugenics based legislation to reduce population size and manage fertility rates of different populations.[56][57][58] In 2007 the United Nations reported coercive sterilizations and hysterectomies in Uzbekistan.[59] During the years 2005 to 2013, nearly one-third of the 144 California prison inmates who were sterilized did not give lawful consent to the operation.[60]

Developments in genetic, genomic, and reproductive technologies at the end of the 20th century have raised numerous questions regarding the ethical status of eugenics, effectively creating a resurgence of interest in the subject.Some, such as UC Berkeley sociologist Troy Duster, claim that modern genetics is a back door to eugenics.[61] This view is shared by White House Assistant Director for Forensic Sciences, Tania Simoncelli, who stated in a 2003 publication by the Population and Development Program at Hampshire College that advances in pre-implantation genetic diagnosis (PGD) are moving society to a “new era of eugenics”, and that, unlike the Nazi eugenics, modern eugenics is consumer driven and market based, “where children are increasingly regarded as made-to-order consumer products”.[62] In a 2006 newspaper article, Richard Dawkins said that discussion regarding eugenics was inhibited by the shadow of Nazi misuse, to the extent that some scientists would not admit that breeding humans for certain abilities is at all possible. He believes that it is not physically different from breeding domestic animals for traits such as speed or herding skill. Dawkins felt that enough time had elapsed to at least ask just what the ethical differences were between breeding for ability versus training athletes or forcing children to take music lessons, though he could think of persuasive reasons to draw the distinction.[63]

Lee Kuan Yew, the Founding Father of Singapore, started promoting eugenics as early as 1983.[64][65]

In October 2015, the United Nations’ International Bioethics Committee wrote that the ethical problems of human genetic engineering should not be confused with the ethical problems of the 20th century eugenics movements. However, it is still problematic because it challenges the idea of human equality and opens up new forms of discrimination and stigmatization for those who do not want, or cannot afford, the technology.[66]

Transhumanism is often associated with eugenics, although most transhumanists holding similar views nonetheless distance themselves from the term “eugenics” (preferring “germinal choice” or “reprogenetics”)[67] to avoid having their position confused with the discredited theories and practices of early-20th-century eugenic movements.

Prenatal screening can be considered a form of contemporary eugenics because it may lead to abortions of children with undesirable traits.[68]

The term eugenics and its modern field of study were first formulated by Francis Galton in 1883,[69] drawing on the recent work of his half-cousin Charles Darwin.[70][71] Galton published his observations and conclusions in his book Inquiries into Human Faculty and Its Development.

The origins of the concept began with certain interpretations of Mendelian inheritance and the theories of August Weismann. The word eugenics is derived from the Greek word eu (“good” or “well”) and the suffix -gens (“born”), and was coined by Galton in 1883 to replace the word “stirpiculture”, which he had used previously but which had come to be mocked due to its perceived sexual overtones.[73] Galton defined eugenics as “the study of all agencies under human control which can improve or impair the racial quality of future generations”.[74]

Historically, the term eugenics has referred to everything from prenatal care for mothers to forced sterilization and euthanasia.[75] To population geneticists, the term has included the avoidance of inbreeding without altering allele frequencies; for example, J. B. S. Haldane wrote that “the motor bus, by breaking up inbred village communities, was a powerful eugenic agent.”[76] Debate as to what exactly counts as eugenics continues today.[77]

Edwin Black, journalist and author of War Against the Weak, claims eugenics is often deemed a pseudoscience because what is defined as a genetic improvement of a desired trait is often deemed a cultural choice rather than a matter that can be determined through objective scientific inquiry.[78] The most disputed aspect of eugenics has been the definition of “improvement” of the human gene pool, such as what is a beneficial characteristic and what is a defect. Historically, this aspect of eugenics was tainted with scientific racism and pseudoscience.[79][80][81]

Early eugenists were mostly concerned with factors of perceived intelligence that often correlated strongly with social class. Some of these early eugenists include Karl Pearson and Walter Weldon, who worked on this at the University College London.[20]

Eugenics also had a place in medicine. In his lecture “Darwinism, Medical Progress and Eugenics”, Karl Pearson said that everything concerning eugenics fell into the field of medicine. He basically placed the two words as equivalents. He was supported in part by the fact that Francis Galton, the father of eugenics, also had medical training.[82]

Eugenic policies have been conceptually divided into two categories.[75] Positive eugenics is aimed at encouraging reproduction among the genetically advantaged; for example, the reproduction of the intelligent, the healthy, and the successful. Possible approaches include financial and political stimuli, targeted demographic analyses, in vitro fertilization, egg transplants, and cloning.[83] The movie Gattaca provides a fictional example of a dystopian society that uses eugenics to decided what you are capable of and your place in the world. Negative eugenics aimed to eliminate, through sterilization or segregation, those deemed physically, mentally, or morally “undesirable”. This includes abortions, sterilization, and other methods of family planning.[83] Both positive and negative eugenics can be coercive; abortion for fit women, for example, was illegal in Nazi Germany.[84]

Jon Entine claims that eugenics simply means “good genes” and using it as synonym for genocide is an “all-too-common distortion of the social history of genetics policy in the United States.” According to Entine, eugenics developed out of the Progressive Era and not “Hitler’s twisted Final Solution”.[85]

According to Richard Lynn, eugenics may be divided into two main categories based on the ways in which the methods of eugenics can be applied.[86]

The first major challenge to conventional eugenics based upon genetic inheritance was made in 1915 by Thomas Hunt Morgan. He demonstrated the event of genetic mutation occurring outside of inheritance involving the discovery of the hatching of a fruit fly (Drosophila melanogaster) with white eyes from a family with red eyes. Morgan claimed that this demonstrated that major genetic changes occurred outside of inheritance and that the concept of eugenics based upon genetic inheritance was not completely scientifically accurate. Additionally, Morgan criticized the view that subjective traits, such as intelligence and criminality, were caused by heredity because he believed that the definitions of these traits varied and that accurate work in genetics could only be done when the traits being studied were accurately defined.[123] Despite Morgan’s public rejection of eugenics, much of his genetic research was absorbed by eugenics.[124][125]

The heterozygote test is used for the early detection of recessive hereditary diseases, allowing for couples to determine if they are at risk of passing genetic defects to a future child.[126] The goal of the test is to estimate the likelihood of passing the hereditary disease to future descendants.[126]

Recessive traits can be severely reduced, but never eliminated unless the complete genetic makeup of all members of the pool was known, as aforementioned. As only very few undesirable traits, such as Huntington’s disease, are dominant, it could be argued[by whom?] from certain perspectives that the practicality of “eliminating” traits is quite low.[citation needed]

There are examples of eugenic acts that managed to lower the prevalence of recessive diseases, although not influencing the prevalence of heterozygote carriers of those diseases. The elevated prevalence of certain genetically transmitted diseases among the Ashkenazi Jewish population (TaySachs, cystic fibrosis, Canavan’s disease, and Gaucher’s disease), has been decreased in current populations by the application of genetic screening.[127]

Pleiotropy occurs when one gene influences multiple, seemingly unrelated phenotypic traits, an example being phenylketonuria, which is a human disease that affects multiple systems but is caused by one gene defect.[128] Andrzej Pkalski, from the University of Wrocaw, argues that eugenics can cause harmful loss of genetic diversity if a eugenics program selects a pleiotropic gene that could possibly be associated with a positive trait. Pekalski uses the example of a coercive government eugenics program that prohibits people with myopia from breeding but has the unintended consequence of also selecting against high intelligence since the two go together.[129]

Eugenic policies could also lead to loss of genetic diversity, in which case a culturally accepted “improvement” of the gene pool could very likelyas evidenced in numerous instances in isolated island populations result in extinction due to increased vulnerability to disease, reduced ability to adapt to environmental change, and other factors both known and unknown. A long-term, species-wide eugenics plan might lead to a scenario similar to this because the elimination of traits deemed undesirable would reduce genetic diversity by definition.[130]

Edward M. Miller claims that, in any one generation, any realistic program should make only minor changes in a fraction of the gene pool, giving plenty of time to reverse direction if unintended consequences emerge, reducing the likelihood of the elimination of desirable genes.[131] Miller also argues that any appreciable reduction in diversity is so far in the future that little concern is needed for now.[131]

While the science of genetics has increasingly provided means by which certain characteristics and conditions can be identified and understood, given the complexity of human genetics, culture, and psychology, at this point no agreed objective means of determining which traits might be ultimately desirable or undesirable. Some diseases such as sickle-cell disease and cystic fibrosis respectively confer immunity to malaria and resistance to cholera when a single copy of the recessive allele is contained within the genotype of the individual. Reducing the instance of sickle-cell disease genes in Africa where malaria is a common and deadly disease could indeed have extremely negative net consequences.

However, some genetic diseases cause people to consider some elements of eugenics.

