12345...102030...


Seasteading – Wikipedia

Seasteading is the concept of creating permanent dwellings at sea, called seasteads, outside the territory claimed by any government. The term is a combination of the words sea and homesteading. No one has yet created a structure on the high seas that has been recognized as a sovereign state.

Seasteaders say such autonomous floating cities would foster faster development of techniques “to feed the hungry, cure the sick, clean the atmosphere and enrich the poor”.[1][2] Some critics fear seasteads are designed more as a refuge for the wealthy to avoid taxes or other problems.[3][4]

Proposed structures have included modified cruise ships, refitted oil platforms, decommissioned anti-aircraft platforms, and custom-built floating islands.[5]

As an intermediate step, the Seasteading Institute has promoted cooperation with an existing nation on prototype floating islands with legal semi-autonomy within the nation’s protected territorial waters. On January 13, 2017, the Seasteading Institute signed a memorandum of understanding (MOU) with French Polynesia to create the first semi-autonomous “seazone” for a prototype[6][7], but as of 2018 its status was uncertain.

Many architects and firms have created designs for floating cities, including Vincent Callebaut,[8][9] Paolo Soleri[10] and companies such as Shimizu and E. Kevin Schopfer.[11]

L. Ron Hubbard, founder of the Church of Scientology, and his executive leadership became a maritime-based community named the Sea Organization (Sea Org). Beginning in 1967 with a complement of four ships, the Sea Org spent most of its existence on the high seas, visiting ports around the world for refueling and resupply. In 1975 much of these operations were shifted to land-based locations.

Marshall Savage discussed building tethered artificial islands in his 1992 book The Millennial Project: Colonizing the Galaxy in Eight Easy Steps, with several color plates illustrating his ideas.

Other historical predecessors and inspirations for seasteading include:

At least two people independently coined the term seasteading: Ken Neumeyer in his book Sailing the Farm (1981) and Wayne Gramlich in his article “Seasteading Homesteading on the High Seas” (1998).[13]

Gramlichs essay attracted the attention of Patri Friedman.[14] The two began working together and posted their first collaborative book online in 2001.[15] Their book explored many aspects of seasteading from waste disposal to flags of convenience. This collaboration led to the creation of the non-profit The Seasteading Institute (TSI) in 2008.

On April 15, 2008, Wayne Gramlich and Patri Friedman founded the 501(c)(3) non-profit The Seasteading Institute (TSI), an organization formed to facilitate the establishment of autonomous, mobile communities on seaborne platforms operating in international waters.[16][17][18]

Friedman and Gramlich noted that according to the United Nations Convention on the Law of the Sea, a country’s Exclusive Economic Zone extends 200 nautical miles (370km) from shore. Beyond that boundary lie the high seas, which are not subject to the laws of any sovereign state other than the flag under which a ship sails. They proposed that a seastead could take advantage of the absence of laws and regulations outside the sovereignty of nations to experiment with new governance systems, and allow the citizens of existing governments to exit more easily.

“When seasteading becomes a viable alternative, switching from one government to another would be a matter of sailing to the other without even leaving your house,” said Patri Friedman at the first annual Seasteading conference.[16][19][20]

The Seasteading Institute (TSI) focused on three areas: building a community, doing research, and building the first seastead in the San Francisco Bay. [21]

The project picked up mainstream exposure after having been brought to the attention of PayPal cofounder Peter Thiel. Thiel donated $500,000 in initial seed capital to start The Seasteading Institute, and has contributed $1.7 million [22] in total to date. He also spoke out on behalf of its viability in his essay “The Education of a Libertarian”.[23]

As a result of Thiel’s backing, TSI received widespread media attention from a variety of sources including [24] The Economist[18] Business Insider,[25] and BBC.[26][27]

In 2008, Friedman and Gramlich had hoped to float the first prototype seastead in the San Francisco Bay by 2010[28][29] Plans were to launch a seastead by 2014,[30] and TSI projected that the seasteading population would exceed 150 individuals in 2015.[31] TSI did not meet these targets.

