12345...102030...


Dublin Aerospace

Dublin Aerospace is based at Dublin International Airport, Ireland. Our facility is 20,000m2 in size and covers Hangar 1, 4 and 5. We operate a 4 bay base maintenance facility that can presently handle approx 70 aircraft per annum, an APU overhaul centre that can handle 400 APUs a year and a Landing Gear services centre that has capacity for 250 legs annually.

Originally posted here:

Dublin Aerospace

North American Aerospace Defense Command (NORAD)

U.S. Air Force Gen. Terrence J. OShaughnessy receives the North American Aerospace Defense Commands flag from the Canadian Armed Forces Chief of the Defence Staff, Gen. J.H. Vance, signifying his acceptance of command, May 24, 2018 on Peterson U.S. Air Force Base, Colorado OShaughnessy is the 25th NORAD commander. (DoD Photo by N&NC Public Affairs)

More here:

North American Aerospace Defense Command (NORAD)

AsMA | Aerospace Medical Association

AsMA | Aerospace Medical Association

This website uses cookies to ensure the best possible web experience. By continuing and using the site, you consent to the use of cookies. If you wish to disable them or to learn more about how we use cookies, please view our Cookies Policy. Got it!

Learn about the history and mission of Aerospace Medicine by watching the professionals making it happen!

Military aviation operations present numerous unique Aerospace Medicine and Human Performance issues. Sustained acceleration, fatigue, orientation problems, and attention management issues are just a few.

Commercial aviation presents Aerospace Medicine problems for the aircrew, ground support crews, and the passengers they serve.

General aviation aircraft present unique Aerospace Medicine and Human Performance problems. Human Performance factors continue to be leading causes of General Aviation mishaps.

The ability for humans to perform under extreme environmental conditions poses challenging problems for Aerospace Medicine professionals. Altitude, thermal issues, fatigue, acceleration, and numerous other environmental stressors must be appropriately managed to ensure optimized human performance. Managing the mission environment through technology requires a process of human-centered design and acquisition known as Human Systems Integration.

Human participation in space operations presents some of the most interesting and challenging Aerospace Medicine and Human Performance problems. Microgravity, bone density and muscle atrophy issues, radiation exposure, and thermal stressors are just some of the space medicine problems.

AsMA is a scientific forum providing a setting for many different disciplines to come together and share their expertise for the benefit of all persons involved in air and space travel. The Association has provided its expertise to a multitude of Federal and international agencies on a broad range of issues, including aviation and space medical standards, the aging pilot, and physiological stresses of flight. AsMA’s membership includes aerospace medicine specialists, flight nurses, physiologists, psychologists, human factors specialists, physician assistants, and researchers in this field. Most are with industry, civil aviation regulatory agencies, departments of defense and military services, the airlines, space programs, and universities.

Approximately 30% of the membershiporiginate from outside the United States.

Through the efforts of the AsMA members, safety in flight and man’s overall adaptation to adverse environments have been more nearly achieved.

Lifestyle Diseases conference, Lifestyle Diseases workshop, Global Lifestyle Diseases Conference, Lifestyle Diseases symposium, Lifestyle Diseases congress, Lifestyle Diseases meeting, Lifestyle Di…Read More

The peer-reviewed monthly journal provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications…

The AsMA Fellows Scholarship Committee is pleased to announce their selection of the 2018 scholarship winner.

The AsMA Global Connection Story with the EU Chief Medical Officers ForumRoland Vermeiren , M.D., FAsMA

The Aerospace Medical Associations (AsMAs) Scientific Program Committee (SPC) met in November in Alexandria, VA, to review the abstracts for the upcoming 2019 Annual Scientific Meetin…

AsMA was saddened to learn of the death of Nathaniel E. Nat Villaire, who was a Fellow of AsMA and a Professor Emeritus at the College of Aeronautics at Florida Tech.

Diplomates: the American Board of Preventive Medicine (ABPM) will be offering their Maintenance of Certification exams electronically. This is for all Diplomates certified in any of the ABPM…Read more

The Aerospace Medical Association offers free information publications for passengers preparing for commercial airline travel. We also offer more detailed medical guidelines for physicians that can be used to advise patients with preexisting illness planning to travel by air.