Societal and political consequences of eugenics call for a place in the discussion on the ethics behind the eugenics movement.[132] Many of the ethical concerns regarding eugenics arise from its controversial past, prompting a discussion on what place, if any, it should have in the future. Advances in science have changed eugenics. In the past, eugenics had more to do with sterilization and enforced reproduction laws.[133] Now, in the age of a progressively mapped genome, embryos can be tested for susceptibility to disease, gender, and genetic defects, and alternative methods of reproduction such as in vitro fertilization are becoming more common.[134] Therefore, eugenics is no longer ex post facto regulation of the living but instead preemptive action on the unborn.[135]

With this change, however, there are ethical concerns which lack adequate attention, and which must be addressed before eugenic policies can be properly implemented in the future. Sterilized individuals, for example, could volunteer for the procedure, albeit under incentive or duress, or at least voice their opinion. The unborn fetus on which these new eugenic procedures are performed cannot speak out, as the fetus lacks the voice to consent or to express his or her opinion.[136] Philosophers disagree about the proper framework for reasoning about such actions, which change the very identity and existence of future persons.[137]

A common criticism of eugenics is that “it inevitably leads to measures that are unethical”.[138] Some fear future “eugenics wars” as the worst-case scenario: the return of coercive state-sponsored genetic discrimination and human rights violations such as compulsory sterilization of persons with genetic defects, the killing of the institutionalized and, specifically, segregation and genocide of races perceived as inferior.[139] Health law professor George Annas and technology law professor Lori Andrews are prominent advocates of the position that the use of these technologies could lead to such human-posthuman caste warfare.[140][141]

In his 2003 book Enough: Staying Human in an Engineered Age, environmental ethicist Bill McKibben argued at length against germinal choice technology and other advanced biotechnological strategies for human enhancement. He writes that it would be morally wrong for humans to tamper with fundamental aspects of themselves (or their children) in an attempt to overcome universal human limitations, such as vulnerability to aging, maximum life span and biological constraints on physical and cognitive ability. Attempts to “improve” themselves through such manipulation would remove limitations that provide a necessary context for the experience of meaningful human choice. He claims that human lives would no longer seem meaningful in a world where such limitations could be overcome with technology. Even the goal of using germinal choice technology for clearly therapeutic purposes should be relinquished, since it would inevitably produce temptations to tamper with such things as cognitive capacities. He argues that it is possible for societies to benefit from renouncing particular technologies, using as examples Ming China, Tokugawa Japan and the contemporary Amish.[142]

Some, for example Nathaniel C. Comfort from Johns Hopkins University, claim that the change from state-led reproductive-genetic decision-making to individual choice has moderated the worst abuses of eugenics by transferring the decision-making from the state to the patient and their family.[143] Comfort suggests that “the eugenic impulse drives us to eliminate disease, live longer and healthier, with greater intelligence, and a better adjustment to the conditions of society; and the health benefits, the intellectual thrill and the profits of genetic bio-medicine are too great for us to do otherwise.”[144] Others, such as bioethicist Stephen Wilkinson of Keele University and Honorary Research Fellow Eve Garrard at the University of Manchester, claim that some aspects of modern genetics can be classified as eugenics, but that this classification does not inherently make modern genetics immoral. In a co-authored publication by Keele University, they stated that “[e]ugenics doesn’t seem always to be immoral, and so the fact that PGD, and other forms of selective reproduction, might sometimes technically be eugenic, isn’t sufficient to show that they’re wrong.”[145]

In their book published in 2000, From Chance to Choice: Genetics and Justice, bioethicists Allen Buchanan, Dan Brock, Norman Daniels and Daniel Wikler argued that liberal societies have an obligation to encourage as wide an adoption of eugenic enhancement technologies as possible (so long as such policies do not infringe on individuals’ reproductive rights or exert undue pressures on prospective parents to use these technologies) in order to maximize public health and minimize the inequalities that may result from both natural genetic endowments and unequal access to genetic enhancements.[146]

Original position, a hypothetical situation developed by American philosopher John Rawls, has been used as an argument for negative eugenics.[147][148]

Notes

Bibliography

The rest is here:

Eugenics – Wikipedia

Free gattaca Essays and Papers – 123helpme.com

– Beginning of the film, the director cites the Bible passage into, and the words are indeed spiritual in some way throughout the whole movie. Vinson was born in an era of gene Viva, during years in that wonderful (?), Each individual before birth, can be checked through sophisticated, will identify all gene defects, genetic everyone will In this close inspection database is put into being, but also because of your genes is excellent, to determine your social status. In this world, the gene is your resume, all companies admitted to the line number of people to see not ability, but whether the gene is excellent…. [tags: Genetics, Genetic disorder, DNA, Gene]

Better Essays 1167 words | (3.3 pages) | Preview

Visit link:

Free gattaca Essays and Papers – 123helpme.com

Eugenics in the United States – Wikipedia

Eugenics, the set of beliefs and practices which aims at improving the genetic quality of the human population,[2][3] played a significant role in the history and culture of the United States prior to its involvement in World War II.[4]

Eugenics was practiced in the United States many years before eugenics programs in Nazi Germany,[5] which were largely inspired by the previous American work.[6][7][8] Stefan Khl has documented the consensus between Nazi race policies and those of eugenicists in other countries, including the United States, and points out that eugenicists understood Nazi policies and measures as the realization of their goals and demands.[9]

During the Progressive Era of the late 19th and early 20th century, eugenics was considered a method of preserving and improving the dominant groups in the population; it is now generally associated with racist and nativist elements, as the movement was to some extent a reaction to a change in emigration from Europe, rather than scientific genetics.[10]

The American eugenics movement was rooted in the biological determinist ideas of Sir Francis Galton, which originated in the 1880s. Galton studied the upper classes of Britain, and arrived at the conclusion that their social positions were due to a superior genetic makeup.[11] Early proponents of eugenics believed that, through selective breeding, the human species should direct its own evolution. They tended to believe in the genetic superiority of Nordic, Germanic and Anglo-Saxon peoples; supported strict immigration and anti-miscegenation laws; and supported the forcible sterilization of the poor, disabled and “immoral”.[12] Eugenics was also supported by African American intellectuals such as W. E. B. Du Bois, Thomas Wyatt Turner, and many academics at Tuskegee University, Howard University, and Hampton University; however, they believed the best blacks were as good as the best whites and “The Talented Tenth” of all races should mix.[13] W. E. B. Du Bois believed “only fit blacks should procreate to eradicate the race’s heritage of moral iniquity.”[13][14]

The American eugenics movement received extensive funding from various corporate foundations including the Carnegie Institution, Rockefeller Foundation, and the Harriman railroad fortune.[7] In 1906 J.H. Kellogg provided funding to help found the Race Betterment Foundation in Battle Creek, Michigan.[11] The Eugenics Record Office (ERO) was founded in Cold Spring Harbor, New York in 1911 by the renowned biologist Charles B. Davenport, using money from both the Harriman railroad fortune and the Carnegie Institution. As late as the 1920s, the ERO was one of the leading organizations in the American eugenics movement.[11][15] In years to come, the ERO collected a mass of family pedigrees and concluded that those who were unfit came from economically and socially poor backgrounds. Eugenicists such as Davenport, the psychologist Henry H. Goddard, Harry H. Laughlin, and the conservationist Madison Grant (all well respected in their time) began to lobby for various solutions to the problem of the “unfit”. Davenport favored immigration restriction and sterilization as primary methods; Goddard favored segregation in his The Kallikak Family; Grant favored all of the above and more, even entertaining the idea of extermination.[16] The Eugenics Record Office later became the Cold Spring Harbor Laboratory.