In January 2009, the Seasteading Institute patented a design for a 200-person resort seastead, ClubStead, about a city block in size, produced by consultancy firm Marine Innovation & Technology. The ClubStead design marked the first major engineering analysis in the seasteading movement.[18][32][33]

In the spring of 2013,[34] TSI launched The Floating City Project.[35] The project proposed to locate a floating city within the territorial waters of an existing nation, rather than the open ocean.[36] TSI claimed that doing so would have several advantages:

In October 2013, the Institute raised $27,082 from 291 funders in a crowdfunding campaign[37] TSI used the funds to hire the Dutch marine engineering firm DeltaSync[38] to write an engineering study for The Floating City Project.

In September 2016 the Seasteading Institute met with officials in French Polynesia[39] to discuss building a prototype seastead in a sheltered lagoon. Teva Rohfristch, Minister for Economic Recovery was the first to invite The Seasteading Institute to meet with government officials.The meeting was arranged by Former Minister of Tourism, Marc Collins.[40]

On January 13, 2017, French Polynesia Minister of Housing, Jean-Christophe Bouissou signed a memorandum of understanding (MOU) with TSI to create the first semi-autonomous “seazone”. TSI spun off a for-profit company called “Blue Frontiers”, which will build and operate a prototype seastead in the zone.[41] The prototype will be based on a design by marine engineering firm Blue 21.[6][7]

On March 3, 2018, a mayor from French Polynesia said the agreement was “not a legal document” and had expired at the end of 2017 in response to a challenger trying to make it an issue for the May, 2018 elections.[42]

In May, 2018 Blue Frontiers began raising funds through a cryptographic token (Varyon) to prepare for building in the Sea Zone when the French Polynesian government passes the SeaZone act later in the year. [43]

Cruise ships are a proven technology, and address most of the challenges of living at sea for extended periods of time. However, they’re typically optimized for travel and short-term stay, not for permanent residence in a single location.

Examples:

Platform designs based on spar buoys, similar to oil platforms.[46] In this design, the platforms rest on spars in the shape of floating dumbbells, with the living area high above sea level. Building on spars in this fashion reduces the influence of wave action on the structure.[32]

Examples:

There are numerous seastead designs based around interlocking modules made of reinforced concrete.[48] Reinforced cement is used for floating docks, oil platforms, dams, and other marine structures.

Examples:

A single, monolithic structure that is not intended to be expanded or connected to other modules.

Examples:

The SeaOrbiter is an oceangoing research vessel designed to give scientists and others a residential yet mobile research station. The station will have laboratories, workshops, living quarters and a pressurized deck to support divers and submarines. It is headed by French architect Jacques Rougerie, oceanographer Jacques Piccard and astronaut Jean-Loup Chretien. The cost is expected to be around $52.7 million.[53]

Blueseed was a company aiming to float a ship near Silicon Valley to serve as a visa-free startup community and entrepreneurial incubator. Blueseed founders Max Marty and Dario Mutabdzija met when both were employees of The Seasteading Institute. The project planned to offer living and office space, high-speed Internet connectivity, and regular ferry service to the mainland[54][44] but as of 2014 the project is “on hold”.[55][54][44]

Criticisms have been leveled at both the practicality and desirability of seasteading. These can be broken down into governmental, logistical, and societal categories.