Which of the following statements about asbestos is true?

a.All types of asbestos produce pulmonary scarring if there has been excessive exposure to the dust.b.Cancer of the lung occurs among workers who have had excessive exposure to all types of asbestos dust.c.Cancer of the lung is far more common among asbestos workers who are cigarette smokers than among those who do not smoke.d.Mesothelioma of the pleura and peritoneum are more common among those exposed to asbestos than among the general population.e. All of the above.

Read the Answer More Questions

Read the rest here:

AsMA | Aerospace Medical Association

Dublin Aerospace Careers

ga(‘create’, ‘UA-85816480-1’, ‘auto’); ga(‘send’, ‘pageview’);

For more information on the job and to apply for the position, please click on the job that interests you.

We currently have requirements for the following contractors:

If you are interested in the above please contact Irish Aviation Solutions for more information.

Go here to read the rest:

Dublin Aerospace Careers

Dublin Aerospace

Dublin Aerospace is based at Dublin International Airport, Ireland. Our facility is 20,000m2 in size and covers Hangar 1, 4 and 5. We operate a 4 bay base maintenance facility that can presently handle approx 70 aircraft per annum, an APU overhaul centre that can handle 400 APUs a year and a Landing Gear services centre that has capacity for 250 legs annually.

See the original post here:

Dublin Aerospace

Home – Aerospace Industries Association

Now more than ever, membership in AIA is the right decision. As we all know, this is a turbulent time for the nation and the aerospace and defense industrywe face numerous economic and political challenges, both domestically and internationally. In times like these, AIAs strong representation and advocacy is essential to protecting the business interests of the nations aerospace and defense industry and helping to establish new opportunities. We help youand all levels of your organizationget closer to your customers and competitors by providing numerous networking opportunities through meetings, international air shows, and an extensive network of councils, committees, and working groups.

Learn More

Original post:

Home – Aerospace Industries Association

AsMA | Aerospace Medical Association

AsMA | Aerospace Medical Association

This website uses cookies to ensure the best possible web experience. By continuing and using the site, you consent to the use of cookies. If you wish to disable them or to learn more about how we use cookies, please view our Cookies Policy. Got it!

Learn about the history and mission of Aerospace Medicine by watching the professionals making it happen!

Military aviation operations present numerous unique Aerospace Medicine and Human Performance issues. Sustained acceleration, fatigue, orientation problems, and attention management issues are just a few.

Commercial aviation presents Aerospace Medicine problems for the aircrew, ground support crews, and the passengers they serve.

General aviation aircraft present unique Aerospace Medicine and Human Performance problems. Human Performance factors continue to be leading causes of General Aviation mishaps.

The ability for humans to perform under extreme environmental conditions poses challenging problems for Aerospace Medicine professionals. Altitude, thermal issues, fatigue, acceleration, and numerous other environmental stressors must be appropriately managed to ensure optimized human performance. Managing the mission environment through technology requires a process of human-centered design and acquisition known as Human Systems Integration.

Human participation in space operations presents some of the most interesting and challenging Aerospace Medicine and Human Performance problems. Microgravity, bone density and muscle atrophy issues, radiation exposure, and thermal stressors are just some of the space medicine problems.

AsMA is a scientific forum providing a setting for many different disciplines to come together and share their expertise for the benefit of all persons involved in air and space travel. The Association has provided its expertise to a multitude of Federal and international agencies on a broad range of issues, including aviation and space medical standards, the aging pilot, and physiological stresses of flight. AsMA’s membership includes aerospace medicine specialists, flight nurses, physiologists, psychologists, human factors specialists, physician assistants, and researchers in this field. Most are with industry, civil aviation regulatory agencies, departments of defense and military services, the airlines, space programs, and universities.

Approximately 30% of the membershiporiginate from outside the United States.

Through the efforts of the AsMA members, safety in flight and man’s overall adaptation to adverse environments have been more nearly achieved.