Eugenics was widely accepted in the U.S. academic community.[7] By 1928, there were 376 separate university courses in some of the United States’ leading schools, enrolling more than 20,000 students, which included eugenics in the curriculum.[17] It did, however, have scientific detractors (notably, Thomas Hunt Morgan, one of the few Mendelians to explicitly criticize eugenics), though most of these focused more on what they considered the crude methodology of eugenicists, and the characterization of almost every human characteristic as being hereditary, rather than the idea of eugenics itself.[18]

By 1910, there was a large and dynamic network of scientists, reformers, and professionals engaged in national eugenics projects and actively promoting eugenic legislation. The American Breeder’s Association was the first eugenic body in the U.S., established in 1906 under the direction of biologist Charles B. Davenport. The ABA was formed specifically to “investigate and report on heredity in the human race, and emphasize the value of superior blood and the menace to society of inferior blood.” Membership included Alexander Graham Bell, Stanford president David Starr Jordan and Luther Burbank.[19][20] The American Association for the Study and Prevention of Infant Mortality was one of the first organizations to begin investigating infant mortality rates in terms of eugenics.[21] They promoted government intervention in attempts to promote the health of future citizens.[22][verification needed]

Several feminist reformers advocated an agenda of eugenic legal reform. The National Federation of Women’s Clubs, the Woman’s Christian Temperance Union, and the National League of Women Voters were among the variety of state and local feminist organization that at some point lobbied for eugenic reforms.[23]

One of the most prominent feminists to champion the eugenic agenda was Margaret Sanger, the leader of the American birth control movement. Margaret Sanger saw birth control as a means to prevent unwanted children from being born into a disadvantaged life, and incorporated the language of eugenics to advance the movement.[24][25] Sanger also sought to discourage the reproduction of persons who, it was believed, would pass on mental disease or serious physical defects. She advocated sterilization in cases where the subject was unable to use birth control.[24] She rejected euthanasia.[26] For Sanger, it was individual women and not the state who should determine whether or not to have a child.[27][28]

In the Deep South, women’s associations played an important role in rallying support for eugenic legal reform. Eugenicists recognized the political and social influence of southern clubwomen in their communities, and used them to help implement eugenics across the region.[29] Between 1915 and 1920, federated women’s clubs in every state of the Deep South had a critical role in establishing public eugenic institutions that were segregated by sex.[30] For example, the Legislative Committee of the Florida State Federation of Women’s Clubs successfully lobbied to institute a eugenic institution for the mentally retarded that was segregated by sex.[31] Their aim was to separate mentally retarded men and women to prevent them from breeding more “feebleminded” individuals.

Public acceptance in the U.S. was the reason eugenic legislation was passed.Almost 19 million people attended the PanamaPacific International Exposition in San Francisco, open for 10 months from 20 February to 4 December 1915.[32][33] The PPIE was a fair devoted to extolling the virtues of a rapidly progressing nation, featuring new developments in science, agriculture, manufacturing and technology. A subject that received a large amount of time and space was that of the developments concerning health and disease, particularly the areas of tropical medicine and race betterment (tropical medicine being the combined study of bacteriology, parasitology and entomology while racial betterment being the promotion of eugenic studies). Having these areas so closely intertwined, it seemed that they were both categorized in the main theme of the fair, the advancement of civilization. Thus in the public eye, the seemingly contradictory[clarification needed] areas of study were both represented under progressive banners of improvement and were made to seem like plausible courses of action to better American society.[34][35]

Beginning with Connecticut in 1896, many states enacted marriage laws with eugenic criteria, prohibiting anyone who was “epileptic, imbecile or feeble-minded”[36] from marrying.[37]

The first state to introduce a compulsory sterilization bill was Michigan, in 1897 but the proposed law failed to garner enough votes by legislators to be adopted. Eight years later Pennsylvania’s state legislators passed a sterilization bill that was vetoed by the governor. Indiana became the first state to enact sterilization legislation in 1907,[38] followed closely by Washington and California in 1909. Sterilization rates across the country were relatively low (California being the sole exception) until the 1927 Supreme Court case Buck v. Bell which legitimized the forced sterilization of patients at a Virginia home for the mentally retarded. The number of sterilizations performed per year increased until another Supreme Court case, Skinner v. Oklahoma, 1942, complicated the legal situation by ruling against sterilization of criminals if the equal protection clause of the constitution was violated. That is, if sterilization was to be performed, then it could not exempt white-collar criminals.[39] The state of California was at the vanguard of the American eugenics movement, performing about 20,000 sterilizations or one third of the 60,000 nationwide from 1909 up until the 1960s.[40]

While California had the highest number of sterilizations, North Carolina’s eugenics program which operated from 1933 to 1977, was the most aggressive of the 32 states that had eugenics programs.[41] An IQ of 70 or lower meant sterilization was appropriate in North Carolina.[42] The North Carolina Eugenics Board almost always approved proposals brought before them by local welfare boards.[42] Of all states, only North Carolina gave social workers the power to designate people for sterilization.[41] “Here, at last, was a method of preventing unwanted pregnancies by an acceptable, practical, and inexpensive method,” wrote Wallace Kuralt in the March 1967 journal of the N.C. Board of Public Welfare. “The poor readily adopted the new techniques for birth control.”[42]

The Immigration Restriction League was the first American entity associated officially with eugenics. Founded in 1894 by three recent Harvard University graduates, the League sought to bar what it considered inferior races from entering America and diluting what it saw as the superior American racial stock (upper class Northerners of Anglo-Saxon heritage). They felt that social and sexual involvement with these less-evolved and less-civilized races would pose a biological threat to the American population. The League lobbied for a literacy test for immigrants, based on the belief that literacy rates were low among “inferior races”. Literacy test bills were vetoed by Presidents in 1897, 1913 and 1915; eventually, President Wilson’s second veto was overruled by Congress in 1917. Membership in the League included: A. Lawrence Lowell, president of Harvard, William DeWitt Hyde, president of Bowdoin College, James T. Young, director of Wharton School and David Starr Jordan, president of Stanford University.[43]

The League allied themselves with the American Breeder’s Association to gain influence and further its goals and in 1909 established a Committee on Eugenics chaired by David Starr Jordan with members Charles Davenport, Alexander Graham Bell, Vernon Kellogg, Luther Burbank, William Ernest Castle, Adolf Meyer, H. J. Webber and Friedrich Woods. The ABA’s immigration legislation committee, formed in 1911 and headed by League’s founder Prescott F. Hall, formalized the committee’s already strong relationship with the Immigration Restriction League. They also founded the Eugenics Record Office, which was headed by Harry H. Laughlin.[44] In their mission statement, they wrote:

Society must protect itself; as it claims the right to deprive the murderer of his life so it may also annihilate the hideous serpent of hopelessly vicious protoplasm. Here is where appropriate legislation will aid in eugenics and creating a healthier, saner society in the future.[44]

Money from the Harriman railroad fortune was also given to local charities, in order to find immigrants from specific ethnic groups and deport, confine, or forcibly sterilize them.[7]

With the passage of the Immigration Act of 1924, eugenicists for the first time played an important role in the Congressional debate as expert advisers on the threat of “inferior stock” from eastern and southern Europe.[45][46] The new act, inspired by the eugenic belief in the racial superiority of “old stock” white Americans as members of the “Nordic race” (a form of white supremacy), strengthened the position of existing laws prohibiting race-mixing.[47] Eugenic considerations also lay behind the adoption of incest laws in much of the U.S. and were used to justify many anti-miscegenation laws.[48]

Stephen Jay Gould asserted that restrictions on immigration passed in the United States during the 1920s (and overhauled in 1965 with the Immigration and Nationality Act) were motivated by the goals of eugenics. During the early 20th century, the United States and Canada began to receive far higher numbers of Southern and Eastern European immigrants. Influential eugenicists like Lothrop Stoddard and Harry Laughlin (who was appointed as an expert witness for the House Committee on Immigration and Naturalization in 1920) presented arguments they would pollute the national gene pool if their numbers went unrestricted.[49][50] It has been argued that this stirred both Canada and the United States into passing laws creating a hierarchy of nationalities, rating them from the most desirable Anglo-Saxon and Nordic peoples to the Chinese and Japanese immigrants, who were almost completely banned from entering the country.[47][51]

Both class and race factored into eugenic definitions of “fit” and “unfit.” By using intelligence testing, American eugenicists asserted that social mobility was indicative of one’s genetic fitness.[52] This reaffirmed the existing class and racial hierarchies and explained why the upper-to-middle class was predominantly white. Middle-to-upper class status was a marker of “superior strains.”[31] In contrast, eugenicists believed poverty to be a characteristic of genetic inferiority, which meant that those deemed “unfit” were predominantly of the lower classes.[31]

Because class status designated some more fit than others, eugenicists treated upper and lower class women differently. Positive eugenicists, who promoted procreation among the fittest in society, encouraged middle class women to bear more children. Between 1900 and 1960, Eugenicists appealed to middle class white women to become more “family minded,” and to help better the race.[53] To this end, eugenicists often denied middle and upper class women sterilization and birth control.[54]

Since poverty was associated with prostitution and “mental idiocy,” women of the lower classes were the first to be deemed “unfit” and “promiscuous.”[31]

In 1907, Indiana passed the first eugenics-based compulsory sterilization law in the world. Thirty U.S. states would soon follow their lead.[55][56] Although the law was overturned by the Indiana Supreme Court in 1921,[57] the U.S. Supreme Court, in Buck v. Bell, upheld the constitutionality of the Virginia Sterilization Act of 1924, allowing for the compulsory sterilization of patients of state mental institutions in 1927.[58]

Some states sterilized “imbeciles” for much of the 20th century. Although compulsory sterilization is now considered an abuse of human rights, Buck v. Bell was never overturned, and Virginia did not repeal its sterilization law until 1974.[59] The most significant era of eugenic sterilization was between 1907 and 1963, when over 64,000 individuals were forcibly sterilized under eugenic legislation in the United States.[60] Beginning around 1930, there was a steady increase in the percentage of women sterilized, and in a few states only young women were sterilized. From 1930 to the 1960s, sterilizations were performed on many more institutionalized women than men.[31] By 1961, 61 percent of the 62,162 total eugenic sterilizations in the United States were performed on women.[31] A favorable report on the results of sterilization in California, the state with the most sterilizations by far, was published in book form by the biologist Paul Popenoe and was widely cited by the Nazi government as evidence that wide-reaching sterilization programs were feasible and humane.[61][62]