Critics believe that creating governance structures from scratch is a lot harder than it seems.[56] Also, seasteads would still be at risk of political interference from nation states.[18]

On a logistical level, seasteads could be too remote and uncomfortable (without access to culture, restaurants, shopping) to be attractive to potential residents.[18] Building seasteads to withstand the rigors of the open ocean may prove uneconomical.[56][18]

Seastead structures may blight ocean views, their industry or farming may deplete their environments, and their waste may pollute surrounding waters. Some critics believe that seasteads will exploit both residents and the nearby population.[56] Others fear that seasteads will mainly allow wealthy individuals to escape taxes,[3] or to harm mainstream society by ignoring other financial, environmental, and labor regulations.[3][56]

The Seasteading Institute held its first conference in Burlingame, California, October 10, 2008. 45 people from 9 countries attended.[57]The second Seasteading conference was significantly larger, and held in San Francisco, California, September 2830, 2009.[58][59]The third Seasteading conference took place on May 31 – June 2, 2012.[60]

Seasteading has been imagined many times in fictional works.

Visit link:

Seasteading – Wikipedia

Undergraduate Degree Programs | NanoEngineering

The Department of NanoEngineering offers undergraduate programs leading to theB.S. degreesinNanoengineeringandChemical Engineering. The Chemical Engineering and NanoEngineering undergraduate programs areaccredited by the Engineering Accreditation Commission of ABET. The undergraduate degree programs focus on integrating the various sciences and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.These two degree programshave very different requirements and are described in separate sections.

B.S. NanoEngineering

TheNanoEngineering Undergraduate Program became effective Fall 2010.Thismajor focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. The program includes affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The NanoEngineering undergraduate program is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanoengineers who are multidisciplinary and can work in a broad spectrum of industries.

B.S. Chemical Engineering

The Chemical Engineering undergraduate program is housed within the NanoEngineering Department. The program is made up of faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, the Department of Bioengineering and the Department of NanoEngineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). As of Fall 2008, the Department of NanoEngineering has taken over the administration of the B.S. degree in Chemical Engineering.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering website for their program of study, and their undergraduate/graduate advisor if they have questions. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the departments student affairs advisors on an annual basis.

Students can meet with the academic advisors during walk-in hours, schedule an appointment, or send messages through the Virtual Advising Center (VAC).

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken.

Independent Study

Students may take NANO 199 or CENG 199, Independent Study for Undergraduates, under the guidance of a NANO or CENG faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division Technical Elective or Nanoengineering Elective course requirements for the major. Students interested in this alternative must have completed at least 90 units and earned a UCSD cumulative GPA of 3.0 or better. Eligible students must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. Please visit the Student Affairs office for more information.

Excerpt from:

Undergraduate Degree Programs | NanoEngineering

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

See the original post here:

UC San Diego NanoEngineering Department

Nanoengineering – Wikipedia

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

The first nanoengineering program was started at the University of Toronto within the Engineering Science program as one of the options of study in the final years. In 2003, the Lund Institute of Technology started a program in Nanoengineering. In 2004, the College of Nanoscale Science and Engineering at SUNY Polytechnic Institute was established on the campus of the University at Albany. In 2005, the University of Waterloo established a unique program which offers a full degree in Nanotechnology Engineering. [1] Louisiana Tech University started the first program in the U.S. in 2005. In 2006 the University of Duisburg-Essen started a Bachelor and a Master program NanoEngineering. [2] Unlike early NanoEngineering programs, the first Nanoengineering Department in the world, offering both undergraduate and graduate degrees, was established by the University of California, San Diego in 2007.In 2009, the University of Toronto began offering all Options of study in Engineering Science as degrees, bringing the second nanoengineering degree to Canada. Rice University established in 2016 a Department of Materials Science and NanoEngineering (MSNE).DTU Nanotech – the Department of Micro- and Nanotechnology – is a department at the Technical University of Denmark established in 1990.