Lifestyle Diseases conference, Lifestyle Diseases workshop, Global Lifestyle Diseases Conference, Lifestyle Diseases symposium, Lifestyle Diseases congress, Lifestyle Diseases meeting, Lifestyle Di…Read More

The peer-reviewed monthly journal provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications…

The AsMA Fellows Scholarship Committee is pleased to announce their selection of the 2018 scholarship winner.

The AsMA Global Connection Story with the EU Chief Medical Officers ForumRoland Vermeiren , M.D., FAsMA

The Aerospace Medical Associations (AsMAs) Scientific Program Committee (SPC) met in November in Alexandria, VA, to review the abstracts for the upcoming 2019 Annual Scientific Meetin…

AsMA was saddened to learn of the death of Nathaniel E. Nat Villaire, who was a Fellow of AsMA and a Professor Emeritus at the College of Aeronautics at Florida Tech.

The Aerospace Medical Association offers free information publications for passengers preparing for commercial airline travel. We also offer more detailed medical guidelines for physicians that can be used to advise patients with preexisting illness planning to travel by air.

Which of the following is the most important environmental risk factor for the development of chronic obstructive pulmonary disease (COPD)?

a.Alpha-1-antitrypsin deficiencyb.Airway hyperresponsivenessc.Smokingd.Occupational exposurese.Ambient air pollution

Read the Answer More Questions

Originally posted here:

AsMA | Aerospace Medical Association

Dublin Aerospace Careers

ga(‘create’, ‘UA-85816480-1’, ‘auto’); ga(‘send’, ‘pageview’);

For more information on the job and to apply for the position, please click on the job that interests you.

We currently have requirements for the following contractors:

If you are interested in the above please contact Irish Aviation Solutions for more information.

Read this article:

Dublin Aerospace Careers

North American Aerospace Defense Command (NORAD)

U.S. Air Force Gen. Terrence J. OShaughnessy receives the North American Aerospace Defense Commands flag from the Canadian Armed Forces Chief of the Defence Staff, Gen. J.H. Vance, signifying his acceptance of command, May 24, 2018 on Peterson U.S. Air Force Base, Colorado OShaughnessy is the 25th NORAD commander. (DoD Photo by N&NC Public Affairs)

Go here to read the rest:

North American Aerospace Defense Command (NORAD)

Aerospace – Wikipedia

Aerospace is the human effort in science, engineering and business to fly in the atmosphere of Earth (aeronautics) and surrounding space (astronautics). Aerospace organizations research, design, manufacture, operate, or maintain aircraft or spacecraft. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications.

Aerospace is not the same as airspace, which is the physical air space directly above a location on the ground. The beginning of space and the ending of the air is considered as 100km above the ground according to the physical explanation that the air pressure is too low for a lifting body to generate meaningful lift force without exceeding orbital velocity.[1]

In most industrial countries, the aerospace industry is a cooperation of public and private industries. For example, several countries have a civilian space program funded by the government through tax collection, such as National Aeronautics and Space Administration in the United States, European Space Agency in Europe, the Canadian Space Agency in Canada, Indian Space Research Organisation in India, Japanese Aeronautics Exploration Agency in Japan, RKA in Russia, China National Space Administration in China, SUPARCO in Pakistan, Iranian Space Agency in Iran, and Korea Aerospace Research Institute (KARI) in South Korea.

Along with these public space programs, many companies produce technical tools and components such as spaceships and satellites. Some known companies involved in space programs include Boeing, Airbus, SpaceX, Lockheed Martin, United Technologies, MacDonald Dettwiler and Northrop Grumman. These companies are also involved in other areas of aerospace such as the construction of aircraft.

Modern aerospace began with Engineer George Cayley in 1799. Cayley proposed an aircraft with a “fixed wing and a horizontal and vertical tail,” defining characteristics of the modern airplane.[2]

The 19th century saw the creation of the Aeronautical Society of Great Britain (1866), the American Rocketry Society, and the Institute of Aeronautical Sciences, all of which made aeronautics a more serious scientific discipline.[2] Airmen like Otto Lilienthal, who introduced cambered airfoils in 1891, used gliders to analyze aerodynamic forces.[2] The Wright brothers were interested in Lilienthal’s work and read several of his publications.[2] They also found inspiration in Octave Chanute, an airman and the author of Progress in Flying Machines (1894).[2] It was the preliminary work of Cayley, Lilienthal, Chanute, and other early aerospace engineers that brought about the first powered sustained flight at Kitty Hawk, North Carolina on December 17, 1903, by the Wright brothers.