Men and women were compulsorily sterilized for different reasons. Men were sterilized to treat their aggression and to eliminate their criminal behavior, while women were sterilized to control the results of their sexuality.[31] Since women bore children, eugenicists held women more accountable than men for the reproduction of the less “desirable” members of society.[31] Eugenicists therefore predominantly targeted women in their efforts to regulate the birth rate, to “protect” white racial health, and weed out the “defectives” of society.[31]

A 1937 Fortune magazine poll found that 2/3 of respondents supported eugenic sterilization of “mental defectives”, 63% supported sterilization of criminals, and only 15% opposed both.[63][64]

In the 1970s, several activists and women’s rights groups discovered several physicians to be performing coerced sterilizations of specific ethnic groups of society. All were abuses of poor, nonwhite, or mentally retarded women, while no abuses against white or middle-class women were recorded.[65] Several court cases such as Madrigal v. Quilligan, a class action suit regarding forced or coerced postpartum sterilization of Latina women following cesarean sections, and Relf v. Weinberger,[66] the sterilization of two young black girls by tricking their illiterate mother into signing a waiver, helped bring to light some of the widespread abuses of sterilization supported by federal funds.[67][68]

After World War II, Dr. Clarence Gamble revived the eugenics movement in the United States through sterilization. Dr. Gamble supported the eugenics movement throughout his life. He worked as a researcher at Harvard Medical school and was well off financially, as the Procter and Gamble fortune was inherited by him. Gamble, a proponent of birth control, contributed to the founding of public birth control clinics. These were the first public clinics in the United States. Until the 1960’s and 1970’s, Gamble’s ideal form of eugenics, sterilization, was seen in various cases. Doctors told mothers that their daughters needed shots, but they were actually sterilizing them. Hispanic women were often sterilized due to the fact that they could not read the consent forms that doctors had given them. Poorer white people, African Americans, and Native American people were also targeted for forced sterilization.[69]

The number of eugenic sterilizations is agreed upon by most scholars and journalists. They claim that there were 64,000 cases of eugenic sterilization in the United States, but this number does not take into account the sterilizations that took place after 1963. Around this time was when women from different minority groups were singled out for sterilization. If the sterilizations after 1963 are taken into account, the number of eugenic sterilizations in the United States increases to 80,000. Half of these sterilizations took place after World War II. Sterilization still occurs today, in some states, drug addicts can get paid to be sterilized. Eugenic sterilization programs before World War II were mostly conducted on prisoners, or people in mental hospitals. After the war, eugenic sterilization was aimed more towards poor people and minorities. There were even judges who would force people on parole to be sterilized. People supported this revival of eugenic sterilizations because they thought it would help bring an end to some issues, like poverty and mental illness. Supporters also thought that these programs would save taxpayer money and boost the economy.[70]

In 1972, United States Senate committee testimony brought to light that at least 2,000 involuntary sterilizations had been performed on poor black women without their consent or knowledge.[71] An investigation revealed that the surgeries were all performed in the South, and were all performed on black welfare mothers with multiple children.[71] Testimony revealed that many of these women were threatened with an end to their welfare benefits until they consented to sterilization.[71] These surgeries were instances of sterilization abuse, a term applied to any sterilization performed without the consent or knowledge of the recipient, or in which the recipient is pressured into accepting the surgery. Because the funds used to carry out the surgeries came from the U.S. Office of Economic Opportunity, the sterilization abuse raised older suspicions, especially amongst the black community, that “federal programs were underwriting eugenicists who wanted to impose their views about population quality on minorities and poor women.”[31]

Native American women were also victims of sterilization abuse up into the 1970s.[72] The organization WARN (Women of All Red Nations) publicized that Native American women were threatened that, if they had more children, they would be denied welfare benefits. The Indian Health Service also repeatedly refused to deliver Native American babies until their mothers, in labor, consented to sterilization. Many Native American women unknowingly gave consent, since directions were not given in their native language. According to the General Accounting Office, an estimate of 3,406 Indian women were sterilized.[72] The General Accounting Office stated that the Indian Health Service had not followed the necessary regulations, and that the “informed consent forms did not adhere to the standards set by the United States Department of Health, Education, and Welfare (HEW).”[73]

In 2013, it was reported that 148 female prisoners in two California prisons were sterilized between 2006 and 2010 in a supposedly voluntary program, but it was determined that the prisoners did not give consent to the procedures.[74] In September 2014, California enacted Bill SB1135 that bans sterilization in correctional facilities, unless the procedure is required to save an inmate’s life.[75]

Edwin Black wrote that one of the methods that was suggested to get rid of “defective germ-plasm in the human population” was euthanasia.[7] A 1911 Carnegie Institute report explored eighteen methods for removing defective genetic attributes, and method number eight was euthanasia.[7] The most commonly suggested method of euthanasia was to set up local gas chambers.[7] However, many in the eugenics movement did not believe that Americans were ready to implement a large-scale euthanasia program, so many doctors had to find clever ways of subtly implementing eugenic euthanasia in various medical institutions.[7] For example, a mental institution in Lincoln, Illinois fed its incoming patients milk infected with tuberculosis (reasoning that genetically fit individuals would be resistant), resulting in 3040% annual death rates.[7] Other doctors practiced euthanasia through various forms of lethal neglect.[7]

In the 1930s, there was a wave of portrayals of eugenic “mercy killings” in American film, newspapers, and magazines. In 1931, the Illinois Homeopathic Medicine Association began lobbying for the right to euthanize “imbeciles” and other defectives.[76] The Euthanasia Society of America was founded in 1938.[77]

Overall, however, euthanasia was marginalized in the U.S., motivating people to turn to forced segregation and sterilization programs as a means for keeping the “unfit” from reproducing.[7]

Mary deGormo, a former teacher, was the first person to combine ideas about health and intelligence standards with competitions at state fairs, in the form of baby contests. She developed the first such contest, the “Scientific Baby Contest” for the Louisiana State Fair in Shreveport, in 1908. She saw these contests as a contribution to the “social efficiency” movement, which was advocating for the standardization of all aspects of American life as a means of increasing efficiency.[21] DeGarmo was assisted by Doctor Jacob Bodenheimer, a pediatrician who helped her develop grading sheets for contestants, which combined physical measurements with standardized measurements of intelligence.[78]

The contest spread to other U.S. states in the early twentieth century. In Indiana, for example, Ada Estelle Schweitzer, a eugenics advocate and director of the Indiana State Board of Health’s Division of Child and Infant Hygiene, organized and supervised the state’s Better Baby contests at the Indiana State Fair from 1920 to 1932. It was among the fair’s most popular events. During the contest’s first year at the fair, a total of 78 babies were examined; in 1925 the total reached 885. Contestants peaked at 1,301 infants in 1930, and the following year the number of entrants was capped at 1,200. Although the specific impact of the contests was difficult to assess, statistics helped to support Schweitzer’s claims that the contests helped reduce infant mortality.[79]

The intent of the contest was to educate the public about raising healthier children; however, its exclusionary practices reinforced social class and racial discrimination. In Indiana, for example, the contestants were limited to white infants; African American and immigrant children were barred from the competition for ribbons and cash prizes. In addition, the scoring was biased toward white, middle-class babies.[80][81] The contest procedure included recording each child’s health history, as well as evaluations of each contestant’s physical and mental health and overall development using medical professionals. Using a process similar to the one introduced at the Louisiana State Fair, and contest guidelines that the AMA and U.S. Children’s Bureau recommended, scoring for each contestant began with 1,000 points. Deductions were made for defects, including a child’s measurements below a designated average. The contestant with the most points (and the fewest defections) was declared the winner.[82][83][84]

Standardization through scientific judgment was a topic that was very serious in the eyes of the scientific community, but has often been downplayed as just a popular fad or trend. Nevertheless, a lot of time, effort, and money was put into these contests and their scientific backing, which would influence cultural ideas as well as local and state government practices.[85][86]

The National Association for the Advancement of Colored People promoted eugenics by hosting “Better Baby” contests and the proceeds would go to its anti-lynching campaign.[13]

First appearing in 1920 at the Kansas Free Fair, Fitter Family competitions, continued all the way up to World War II. Mary T. Watts and Dr. Florence Brown Sherbon,[87][88] both initiators of the Better Baby Contests in Iowa, took the idea of positive eugenics for babies and combined it with a determinist concept of biology to come up with fitter family competitions.[89]