In 2013, Wayne State University began offering a Nanoengineering Undergraduate Certificate Program, which is funded by a Nanoengineering Undergraduate Education (NUE) grant from the National Science Foundation. The primary goal is to offer specialized undergraduate training in nanotechnology. Other goals are: 1) to teach emerging technologies at the undergraduate level, 2) to train a new adaptive workforce, and 3) to retrain working engineers and professionals.[3]

Link:

Nanoengineering – Wikipedia

About the NANO-ENGINEERING FLAGSHIP

Turning the NaI concept into reality necessitates an extraordinary and long-term effort. This requires the integration of nanoelectronics, nanophotonics, nanophononics, nanospintronics, topological effects, as well as the physics and chemistry of materials. This also requires operations in an extremely broad range of science and technology, including Microwaves, Millimeter waves, TeraHertz, Infrared and Optics, and will exploit various excitations, such as surface waves, spin waves, phonons, electrons, photons, plasmons, and their hybrids, for sensing, information processing and storage. Integrating

This high level of integration, which goes beyond individual functionalities, components and devices and requires cooperation across a range of disciplines, makes the Nano Engineering Flagship unique in its approach. It will be crucial in tackling the 6 strategic challenges identified as:

See the original post:

About the NANO-ENGINEERING FLAGSHIP

The NANO-ENGINEERING FLAGSHIP initiative

Nano-Engineering introduces a novel key-enabling non-invasive broadband technology, the Nano-engineered Interface (NaI), realising omni -connectivity and putting humans and their interactions at the center of the future digital society.Omni-connectivity encompasses real-time communication, sensing, monitoring, and data processing among humans, objects, and their environment. The vision of Omni-connectivity englobes people in a new sphere of extremely simplified, intuitive and natural communication.The Nano-engineered Interface (NaI) a non-invasive wireless ultraflat functional system will make this possible. NaI will be applicable to any surface on any physical item and thereby exponentially diversify and increase connections among humans, wearables, vehicles, and everyday objects. NaI will communicate with other NaI-networks from local up to satellites by using the whole frequency spectrum from microwave frequency to optics

Continued here:

The NANO-ENGINEERING FLAGSHIP initiative

NETS – What are Nanoengineering and Nanotechnology?

is one billionth of a meter, or three to five atoms in width. It would take approximately 40,000 nanometers lined up in a row to equal the width of a human hair. NanoEngineering concerns itself with manipulating processes that occur on the scale of 1-100 nanometers.

The general term, nanotechnology, is sometimes used to refer to common products that have improved properties due to being fortified with nanoscale materials. One example is nano-improved tooth-colored enamel, as used by dentists for fillings. The general use of the term nanotechnology then differs from the more specific sciences that fall under its heading.

NanoEngineering is an interdisciplinary science that builds biochemical structures smaller than bacterium, which function like microscopic factories. This is possible by utilizing basic biochemical processes at the atomic or molecular level. In simple terms, molecules interact through natural processes, and NanoEngineering takes advantage of those processes by direct manipulation.

SOURCE:http://www.wisegeek.com/what-is-nanoengineering.htm

See original here:

NETS – What are Nanoengineering and Nanotechnology?

Report Identifies China as the Source of Ozone-Destroying Emissions

Emissions Enigma

For years, a mystery puzzled environmental scientists. The world had banned the use of many ozone-depleting compounds in 2010. So why were global emission levels still so high?

The picture started to clear up in June. That’s when The New York Times published an investigation into the issue. China, the paper claimed, was to blame for these mystery emissions. Now it turns out the paper was probably right to point a finger.

Accident or Incident

In a paper published recently in the journal Geophysical Research Letters, an international team of researchers confirms that eastern China is the source of at least half of the 40,000 tonnes of carbon tetrachloride emissions currently entering the atmosphere each year.

They figured this out using a combination of ground-based and airborne atmospheric concentration data from near the Korean peninsula. They also relied on two models that simulated how the gases would move through the atmosphere.

Though they were able to narrow down the source to China, the researchers weren’t able to say exactly who’s breaking the ban and whether they even know about the damage they’re doing.

Pinpoint

“Our work shows the location of carbon tetrachloride emissions,” said co-author Matt Rigby in a press release. “However, we don’t yet know the processes or industries that are responsible. This is important because we don’t know if it is being produced intentionally or inadvertently.”