War and science fiction inspired great minds like Konstantin Tsiolkovsky and Wernher von Braun to achieve flight beyond the atmosphere.

The launch of Sputnik 1 in October 1957 started the Space Age, and on July 20, 1969 Apollo 11 achieved the first manned moon landing.[2] In April 1981, the Space Shuttle Columbia launched, the start of regular manned access to orbital space. A sustained human presence in orbital space started with “Mir” in 1986 and is continued by the “International Space Station”.[2] Space commercialization and space tourism are more recent focuses in aerospace.

Aerospace manufacturing is a high-technology industry that produces “aircraft, guided missiles, space vehicles, aircraft engines, propulsion units, and related parts”.[3] Most of the industry is geared toward governmental work. For each original equipment manufacturer (OEM), the US government has assigned a Commercial and Government Entity (CAGE) code. These codes help to identify each manufacturer, repair facilities, and other critical aftermarket vendors in the aerospace industry.

In the United States, the Department of Defense and the National Aeronautics and Space Administration (NASA) are the two largest consumers of aerospace technology and products. Others include the very large airline industry. The aerospace industry employed 472,000 wage and salary workers in 2006.[4] Most of those jobs were in Washington state and in California, with Missouri, New York and Texas also being important. The leading aerospace manufacturers in the U.S. are Boeing, United Technologies Corporation, SpaceX, Northrop Grumman and Lockheed Martin. These manufacturers are facing an increasing labor shortage as skilled U.S. workers age and retire. Apprenticeship programs such as the Aerospace Joint Apprenticeship Council (AJAC) work in collaboration with Washington state aerospace employers and community colleges to train new manufacturing employees to keep the industry supplied.

Important locations of the civilian aerospace industry worldwide include Washington state (Boeing), California (Boeing, Lockheed Martin, etc.); Montreal, Quebec, Canada (Bombardier, Pratt & Whitney Canada); Toulouse, France (Airbus/EADS); Hamburg, Germany (Airbus/EADS); and So Jos dos Campos, Brazil (Embraer), Quertaro, Mexico (Bombardier Aerospace, General Electric Aviation) and Mexicali, Mexico (United Technologies Corporation, Gulfstream Aerospace).

In the European Union, aerospace companies such as EADS, BAE Systems, Thales, Dassault, Saab AB and Leonardo S.p.A. (formerly Finmeccnica)[5] account for a large share of the global aerospace industry and research effort, with the European Space Agency as one of the largest consumers of aerospace technology and products.

In India, Bangalore is a major center of the aerospace industry, where Hindustan Aeronautics Limited, the National Aerospace Laboratories and the Indian Space Research Organisation are headquartered. The Indian Space Research Organisation (ISRO) launched India’s first Moon orbiter, Chandrayaan-1, in October 2008.

In Russia, large aerospace companies like Oboronprom and the United Aircraft Building Corporation (encompassing Mikoyan, Sukhoi, Ilyushin, Tupolev, Yakovlev, and Irkut which includes Beriev) are among the major global players in this industry. The historic Soviet Union was also the home of a major aerospace industry.

The United Kingdom formerly attempted to maintain its own large aerospace industry, making its own airliners and warplanes, but it has largely turned its lot over to cooperative efforts with continental companies, and it has turned into a large import customer, too, from countries such as the United States. However, the UK has a very active aerospace sector, including the second largest defence contractor in the world, BAE Systems, supplying fully assembled aircraft, aircraft components, sub-assemblies and sub-systems to other manufacturers, both in Europe and all over the world.

Canada has formerly manufactured some of its own designs for jet warplanes, etc. (e.g. the CF-100 fighter), but for some decades, it has relied on imports from the United States and Europe to fill these needs. However Canada still manufactures some military aircraft although they are generally not combat capable. Another notable example was the late 1950s development of the Avro Canada CF-105 Arrow, a supersonic fighter-interceptor that was cancelled in 1959 a highly controversial decision.