There were several different categories that families were judged in: Size of the family, overall attractiveness, and health of the family, all of which helped to determine the likelihood of having healthy children. These competitions were simply a continuation of the Better Baby contests that promoted certain physical and mental qualities.[90] At the time, it was believed that certain behavioral qualities were inherited from one’s parents. This led to the addition of several judging categories including: generosity, self-sacrificing, and quality of familial bonds. Additionally, there were negative features that were judged: selfishness, jealousy, suspiciousness, high-temperedness, and cruelty. Feeblemindedness, alcoholism, and paralysis were few among other traits that were included as physical traits to be judged when looking at family lineage.[91]

Doctors and specialists from the community would offer their time to judge these competitions, which were originally sponsored by the Red Cross.[91] The winners of these competitions were given a Bronze Medal as well as champion cups called “Capper Medals.” The cups were named after then Governor and Senator, Arthur Capper and he would present them to “Grade A individuals”.[92]

The perks of entering into the contests were that the competitions provided a way for families to get a free health check up by a doctor as well as some of the pride and prestige that came from winning the competitions.[91]

By 1925 the Eugenics Records Office was distributing standardized forms for judging eugenically fit families, which were used in contests in several U.S. states.[93]

Concerns about eugenics arose in the African American community after the implementation of the Negro Project of 1939, which was proposed by Margaret Sanger who was the founder of Planned Parenthood.[94] In this plan, Sanger offered birth control to Black families in the United States to give them the chance to have a better life than what the group had been experiencing in the United States.[95] She also noted that the project was proposed to empower women. The Project often sought after prominent African American leaders to spread knowledge regarding birth control and the perceived positive effects it would have on the African American community, such as poverty and the lack of education.[96] Because of this, Sanger believed that African American ministers in the South would be useful to gain the trust of people within disadvantaged, African American communities as the Church was a pillar within the community.[96] Also, political leaders such as W.E.B. Dubois were quoted in the Project proposal criticizing Black people in the United States for having many children and for being less intelligent than their white counterparts:

… the mass of ignorant Negroes still breed carelessly and disastrously, so that the increase among Negroes, even more than the increase among Whites, is from that part of the population least intelligent and fit, and least able to rear their children properly.[95]

Even though The Negro Project received a lot of praise from white leaders and eugenicists of the time, it is important to note that Margaret Sanger wanted to clear concerns that this was not a project to terminate African Americans.[96] To add to the clarification, she received support from prominent African American leaders such as Mary McLeod Bethune and Adam Clayton Powell Jr.[95] These leaders and many more would later serve on the Negro National Advisory Council of Planned Parenthood Federation of America in 1942.

Still, many modern activists criticize Margaret Sanger for practicing eugenics on the African American community. Angela Davis, a leader who is associated with the Black Panther Party, made claims of Margaret Sanger targeting the African American community to reduce the population:

Calling for the recruitment of Black ministers to lead local birth control committees, the Federation’s proposal suggested that Black people should be rendered as vulnerable as possible to their birth control propaganda.[97]

Eugenics has been supported by members of the African American community for a long time.[when?] For example, Dr. Thomas Wyatt Turner, a professor at Howard University and a well respected scientist incorporated eugenics into his classes. The NAACP founder asked his students how eugenics can affect society in a good way in 1915. Eugenics seemed to be[weaselwords] accepted by all kinds of people. W.E.B DuBois, a historian and civil rights leader had some beliefs that lined up with eugenics. He believed in developing the best versions of African Americans in order for his race to succeed. Dr. Martin Luther King Jr. even received an award from Planned Parenthood in 1966 and in his acceptance speech, given by his wife, King discussed how large families are no longer functional in an urban setting. King claimed that in the cities, African Americans who continued to have children were over populating the ghettos. She continued by saying that having this many unwanted children is a bad problem that needs to be controlled, a belief that aligns with the eugenics movement.[98]

After the eugenics movement was well established in the United States, it spread to Germany. California eugenicists began producing literature promoting eugenics and sterilization and sending it overseas to German scientists and medical professionals.[7] By 1933, California had subjected more people to forceful sterilization than all other U.S. states combined. The forced sterilization program engineered by the Nazis was partly inspired by California’s.[8]

The Rockefeller Foundation helped develop and fund various German eugenics programs,[99] including the one that Josef Mengele worked in before he went to Auschwitz.[7]

Upon returning from Germany in 1934, where more than 5,000 people per month were being forcibly sterilized, the California eugenics leader C. M. Goethe bragged to a colleague:

You will be interested to know that your work has played a powerful part in shaping the opinions of the group of intellectuals who are behind Hitler in this epoch-making program. Everywhere I sensed that their opinions have been tremendously stimulated by American thought … I want you, my dear friend, to carry this thought with you for the rest of your life, that you have really jolted into action a great government of 60 million people.[7]

Eugenics researcher Harry H. Laughlin often bragged that his Model Eugenic Sterilization laws had been implemented in the 1935 Nuremberg racial hygiene laws.[100] In 1936, Laughlin was invited to an award ceremony at Heidelberg University in Germany (scheduled on the anniversary of Hitler’s 1934 purge of Jews from the Heidelberg faculty), to receive an honorary doctorate for his work on the “science of racial cleansing”. Due to financial limitations, Laughlin was unable to attend the ceremony and had to pick it up from the Rockefeller Institute. Afterwards, he proudly shared the award with his colleagues, remarking that he felt that it symbolized the “common understanding of German and American scientists of the nature of eugenics.”[101]

Henry Friedlander wrote that although the German and American eugenics movements were similar, the US did not follow the same slippery slope as Nazi eugenics because American “federalism and political heterogeneity encouraged diversity even with a single movement.” In contrast, the German eugenics movement was more centralized and had fewer diverse ideas.[102] Unlike the American movement, one publication and one society, the German Society for Racial Hygiene, represented all German eugenicists in the early 20th century.[102][103]

After 1945, however, historians began to try to portray the US eugenics movement as distinct and distant from Nazi eugenics.[104] Jon Entine wrote that eugenics simply means “good genes” and using it as synonym for genocide is an “all-too-common distortion of the social history of genetics policy in the United States.” According to Entine, eugenics developed out of the Progressive Era and not “Hitler’s twisted Final Solution.”[105]

After Hitler’s advanced idea of eugenics, the movement lost its place in society for a bit of time. Although eugenics was not thought about much, aspects like sterilization were still going on, just not at such a public level. Although as technology developed so did the movement, the new technologies made way for genetic engineering. Instead of sterilizing people to ultimately get rid of “undesirable” people, genetic engineering “changes or removes genes to prevent disease or improve the body in some significant way.”[106]

One positive of genetic engineering is its ability to cure and prevent life-threatening diseases. Genetic engineering began in the 1970s, this is when scientists began to clone and engineer genes. From this scientists were able to create human insulin, the first-ever genetically-engineered drug. Because of this development, over the years scientists were able to create new drugs to treat devastating diseases. For example, in the early 1990s, a group of scientists were able to use a gene-drug to treat severe combined immunodeficiency in a little girl. This disease forces victims to live inside a sanitized bubble. Due to the gene therapy, the girl was cured and able to live outside of her plastic bubble.[107] Developments like this are being made constantly because of genetic engineering, however genetic engineering also has many negatives.

One negative of genetic engineering is the practice of eliminating “undesirable traits” within humans and its ethics. This ultimately causes a link between genetic engineering and eugenics. This practice creates many social issues in society. Many people believe using genetic engineering to essentially “perfect” the human race is a damaging practice. For example, with current genetic tests, parents are able to test a fetus for any life-threatening diseases that may impact the child’s life and then choose to abort the baby.[106] The public fears this will cause issues due to the fact that practices like these may be used to eliminate entire groups of people, like the way Hitler used the idea. The basis of Hitler’s movement was to create a superior Aryan race, he wanted to eliminate every other race. While he did not have the genetic engineering technology then, this technology could be used with similar tactics as Hitler with permanent modifications to human germ lines and the ability to terminate a pregnancy that won’t produce the best baby.[108] Genetic engineering can also lead to trait selection and enhancement in embryos. One dilemma with this application is that most genes have an effect on more than one area of the body. For example, there is a gene that deals with memory, when scientists altered this gene to improve memory and learning in mice, it also increased their sensitivity to pain. There is also the issue of whether it is ethical to do such a thing to embryos because they cannot consent to the procedure. This also leads to issues within a socio-economic standpoint. Many people see this as an opportunity for the rich to continue to improve their children when the poor are left to “suffer” with their “undesirable” genes.[109]