If we can pinpoint the source of these emissions, we can start working on stopping them and healing our ozone. And given that we’ve gone nearly a decade with minimal progress on that front, there’s really no time to waste.

READ MORE: Location of Large ‘Mystery’ Source of Banned Ozone Depleting Substance Uncovered [University of Bristol]

More on carbon emissions: China Has (Probably) Been Pumping a Banned Gas Into the Atmosphere

Read more:

Report Identifies China as the Source of Ozone-Destroying Emissions

An AI Conference Refusing a Name Change Highlights a Tech Industry Problem

Name Game

There’s a prominent artificial intelligence conference that goes by the suggestive acronym NIPS, which stands for “Neural Information Processing Systems.”

After receiving complaints that the acronym was alienating to women, the conference’s leadership collected suggestions for a new name via an online poll, according to WIRED. But the conference announced Monday that it would be sticking with NIPS all the same.

Knock It Off

It’s convenient to imagine that this acronym just sort of emerged by coincidence, but let’s not indulge in that particular fantasy.

It’s more likely that tech geeks cackled maniacally when they came up with the acronym, and the refusal to do better even when people looking up the conference in good faith are bombarded with porn is a particularly telling failure of the AI research community.

Small Things Matter

This problem goes far beyond a silly name — women are severely underrepresented in technology research and even more so when it comes to artificial intelligence. And if human decency — comforting those who are regularly alienated by the powers that be — isn’t enough of a reason to challenge the sexist culture embedded in tech research, just think about what we miss out on.

True progress in artificial intelligence cannot happen without a broad range of diverse voices — voices that are silenced by “locker room talk” among an old boy’s club. Otherwise, our technological development will become just as stuck in place as our cultural development often seems to be.

READ MORE: AI RESEARCHERS FIGHT OVER FOUR LETTERS: NIPS [WIRED]

More on Silicon Valley sexism: The Tech Industry’s Gender Problem Isn’t Just Hurting Women

Go here to see the original:

An AI Conference Refusing a Name Change Highlights a Tech Industry Problem

Scientists Are Hopeful AI Could Help Predict Earthquakes

Quake Rate

Earlier this year, I interviewed U.S. Geological Survey geologist Annemarie Baltay for a story about why it’s incredibly difficult to predict earthquakes.

“We don’t use that ‘p word’ — ‘predict’ — at all,” she told me. “Earthquakes are chaotic. We don’t know when or where they’ll occur.”

Neural Earthwork

That could finally be starting to change, according to a fascinating feature in The New York Times.

By feeding seismic data into a neural network — a type of artificial intelligence that learns to recognize patterns by scrutinizing examples — researchers say they can now predict moments after a quake strikes how far its aftershocks will travel.

And eventually, some believe, they’ll be able to listen to signals from fault lines and predict when an earthquake will strike in the first place.

Future Vision

But like Baltay, some researchers aren’t convinced we’ll ever be able to predict earthquakes.University of Tokyo seismologist Robert Geller told the Times that until an algorithm actually predicts an upcoming quake, he’ll remain skeptical.

“There are no shortcuts,” he said. “If you cannot predict the future, then your hypothesis is wrong.”

READ MORE: A.I. Is Helping Scientist Predict When and Where the Next Big Earthquake Will Be [The New York Times]

More on earthquake AI: A New AI Detected 17 Times More Earthquakes Than Traditional Methods

Visit link:

Scientists Are Hopeful AI Could Help Predict Earthquakes

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

Stand Up Guy

For 10 years, Roy Palmer had no feeling in his lower extremities. Two days after receiving a stem cell transplant, he cried tears of joy because he could feel a cramp in his leg.

The technical term for the procedure the British man underwent is hematopoietic stem cell transplantation (HSCT). And while risky, it’s offering new hope to people like Palmer, who found himself wheelchair-bound after multiple sclerosis (MS) caused his immune system to attack his nerves’ protective coverings.