France has continued to make its own warplanes for its air force and navy, and Sweden continues to make its own warplanes for the Swedish Air Forceespecially in support of its position as a neutral country. (See Saab AB.) Other European countries either team up in making fighters (such as the Panavia Tornado and the Eurofighter Typhoon), or else to import them from the United States.

Pakistan has a developing aerospace engineering industry. The National Engineering and Scientific Commission, Khan Research Laboratories and Pakistan Aeronautical Complex are among the premier organizations involved in research and development in this sector. Pakistan has the capability of designing and manufacturing guided rockets, missiles and space vehicles. The city of Kamra is home to the Pakistan Aeronautical Complex which contains several factories. This facility is responsible for manufacturing the MFI-17, MFI-395, K-8 and JF-17 Thunder aircraft. Pakistan also has the capability to design and manufacture both armed and unarmed unmanned aerial vehicles.

In the People’s Republic of China, Beijing, Xi’an, Chengdu, Shanghai, Shenyang and Nanchang are major research and manufacture centers of the aerospace industry. China has developed an extensive capability to design, test and produce military aircraft, missiles and space vehicles. Despite the cancellation in 1983 of the experimental Shanghai Y-10, China is still developing its civil aerospace industry.

The aircraft parts industry was born out of the sale of second-hand or used aircraft parts from the aerospace manufacture sector. Within the United States there is a specific process that parts brokers or resellers must follow. This includes leveraging a certified repair station to overhaul and “tag” a part. This certification guarantees that a part was repaired or overhauled to meet OEM specifications. Once a part is overhauled its value is determined from the supply and demand of the aerospace market. When an airline has an aircraft on the ground, the part that the airline requires to get the plane back into service becomes invaluable. This can drive the market for specific parts. There are several online marketplaces that assist with the commodity selling of aircraft parts.

In the aerospaces & defense industry, a lot of consolidation has appeared over the last couple of decades. Between 1988 and 2011, worldwide more than 6,068 mergers & acquisitions with a total known value of 678 bil. USD have been announced.[6] The largest transactions have been:

Functional safety relates to a part of the general safety of a system or a piece of equipment. It implies that the system or equipment can be operated properly and without causing any danger, risk, damage or injury.

Functional safety is crucial in the aerospace industry, which allows no compromises or negligence. In this respect, supervisory bodies, such as the European Aviation Safety Agency (EASA),[11] regulate the aerospace market with strict certification standards. This is meant to reach and ensure the highest possible level of safety. The standards AS 9100 in America, EN 9100 on the European market or JISQ 9100 in Asia particularly address the aerospace and aviation industry. These are standards applying to the functional safety of aerospace vehicles. Some companies are therefore specialized in the certification, inspection verification and testing of the vehicles and spare parts to ensure and attest compliance with the appropriate regulations.

Spinoffs refer to any technology that is a direct result of coding or products created by NASA and redesigned for an alternate purpose.[12] These technological advancements are one of the primary results of the aerospace industry, with $5.2 billion worth of revenue generated by spinoff technology, including computers and cellular devices.[12] These spinoffs have applications in a variety of different fields including medicine, transportation, energy, consumer goods, public safety and more.[12] NASA publishes an annual report called Spinoffs, regarding many of the specific products and benefits to the aforementioned areas in an effort to highlight some of the ways funding is put to use.[13] For example, in the most recent edition of this publication, Spinoffs 2015, endoscopes are featured as one of the medical derivations of aerospace achievement.[12] This device enables more precise and subsequently cost-effective neurosurgery by reducing complications through a minimally invasive procedure that abbreviates hospitalization.[12]

Read the original here:

Aerospace – Wikipedia

Home | The Aerospace Corporation

Advanced Technology. Objective Analysis. Innovative Solutions.

As an independent, nonprofit corporation operating the only federally funded research and development center for the space enterprise, The Aerospace Corporation performs objective technical analyses and assessments for a variety of government, civil, and commercial customers. With more than five decades of experience, Aerospace provides leadership and support in all fields and disciplines of research, design, development, acquisition, operations, and program management.