The 1978 Federal Sterilization Regulations, created by the United States Department of Health, Education and Welfare or HEW, (now the United States Department of Health and Human Services) outline a variety of prohibited sterilization practices that were often used previously to coerce or force women into sterilization.[110] These were intended to prevent such eugenics and neo-eugenics as resulted in the involuntary sterilization of large groups of poor and minority women. Such practices include: not conveying to patients that sterilization is permanent and irreversible, in their own language (including the option to end the process or procedure at any time without conceding any future medical attention or federal benefits, the ability to ask any and all questions about the procedure and its ramifications, the requirement that the consent seeker describes the procedure fully including any and all possible discomforts and/or side-effects and any and all benefits of sterilization); failing to provide alternative information about methods of contraception, family planning, or pregnancy termination that are nonpermanent and/or irreversible (this includes abortion); conditioning receiving welfare and/or Medicaid benefits by the individual or his/her children on the individuals “consenting” to permanent sterilization; tying elected abortion to compulsory sterilization (cannot receive a sought out abortion without “consenting” to sterilization); using hysterectomy as sterilization; and subjecting minors and the mentally incompetent to sterilization.[110][67][111] The regulations also include an extension of the informed consent waiting period from 72 hours to 30 days (with a maximum of 180 days between informed consent and the sterilization procedure).[67][110][111]

However, several studies have indicated that the forms are often dense and complex and beyond the literacy aptitude of the average American, and those seeking publicly funded sterilization are more likely to possess below-average literacy skills.[112] High levels of misinformation concerning sterilization still exist among individuals who have already undergone sterilization procedures, with permanence being one of the most common gray factors.[112][113] Additionally, federal enforcement of the requirements of the 1978 Federal Sterilization Regulation is inconsistent and some of the prohibited abuses continue to be pervasive, particularly in underfunded hospitals and lower income patient hospitals and care centers.[67][111]

Read more from the original source:

Eugenics in the United States – Wikipedia

Automate the Boring Stuff with Python

Knowing various Python modules for editing spreadsheets, downloading files, and launching programs is useful, but sometimes there just arent any modules for the applications you need to work with. The ultimate tools for automating tasks on your computer are programs you write that directly control the keyboard and mouse. These programs can control other applications by sending them virtual keystrokes and mouse clicks, justpython3- as if you were sitting at your computer and interacting with the applications yourself. This technique is known as graphical user interface automation, or GUI automation for short. With GUI automation, your programs can do anything that a human user sitting at the computer can do, except spill coffee on the keyboard.

Think of GUI automation as programming a robotic arm. You can program the robotic arm to type at your keyboard and move your mouse for you. This technique is particularly useful for tasks that involve a lot of mindless clicking or filling out of forms.

The pyautogui module has functions for simulating mouse movements, button clicks, and scrolling the mouse wheel. This chapter covers only a subset of PyAutoGUIs features; you can find the full documentation at http://pyautogui.readthedocs.org/.

The pyautogui module can send virtual keypresses and mouse clicks to Windows, OS X, and Linux. Depending on which operating system youre using, you may have to install some other modules (called dependencies) before you can install PyAutoGUI.

On Windows, there are no other modules to install.

On OS X, run sudo pip3 install pyobjc-framework-Quartz, sudo pip3 install pyobjc-core, and then sudo pip3 install pyobjc.

On Linux, run sudo pip3 install python3-xlib, sudo apt-get install scrot, sudo apt-get install python3-tk, and sudo apt-get install python3-dev. (Scrot is a screenshot program that PyAutoGUI uses.)

After these dependencies are installed, run pip install pyautogui (or pip3 on OS X and Linux) to install PyAutoGUI.

Appendix A has complete information on installing third-party modules. To test whether PyAutoGUI has been installed correctly, run import pyautogui from the interactive shell and check for any error messages.

Before you jump in to a GUI automation, you should know how to escape problems that may arise. Python can move your mouse and type keystrokes at an incredible speed. In fact, it might be too fast for other programs to keep up with. Also, if something goes wrong but your program keeps moving the mouse around, it will be hard to tell what exactly the program is doing or how to recover from the problem. Like the enchanted brooms from Disneys The Sorcerers Apprentice, which kept fillingand then overfillingMickeys tub with water, your program could get out of control even though its following your instructions perfectly. Stopping the program can be difficult if the mouse is moving around on its own, preventing you from clicking the IDLE window to close it. Fortunately, there are several ways to prevent or recover from GUI automation problems.

Perhaps the simplest way to stop an out-of-control GUI automation program is to log out, which will shut down all running programs. On Windows and Linux, the logout hotkey is CTRL-ALT-DEL. On OS X, it is -SHIFT-OPTION-Q. By logging out, youll lose any unsaved work, but at least you wont have to wait for a full reboot of the computer.

You can tell your script to wait after every function call, giving you a short window to take control of the mouse and keyboard if something goes wrong. To do this, set the pyautogui.PAUSE variable to the number of seconds you want it to pause. For example, after setting pyautogui.PAUSE = 1.5, every PyAutoGUI function call will wait one and a half seconds after performing its action. Non-PyAutoGUI instructions will not have this pause.

PyAutoGUI also has a fail-safe feature. Moving the mouse cursor to the upper-left corner of the screen will cause PyAutoGUI to raise the pyautogui.FailSafeException exception. Your program can either handle this exception with try and except statements or let the exception crash your program. Either way, the fail-safe feature will stop the program if you quickly move the mouse as far up and left as you can. You can disable this feature by setting pyautogui.FAILSAFE = False. Enter the following into the interactive shell:

Here we import pyautogui and set pyautogui.PAUSE to 1 for a one-second pause after each function call. We set pyautogui.FAILSAFE to True to enable the fail-safe feature.

In this section, youll learn how to move the mouse and track its position on the screen using PyAutoGUI, but first you need to understand how PyAutoGUI works with coordinates.

The mouse functions of PyAutoGUI use x- and y-coordinates. Figure18-1 shows the coordinate system for the computer screen; its similar to the coordinate system used for images, discussed in Chapter17. The origin, where x and y are both zero, is at the upper-left corner of the screen. The x-coordinates increase going to the right, and the y-coordinates increase going down. All coordinates are positive integers; there are no negative coordinates.

Figure18-1.The coordinates of a computer screen with 19201080 resolution

Your resolution is how many pixels wide and tall your screen is. If your screens resolution is set to 19201080, then the coordinate for the upper-left corner will be (0, 0), and the coordinate for the bottom-right corner will be (1919, 1079).

The pyautogui.size() function returns a two-integer tuple of the screens width and height in pixels. Enter the following into the interactive shell:

pyautogui.size() returns (1920, 1080) on a computer with a 19201080 resolution; depending on your screens resolution, your return value may be different. You can store the width and height from pyautogui.size() in variables like width and height for better readability in your programs.

Now that you understand screen coordinates, lets move the mouse. The pyautogui.moveTo() function will instantly move the mouse cursor to a specified position on the screen. Integer values for the x- and y-coordinates make up the functions first and second arguments, respectively. An optional duration integer or float keyword argument specifies the number of seconds it should take to move the mouse to the destination. If you leave it out, the default is 0 for instantaneous movement. (All of the duration keyword arguments in PyAutoGUI functions are optional.) Enter the following into the interactive shell:

This example moves the mouse cursor clockwise in a square pattern among the four coordinates provided a total of ten times. Each movement takes a quarter of a second, as specified by the duration=0.25 keyword argument. If you hadnt passed a third argument to any of the pyautogui.moveTo() calls, the mouse cursor would have instantly teleported from point to point.

The pyautogui.moveRel() function moves the mouse cursor relative to its current position. The following example moves the mouse in the same square pattern, except it begins the square from wherever the mouse happens to be on the screen when the code starts running:

pyautogui.moveRel() also takes three arguments: how many pixels to move horizontally to the right, how many pixels to move vertically downward, and (optionally) how long it should take to complete the movement. A negative integer for the first or second argument will cause the mouse to move left or upward, respectively.

You can determine the mouses current position by calling the pyautogui.position() function, which will return a tuple of the mouse cursors x and y positions at the time of the function call. Enter the following into the interactive shell, moving the mouse around after each call:

Of course, your return values will vary depending on where your mouse cursor is.

Being able to determine the mouse position is an important part of setting up your GUI automation scripts. But its almost impossible to figure out the exact coordinates of a pixel just by looking at the screen. It would be handy to have a program that constantly displays the x- and y-coordinates of the mouse cursor as you move it around.

At a high level, heres what your program should do:

This means your code will need to do the following:

Call the position() function to fetch the current coordinates.

Erase the previously printed coordinates by printing b backspace characters to the screen.

Handle the KeyboardInterrupt exception so the user can press CTRL-C to quit.

Open a new file editor window and save it as mouseNow.py.

Start your program with the following:

The beginning of the program imports the pyautogui module and prints a reminder to the user that they have to press CTRL-C to quit.

You can use an infinite while loop to constantly print the current mouse coordinates from mouse.position(). As for the code that quits the program, youll need to catch the KeyboardInterrupt exception, which is raised whenever the user presses CTRL-C. If you dont handle this exception, it will display an ugly traceback and error message to the user. Add the following to your program:

To handle the exception, enclose the infinite while loop in a try statement. When the user presses CTRL-C, the program execution will move to the except clause and Done. will be printed in a new line .