Biological Reboot

Ever hear the IT troubleshooting go-to of turning a system off and on again to fix it? The HSCT process is similar, but instead of a computer, doctors attempt to reboot a patient’s immune system.

To do this, they first remove stem cells from the patient’s body. Then the patient undergoes chemotherapy, which kills the rest of their immune system. After that, the doctors use the extracted stem cells to reboot the patient’s immune system.

It took just two days for the treatment to restore some of the feeling in Palmer’s legs. Eventually, he was able to walk on his own and even dance. He told the BBC in a recent interview that he now feels like he has a second chance at life.

“We went on holiday, not so long ago, to Turkey. I walked on the beach,” said Palmer. “Little things like that, people do not realize what it means to me.”

Risk / Reward

Still, HSCT isn’t some miracle cure for MS. Though it worked for Palmer, that’s not always the case, and HSCT can also cause infections and infertility. The National MS Society still considers HSCT to be an experimental treatment, and the Food and Drug Administration has yet to approve the therapy in the U.S.

However, MS affects more than 2.3 million people, and if a stem cell transplant can help even some of those folks the way it helped Palmer, it’s a therapy worth exploring.

READ MORE: Walking Again After Ten Years With MS [BBC]

More on HCST: New Breakthrough Treatment Could “Reverse Disability” for MS Patients

Read this article:

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

AI Dreamed Up These Nightmare Fuel Halloween Masks

Nightmare Fuel

Someone programmed an AI to dream up Halloween masks, and the results are absolute nightmare fuel. Seriously, just look at some of these things.

“What’s so scary or unsettling about it is that it’s not so detailed that it shows you everything,” said Matt Reed, the creator of the masks, in an interview with New Scientist. “It leaves just enough open for your imagination to connect the dots.”

A selection of masks featured on Reed’s twitter. Credit: Matt Reed/Twitter

Creative Horror

To create the masks, Reed — whose day job is as a technologist at a creative agency called redpepper — fed an open source AI tool 5,000 pictures of Halloween masks he sourced from Google Images. He then instructed the tool to generate its own masks.

The fun and spooky project is yet another sign that AI is coming into its own as a creative tool. Just yesterday, a portrait generated by a similar system fetched more than $400,000 at a prominent British auction house.

And Reed’s masks are evocative. Here at the Byte, if we looked through the peephole and saw one of these on a trick or treater, we might not open our door.

READ MORE: AI Designed These Halloween Masks and They Are Absolutely Terrifying [New Scientist]

More on AI-generated art: Generated Art Will Go on Sale Alongside Human-Made Works This Fall

Read the rest here:

AI Dreamed Up These Nightmare Fuel Halloween Masks

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

Over and Over

“The security robot is patrolling. Ding-ding. Ding-ding. The security robot is patrolling. Ding-ding. Ding-ding.”

That’s what Olympic attendees will hear ad nauseam when they step onto the platforms of Tokyo’s train stations in 2020. The source: Perseusbot, a robot security guard Japanese developers unveiled to the press on Thursday.

Observe and Report

According to reporting by Kyodo News, the purpose of the AI-powered Perseusbot is to lower the burden on the stations’ staff when visitors flood Tokyo during the 2020 Olympics.

The robot is roughly 5.5 feet tall and equipped with security cameras that allow it to note suspicious behaviors, such as signs of violence breaking out or unattended packages, as it autonomous patrols the area. It can then alert security staff to the issues by sending notifications directly to their smart phones.

Prior Prepration

Just like the athletes who will head to Tokyo in 2020, Perseusbot already has a training program in the works — it’ll patrol Tokyo’s Seibu Shinjuku Station from November 26 to 30. This dry run should give the bot’s developers a chance to work out any kinks before 2020.

If all goes as hoped, the bot will be ready to annoy attendees with its incessant chant before the Olympic torch is lit. And, you know, keep everyone safe, too.