Read the original post:

Home | The Aerospace Corporation

Aerospace – Aerospace – Global – new.siemens.com

Subject to rapid technology developments and at the forefront of digital innovation, Aerospace manufacturers are investing in their workforce.

New technologies and Digitalization require an innovative and leading partner like Siemens, which is driving the realization of the Digital Enterprise.

Furthermore, traditional manufacturing is also subject to innovation, especially in engineering software, automation & control products and usability: the hard skills required to stay on top need continuous updating from certified experts and hands-on training.

At Siemens, we offer a comprehensive portfolio to guarantee tailored solutions for our aerospace customers, with a global look at their international operations.

An exemplary and widespread learning path is our SINUMERIK Service and Start-Up course, consisting of up to 25 days of practical training.

Original post:

Aerospace – Aerospace – Global – new.siemens.com

Aerospace – definition of aerospace by The Free Dictionary

Hickling, along with thousands of other aerospace veterans who left or were laid off during the consolidation of the 1990s, reflects how radically the region’s economy has shifted away from its historic dependence on aerospace jobs.That’s a far cry from 1985, when aerospace was a nascent $250 million business for Goodrich, representing just 7 percent of sales.Rexnord Aerospace will partner with Dixie Aerospace to market, sell and distribute PSI Bearings, Shafer Roller Bearings, Tuflite Composite Bearings and Shafer Tooling to the aerospace market.The aerospace cluster is just starting to take off,” said Jack Kyser, the chief economist for the Los Angeles Economic Development Corporation.The increased use of composite materials in aerospace applications will dramatically change the economics of flight and the process of developing aircraft.The great power that has yet to be released in growing the aerospace industry in California is truly the suppliers and manufacturers who are contractors to the aerospace corporations,” Runner told business people gathered for the Santa Clarita 2000 Aerospace Conference.Jefferies Quarterdeck, the aerospace and defense investment banking group of Jefferies & Company, Inc.Called “Other State’s Incentives to Attract or Encourage Aerospace Manufacturing,” the draft report notes that despite defense cutbacks of the early 1990s, there is potential growth for the industry, notably in space projects.The Aerospace & Defense in the United Kingdom industry profile is an essential resource for top-level data and analysis covering the Aerospace & Defense industry.British Aerospace and Marconi – together employing some 130,000 people worldwide, more than 18,000 of them in the United States – said most jobs would be safeguarded.Catherine Gridley, President, Smiths Aerospace Customer Services said: “PBLs have transformed the supply chain resulting in a win-win situation for customers and suppliers.The study, “Beyond Consolidation – A Study of the Continuing Transformation of Aerospace and Defense in Southern California,” concludes the region can pick up 73,000 new aerospace jobs over the next 20 years, mainly from commercial space activity.

The rest is here:

Aerospace – definition of aerospace by The Free Dictionary

Aerospace | Definition of Aerospace by Merriam-Webster

1 : space comprising the earth’s atmosphere and the space beyond

2 : a physical science that deals with aerospace

3 : the aerospace industry

: of or relating to aerospace, to vehicles used in aerospace or the manufacture of such vehicles, or to travel in aerospace aerospace research aerospace profits aerospace medicine

Go here to read the rest:

Aerospace | Definition of Aerospace by Merriam-Webster

Careers | The Aerospace Corporation

Make a Career Out of Making a Difference: Explore Jobs

Whether youre ensuring the resiliency of satellite systems or finding a better way to remove dangerous debris from orbit, your work at Aerospace will make a difference. From delivering world-class mission assurance to pioneering technological breakthroughs, youll help build a safer, stronger future.

See the original post here:

Careers | The Aerospace Corporation

Home – Aerospace Industries Association

Now more than ever, membership in AIA is the right decision.

As we all know, this is a turbulent time for the nation and the aerospace and defense industrywe face numerous economic and political challenges, both domestically and internationally.

In times like these, AIAs strong representation and advocacy is essential to protecting the business interests of the nations aerospace and defense industry and helping to establish new opportunities.

We help youand all levels of your organizationget closer to your customers and competitors by providing numerous networking opportunities through meetings, international air shows, and an extensive network of councils, committees, and working groups.