The code inside the while loop should get the current mouse coordinates, format them to look nice, and print them. Add the following code to the inside of the while loop:

Using the multiple assignment trick, the x and y variables are given the values of the two integers returned in the tuple from pyautogui.position(). By passing x and y to the str() function, you can get string forms of the integer coordinates. The rjust() string method will right-justify them so that they take up the same amount of space, whether the coordinate has one, two, three, or four digits. Concatenating the right-justified string coordinates with ‘X: ‘ and ‘ Y: ‘ labels gives us a neatly formatted string, which will be stored in positionStr.

At the end of your program, add the following code:

This actually prints positionStr to the screen. The end=” keyword argument to print() prevents the default newline character from being added to the end of the printed line. Its possible to erase text youve already printed to the screenbut only for the most recent line of text. Once you print a newline character, you cant erase anything printed before it.

To erase text, print the b backspace escape character. This special character erases a character at the end of the current line on the screen. The line at uses string replication to produce a string with as many b characters as the length of the string stored in positionStr, which has the effect of erasing the positionStr string that was last printed.

For a technical reason beyond the scope of this book, always pass flush=True to print() calls that print b backspace characters. Otherwise, the screen might not update the text as desired.

Since the while loop repeats so quickly, the user wont actually notice that youre deleting and reprinting the whole number on the screen. For example, if the x-coordinate is 563 and the mouse moves one pixel to the right, it will look like only the 3 in 563 is changed to a 4.

When you run the program, there will be only two lines printed. They should look like something like this:

The first line displays the instruction to press CTRL-C to quit. The second line with the mouse coordinates will change as you move the mouse around the screen. Using this program, youll be able to figure out the mouse coordinates for your GUI automation scripts.

Now that you know how to move the mouse and figure out where it is on the screen, youre ready to start clicking, dragging, and scrolling.

To send a virtual mouse click to your computer, call the pyautogui.click() method. By default, this click uses the left mouse button and takes place wherever the mouse cursor is currently located. You can pass x- and y-coordinates of the click as optional first and second arguments if you want it to take place somewhere other than the mouses current position.

If you want to specify which mouse button to use, include the button keyword argument, with a value of ‘left’, ‘middle’, or ‘right’. For example, pyautogui.click(100, 150, button=’left’) will click the left mouse button at the coordinates (100, 150), while pyautogui.click(200, 250, button=’right’) will perform a right-click at (200, 250).

Enter the following into the interactive shell:

You should see the mouse pointer move to near the top-left corner of your screen and click once. A full click is defined as pushing a mouse button down and then releasing it back up without moving the cursor. You can also perform a click by calling pyautogui.mouseDown(), which only pushes the mouse button down, and pyautogui.mouseUp(), which only releases the button. These functions have the same arguments as click(), and in fact, the click() function is just a convenient wrapper around these two function calls.

As a further convenience, the pyautogui.doubleClick() function will perform two clicks with the left mouse button, while the pyautogui.rightClick() and pyautogui.middleClick() functions will perform a click with the right and middle mouse buttons, respectively.

Dragging means moving the mouse while holding down one of the mouse buttons. For example, you can move files between folders by dragging the folder icons, or you can move appointments around in a calendar app.

PyAutoGUI provides the pyautogui.dragTo() and pyautogui.dragRel() functions to drag the mouse cursor to a new location or a location relative to its current one. The arguments for dragTo() and dragRel() are the same as moveTo() and moveRel(): the x-coordinate/horizontal movement, the y-coordinate/vertical movement, and an optional duration of time. (OS X does not drag correctly when the mouse moves too quickly, so passing a duration keyword argument is recommended.)

To try these functions, open a graphics-drawing application such as Paint on Windows, Paintbrush on OS X, or GNU Paint on Linux. (If you dont have a drawing application, you can use the online one at http://sumopaint.com/.) I will use PyAutoGUI to draw in these applications.

With the mouse cursor over the drawing applications canvas and the Pencil or Brush tool selected, enter the following into a new file editor window and save it as spiralDraw.py:

When you run this program, there will be a five-second delay for you to move the mouse cursor over the drawing programs window with the Pencil or Brush tool selected. Then spiralDraw.py will take control of the mouse and click to put the drawing program in focus . A window is in focus when it has an active blinking cursor, and the actions you takelike typing or, in this case, dragging the mousewill affect that window. Once the drawing program is in focus, spiralDraw.py draws a square spiral pattern like the one in Figure18-2.

Figure18-2.The results from the pyautogui.dragRel() example

The distance variable starts at 200, so on the first iteration of the while loop, the first dragRel() call drags the cursor 200 pixels to the right, taking 0.2 seconds . distance is then decreased to 195 , and the second dragRel() call drags the cursor 195 pixels down . The third dragRel() call drags the cursor 195 horizontally (195 to the left) , distance is decreased to 190, and the last dragRel() call drags the cursor 190 pixels up. On each iteration, the mouse is dragged right, down, left, and up, and distance is slightly smaller than it was in the previous iteration. By looping over this code, you can move the mouse cursor to draw a square spiral.

You could draw this spiral by hand (or rather, by mouse), but youd have to work slowly to be so precise. PyAutoGUI can do it in a few seconds!

You could have your code draw the image using the pillow modules drawing functionssee Chapter17 for more information. But using GUI automation allows you to make use of the advanced drawing tools that graphics programs can provide, such as gradients, different brushes, or the fill bucket.

The final PyAutoGUI mouse function is scroll(), which you pass an integer argument for how many units you want to scroll the mouse up or down. The size of a unit varies for each operating system and application, so youll have to experiment to see exactly how far it scrolls in your particular situation. The scrolling takes place at the mouse cursors current position. Passing a positive integer scrolls up, and passing a negative integer scrolls down. Run the following in IDLEs interactive shell while the mouse cursor is over the IDLE window:

Youll see IDLE briefly scroll upwardand then go back down. The downward scrolling happens because IDLE automatically scrolls down to the bottom after executing an instruction. Enter this code instead:

This imports pyperclip and sets up an empty string, numbers. The code then loops through 200 numbers and adds each number to numbers, along with a newline. After pyperclip.copy(numbers), the clipboard will be loaded with 200 lines of numbers. Open a new file editor window and paste the text into it. This will give you a large text window to try scrolling in. Enter the following code into the interactive shell:

On the second line, you enter two commands separated by a semicolon, which tells Python to run the commands as if they were on separate lines. The only difference is that the interactive shell wont prompt you for input between the two instructions. This is important for this example because we want to the call to pyautogui.scroll() to happen automatically after the wait. (Note that while putting two commands on one line can be useful in the interactive shell, you should still have each instruction on a separate line in your programs.)

After pressing ENTER to run the code, you will have five seconds to click the file editor window to put it in focus. Once the pause is over, the pyautogui.scroll() call will cause the file editor window to scroll up after the five-second delay.

Your GUI automation programs dont have to click and type blindly. PyAutoGUI has screenshot features that can create an image file based on the current contents of the screen. These functions can also return a Pillow Image object of the current screens appearance. If youve been skipping around in this book, youll want to read Chapter17 and install the pillow module before continuing with this section.

On Linux computers, the scrot program needs to be installed to use the screenshot functions in PyAutoGUI. In a Terminal window, run sudo apt-get install scrot to install this program. If youre on Windows or OS X, skip this step and continue with the section.

To take screenshots in Python, call the pyautogui.screenshot() function. Enter the following into the interactive shell:

The im variable will contain the Image object of the screenshot. You can now call methods on the Image object in the im variable, just like any other Image object. Enter the following into the interactive shell:

Pass getpixel() a tuple of coordinates, like (0, 0) or (50, 200), and itll tell you the color of the pixel at those coordinates in your image. The return value from getpixel() is an RGB tuple of three integers for the amount of red, green, and blue in the pixel. (There is no fourth value for alpha, because screenshot images are fully opaque.) This is how your programs can see what is currently on the screen.

Say that one of the steps in your GUI automation program is to click a gray button. Before calling the click() method, you could take a screenshot and look at the pixel where the script is about to click. If its not the same gray as the gray button, then your program knows something is wrong. Maybe the window moved unexpectedly, or maybe a pop-up dialog has blocked the button. At this point, instead of continuingand possibly wreaking havoc by clicking the wrong thingyour program can see that it isnt clicking on the right thing and stop itself.

PyAutoGUIs pixelMatchesColor() function will return True if the pixel at the given x- and y-coordinates on the screen matches the given color. The first and second arguments are integers for the x- and y-coordinates, and the third argument is a tuple of three integers for the RGB color the screen pixel must match. Enter the following into the interactive shell:

After taking a screenshot and using getpixel() to get an RGB tuple for the color of a pixel at specific coordinates , pass the same coordinates and RGB tuple to pixelMatchesColor() , which should return True. Then change a value in the RGB tuple and call pixelMatchesColor() again for the same coordinates . This should return false. This method can be useful to call whenever your GUI automation programs are about to call click(). Note that the color at the given coordinates must exactly match. If it is even slightly differentfor example, (255, 255, 254) instead of (255, 255, 255)then pixelMatchesColor() will return False.