READ MORE: Robot Station Security Guard Unveiled Ahead of 2020 Tokyo Olympics [Kyodo News]

More robot security guards: Robot Security Guards Are Just the Beginning

Go here to read the rest:

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Snap Decisions

On first glance, a site that collects people’s opinions about whose life an autonomous car should favor doesn’t tell us anything we didn’t already know. But look closer, and you’ll catch a glimpse of humanity’s dark side.

The Moral Machine is an online survey designed by MIT researchers to gauge how the public would want an autonomous car to behave in a scenario in which someone has to die. It asks questions like: “If an autonomous car has to choose between killing a man or a woman, who should it kill? What if the woman is elderly but the man is young?”

Essentially, it’s a 21st century update on the Trolley Problem, an ethical thought experiment no doubt permanently etched into the mind of anyone who’s seen the second season of “The Good Place.”

Ethical Dilemma

The MIT team launched the Moral Machine in 2016, and more than two million people from 233 countries participated in the survey — quite a significant sample size.

On Wednesday, the researchers published the results of the experiment in the journal Nature, and they really aren’t all that surprising: Respondents value the life of a baby over all others, with a female child, male child, and pregnant woman following closely behind. Yawn.

It’s when you look at the other end of the spectrum — the characters survey respondents were least likely to “save” — that you’ll see something startling: Survey respondents would rather the autonomous car kill a human criminal than a dog.

moral machine
Image Credit: MIT

Ugly Reflection

While the team designed the survey to help shape the future of autonomous vehicles, it’s hard not to focus on this troubling valuing of a dog’s life over that of any human, criminal or not. Does this tell us something important about how society views the criminal class? Reveal that we’re all monsters when hidden behind the internet’s cloak of anonymity? Confirm that we really like dogs?

The MIT team doesn’t address any of these questions in their paper, and really, we wouldn’t expect them to — it’s their job to report the survey results, not extrapolate some deeper meaning from them. But whether the Moral Machine informs the future of autonomous vehicles or not, it’s certainly held up a mirror to humanity’s values, and we do not like the reflection we see.

READ MORE: Driverless Cars Should Spare Young People Over Old in Unavoidable Accidents, Massive Survey Finds [Motherboard]

More on the Moral Machine: MIT’s “Moral Machine” Lets You Decide Who Lives & Dies in Self-Driving Car Crashes

Original post:

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Scientists Say New Material Could Hold up an Actual Space Elevator

Space Elevator

It takes a lot of energy to put stuff in space. That’s why one longtime futurist dream is a “space elevator” — a long cable strung between a geostationary satellite and the Earth that astronauts could use like a dumbwaiter to haul stuff up into orbit.

The problem is that such a system would require an extraordinarily light, strong cable. Now, researchers from Beijing’s Tsinghua University say they’ve developed a carbon nanotube fiber so sturdy and lightweight that it could be used to build an actual space elevator.

Going Up

The researchers published their paper in May, but it’s now garnering the attention of their peers. Some believe the Tsinghua team’s material really could lead to the creation of an elevator that would make it cheaper to move astronauts and materials into space.

“This is a breakthrough,” colleague Wang Changqing, who studies space elevators at Northwestern Polytechnical University, told the South China Morning Post.

Huge If True

There are still countless galling technical problems that need to be overcome before a space elevator would start to look plausible. Wang pointed out that it’d require tens of thousands of kilometers of the new material, for instance, as well as a shield to protect it from space debris.

But the research brings us one step closer to what could be a true game changer: a vastly less expensive way to move people and spacecraft out of Earth’s gravity.

READ MORE: China Has Strongest Fibre That Can Haul 160 Elephants – and a Space Elevator? [South China Morning Post]

More on space elevators: Why Space Elevators Could Be the Future of Space Travel

More:

Scientists Say New Material Could Hold up an Actual Space Elevator

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Ups and Downs

Can we please get off Mr. Musk’s Wild Ride now? We don’t know how much more of this Tesla rollercoaster we can take.