Learn More

Visit link:

Home – Aerospace Industries Association

Dublin Aerospace

Dublin Aerospace is based at Dublin International Airport, Ireland. Our facility is 20,000m2 in size and covers Hangar 1, 4 and 5. We operate a 4 bay base maintenance facility that can presently handle approx 70 aircraft per annum, an APU overhaul centre that can handle 400 APUs a year and a Landing Gear services centre that has capacity for 250 legs annually.

See original here:

Dublin Aerospace

AsMA | Aerospace Medical Association

AsMA | Aerospace Medical Association

This website uses cookies to ensure the best possible web experience. By continuing and using the site, you consent to the use of cookies. If you wish to disable them or to learn more about how we use cookies, please view our Cookies Policy. Got it!

Learn about the history and mission of Aerospace Medicine by watching the professionals making it happen!

Military aviation operations present numerous unique Aerospace Medicine and Human Performance issues. Sustained acceleration, fatigue, orientation problems, and attention management issues are just a few.

Commercial aviation presents Aerospace Medicine problems for the aircrew, ground support crews, and the passengers they serve.

General aviation aircraft present unique Aerospace Medicine and Human Performance problems. Human Performance factors continue to be leading causes of General Aviation mishaps.

The ability for humans to perform under extreme environmental conditions poses challenging problems for Aerospace Medicine professionals. Altitude, thermal issues, fatigue, acceleration, and numerous other environmental stressors must be appropriately managed to ensure optimized human performance. Managing the mission environment through technology requires a process of human-centered design and acquisition known as Human Systems Integration.

Human participation in space operations presents some of the most interesting and challenging Aerospace Medicine and Human Performance problems. Microgravity, bone density and muscle atrophy issues, radiation exposure, and thermal stressors are just some of the space medicine problems.

AsMA is a scientific forum providing a setting for many different disciplines to come together and share their expertise for the benefit of all persons involved in air and space travel. The Association has provided its expertise to a multitude of Federal and international agencies on a broad range of issues, including aviation and space medical standards, the aging pilot, and physiological stresses of flight. AsMA’s membership includes aerospace medicine specialists, flight nurses, physiologists, psychologists, human factors specialists, physician assistants, and researchers in this field. Most are with industry, civil aviation regulatory agencies, departments of defense and military services, the airlines, space programs, and universities.

Approximately 30% of the membershiporiginate from outside the United States.

Through the efforts of the AsMA members, safety in flight and man’s overall adaptation to adverse environments have been more nearly achieved.

Lifestyle Diseases conference, Lifestyle Diseases workshop, Global Lifestyle Diseases Conference, Lifestyle Diseases symposium, Lifestyle Diseases congress, Lifestyle Diseases meeting, Lifestyle Di…Read More

The peer-reviewed monthly journal provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications…

The AsMA Fellows Scholarship Committee is pleased to announce their selection of the 2018 scholarship winner.

The AsMA Global Connection Story with the EU Chief Medical Officers ForumRoland Vermeiren , M.D., FAsMA

The Aerospace Medical Associations (AsMAs) Scientific Program Committee (SPC) met in November in Alexandria, VA, to review the abstracts for the upcoming 2019 Annual Scientific Meetin…

AsMA was saddened to learn of the death of Nathaniel E. Nat Villaire, who was a Fellow of AsMA and a Professor Emeritus at the College of Aeronautics at Florida Tech.

The Aerospace Medical Association offers free information publications for passengers preparing for commercial airline travel. We also offer more detailed medical guidelines for physicians that can be used to advise patients with preexisting illness planning to travel by air.

Which one of the following is an example of a non-parametric statistical test?

a.Student t-testb.ANOVA (analysis of variance)c.Pearson product correlationd.McNemar teste.Paired t-test

Read the Answer More Questions

Excerpt from:

AsMA | Aerospace Medical Association

Dublin Aerospace Careers

ga(‘create’, ‘UA-85816480-1’, ‘auto’); ga(‘send’, ‘pageview’);

For more information on the job and to apply for the position, please click on the job that interests you.

We currently have requirements for the following contractors:

If you are interested in the above please contact Irish Aviation Solutions for more information.

Here is the original post:

Dublin Aerospace Careers


12345...102030...