You could extend the mouseNow.py project from earlier in this chapter so that it not only gives the x- and y-coordinates of the mouse cursors current position but also gives the RGB color of the pixel under the cursor. Modify the code inside the while loop of mouseNow.py to look like this:

Now, when you run mouseNow.py, the output will include the RGB color value of the pixel under the mouse cursor.

This information, along with the pixelMatchesColor() function, should make it easy to add pixel color checks to your GUI automation scripts.

But what if you do not know beforehand where PyAutoGUI should click? You can use image recognition instead. Give PyAutoGUI an image of what you want to click and let it figure out the coordinates.

For example, if you have previously taken a screenshot to capture the image of a Submit button in submit.png, the locateOnScreen() function will return the coordinates where that image is found. To see how locateOnScreen() works, try taking a screenshot of a small area on your screen; then save the image and enter the following into the interactive shell, replacing ‘submit. png’ with the filename of your screenshot:

The four-integer tuple that locateOnScreen() returns has the x-coordinate of the left edge, the y-coordinate of the top edge, the width, and the height for the first place on the screen the image was found. If youre trying this on your computer with your own screenshot, your return value will be different from the one shown here.

If the image cannot be found on the screen, locateOnScreen() will return None. Note that the image on the screen must match the provided image perfectly in order to be recognized. If the image is even a pixel off, locateOnScreen() will return None.

If the image can be found in several places on the screen, locateAllOnScreen() will return a Generator object, which can be passed to list() to return a list of four-integer tuples. There will be one four-integer tuple for each location where the image is found on the screen. Continue the interactive shell example by entering the following (and replacing ‘submit.png’ with your own image filename):

Each of the four-integer tuples represents an area on the screen. If your image is only found in one area, then using list() and locateAllOnScreen() just returns a list containing one tuple.

Once you have the four-integer tuple for the area on the screen where your image was found, you can click the center of this area by passing the tuple to the center() function to return x- and y-coordinates of the areas center. Enter the following into the interactive shell, replacing the arguments with your own filename, four-integer tuple, and coordinate pair:

Once you have center coordinates from center(), passing the coordinates to click() should click the center of the area on the screen that matches the image you passed to locateOnScreen().

PyAutoGUI also has functions for sending virtual keypresses to your computer, which enables you to fill out forms or enter text into applications.

The pyautogui.typewrite() function sends virtual keypresses to the computer. What these keypresses do depends on what window and text field have focus. You may want to first send a mouse click to the text field you want in order to ensure that it has focus.

As a simple example, lets use Python to automatically type the words Hello world! into a file editor window. First, open a new file editor window and position it in the upper-left corner of your screen so that PyAutoGUI will click in the right place to bring it into focus. Next, enter the following into the interactive shell:

Notice how placing two commands on the same line, separated by a semicolon, keeps the interactive shell from prompting you for input between running the two instructions. This prevents you from accidentally bringing a new window into focus between the click() and typewrite() calls, which would mess up the example.

Python will first send a virtual mouse click to the coordinates (100, 100), which should click the file editor window and put it in focus. The typewrite() call will send the text Hello world! to the window, making it look like Figure18-3. You now have code that can type for you!

Figure18-3.Using PyAutogGUI to click the file editor window and type Hello world! into it

By default, the typewrite() function will type the full string instantly. However, you can pass an optional second argument to add a short pause between each character. This second argument is an integer or float value of the number of seconds to pause. For example, pyautogui.typewrite(‘Hello world!’, 0.25) will wait a quarter-second after typing H, another quarter-second after e, and so on. This gradual typewriter effect may be useful for slower applications that cant process keystrokes fast enough to keep up with PyAutoGUI.

For characters such as A or !, PyAutoGUI will automatically simulate holding down the SHIFT key as well.

Not all keys are easy to represent with single text characters. For example, how do you represent SHIFT or the left arrow key as a single character? In PyAutoGUI, these keyboard keys are represented by short string values instead: ‘esc’ for the ESC key or ‘enter’ for the ENTER key.

Instead of a single string argument, a list of these keyboard key strings can be passed to typewrite(). For example, the following call presses the A key, then the B key, then the left arrow key twice, and finally the X and Y keys:

Because pressing the left arrow key moves the keyboard cursor, this will output XYab. Table18-1 lists the PyAutoGUI keyboard key strings that you can pass to typewrite() to simulate pressing any combination of keys.

You can also examine the pyautogui.KEYBOARD_KEYS list to see all possible keyboard key strings that PyAutoGUI will accept. The ‘shift’ string refers to the left SHIFT key and is equivalent to ‘shiftleft’. The same applies for ‘ctrl’, ‘alt’, and ‘win’ strings; they all refer to the left-side key.

Table18-1.PyKeyboard Attributes

Keyboard key string

Meaning

View original post here:

Automate the Boring Stuff with Python

KNOPPIX 7.7.1 – Linux Live System

Donate to WikipediaInstead of a call on our own behalf, we would like to encourage you to donate to the Wikipedia Project this year. Wikipedia is the largest free collection of knowledge, serving the public good, composed completely in an open and cooperative approach, indispensable as a reference for teaching and learning. Without access to Wikipedias collected information and conceptual ideas, projects like Knoppix would be infeasible.KNOPPIX 7.7.1 Public ReleaseContents

Complete software list: -> DVD (~4000 software packages, over 11GB uncompressed, cloop-compressed to 4.3GB).

A.D.R.I.A.N.E. (Audio Desktop Reference Implementation And Networking Environment) is a talking menu system, which is supposed to make work and internet access easier for computer beginners, even if they have no sight contact to the computers monitor. A graphical environment with also talking programs and arbitrary magnification using compiz, is another option.

The current public beta release of KNOPPIX 7.7.1 DVD is available in different variants for download at the KNOPPIX-Mirrors.

Caution: Because the DVD image is larger than 4GB, it cannot be stored on a FAT32 partition! -> Use NTFS or a linux file system.

For burning a CD or DVD, only one single .iso file matching your language and version choice, is sufficient.

Additionally, several independent vendors offer readily burned and verified CDs, DVDs and USB-memorysticks saent out via postal service.

Since there are so many different media capacities, there is no readymade image for booting off memorystick available for download. But it is easy to create a bootable USB-stick or flashcard from a running KNOPPIX system, as described in the next section.

In order to create a bootable USB-medium (memory flashdisk, SD-card, digital camera with USB connector, cellphone with microSD, …), the program flash-knoppix can be started from a running KNOPPIX system. This program installs all needed KNOPPIX files onto the FAT-formatted flashdisk, and creates a boot record for it. If desired, the target medium can be partitioned and fornatted, or left in its inistal state, so that existing files stay intact. The KNOPPIX Live System starts and runs about factor 5 faster from USB flash disk than from CD or DVD!

After having copied the system to flash, using the persistent KNOPPIX image (overlay feature) or an additional Linux partition, it is possible to also store files permanently in live mode. That way, personal settings and additionally installed programs survive a reboot.

The flash-knoppix script since Knoppix 7.4.0 supports on-the-fly conversion of a DVD ISO image for direct flashing of a USB pendrive or disk. By using this, the intermediate step of burning a DVD and booting from it, can be skipped. For burning a CD or DVD, only one single .iso file matching your language and version choice, is sufficient.For using this feature, just add the name of the .iso file as commandline parameter to flash-knoppix like this:flash-knoppix KNOPPIX_V7.7.1DVD-2016-10-22-EN.iso

Overview of the most important functions. A complete description and listing of shortcuts can be found in the configurations of sbl, orca and compiz.

Boot options like “adriane” can easily be preset by changing syslinux.cfg after having copied the CD to a bootable memorystick using “flash-knoppix”:

DEFAULT auto

to:

DEFAULT adriane

for automatically starting ADRIANE on boot. This is already default in all ADRIANE iso files.

Knopper.Net is not responsible for the content of external web pages

Read more from the original source:

KNOPPIX 7.7.1 – Linux Live System

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News
This was a bloody week for cryptocurrencies. Everything was covered in red, from Ethereum (ETH) on down to the Basic Attention Token (BAT).

Some investors claim it was inevitable. Others say that price manipulation is to blame.

We think the answers are more complicated than either side has to offer, because our research reveals deep contradictions between the price of cryptos and the underlying development of blockchain projects.

For instance, a leading venture capital (VC) firm launched a $300.0-million crypto investment fund, yet liquidity continues to dry up in crypto markets.

Another example is the U.S. Securities and Exchange Commission’s.

The post Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto appeared first on Profit Confidential.

See the original post here:

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto


12345...