In 2018 alone, Elon Musk’s clean energy company has endured a faulty flufferbot, furious investors, and an SEC probe and settlement. But there was good news, too. Model 3 deliveries reportedly increased, and just this week, we found out that Tesla had a historic financial quarter, generating $312 million in profit.

And now we’re plummeting again.

Closing In

On Friday, The Wall Street Journal reported that the Federal Bureau of Investigation (FBI) is deepening a criminal probe into whether Tesla “misstated information about production of its Model 3 sedans and misled investors about the company’s business going back to early 2017.”

We’ve known about the FBI’s Tesla criminal probe since September 18, but this is the first report confirming that Model 3 production is at the center of the investigation.

According to the WSJ’s sources, FBI agents have been reaching out to former Tesla employees in recent weeks to ask if they’d be willing to testify in the criminal case, though no word yet on whether any have agreed.

Casual CEO

We might be having trouble keeping up with these twists and turns, but Musk seems to be taking the FBI’s Tesla criminal probe all in stride — he spent much of Friday afternoon joking around with his Twitter followers about dank memes.

Clearly he has the stomach for this, but it’d be hard to blame any Tesla investors for deciding they’d had enough.

READ MORE: Tesla Faces Deepening Criminal Probe Over Whether It Misstated Production Figures [The Wall Street Journal]

More on Tesla: Elon Musk Says Your Tesla Will Earn You Money While You Sleep

Go here to read the rest:

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

Danger, Will Robinson

As famous Canadian astronaut Chris Hadfield demonstrated with his extraterrestrial sob session, fluids behave strangely in space.

And while microgravity makes for a great viral video, it also has terrifying medical implications that we absolutely need to sort out before we send people into space for the months or years necessary for deep space exploration.

Specifically, research published Thursday In the New England Journal of Medicine demonstrated that our brains undergo lasting changes after we spend enough time in space. According to the study, cerebrospinal fluid — which normally cushions our brain and spinal cord — behaves differently in zero gravity, causing it to pool around and squish our brains.

Mysterious Symptoms

The brains of the Russian cosmonauts who were studied in the experiment mostly bounced back upon returning to Earth.

But even seven months later, some abnormalities remained. According to National Geographic, the researchers suspect that high pressure  inside the cosmonauts’ skulls may have squeezed extra water into brain cells which later drained out en masse.

Now What?

So far, scientists don’t know whether or not this brain shrinkage is related to any sort of cognitive or other neurological symptoms — it might just be a weird quirk of microgravity.

But along with other space hazards like deadly radiation and squished eyeballs, it’s clear that we have a plethora of medical questions to answer before we set out to explore the stars.

READ MORE: Cosmonaut brains show space travel causes lasting changes [National Geographic]

More on space medicine: Traveling to Mars Will Blast Astronauts With Deadly Cosmic Radiation, new Data Shows

Read more:

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth

Check Yourself

The agriculture industry needs to get its priorities straight.

According to a newly published study, the world food system is producing too many unhealthy foods and not enough healthy ones.

“We simply can’t all adopt a healthy diet under the current global agriculture system,” said study co-author Evan Fraser in a press release. “Results show that the global system currently overproduces grains, fats, and sugars, while production of fruits and vegetables and, to a smaller degree, protein is not sufficient to meet the nutritional needs of the current population.”

Serving Downsized

For their study, published Tuesday in the journal PLOS ONE, researchers from the University of Guelph compared global agricultural production with consumption recommendations from Harvard University’s Healthy Eating Plate guide. Their findings were stark: The agriculture industry’s overall output of healthy foods does not match humanity’s needs.

Instead of the recommended eight servings of grains per person, it produces 12. And while nutritionists recommend we each consume 15 servings of fruits and vegetables daily, the industry produces just five. The mismatch continues for oils and fats (three servings instead of one), protein (three servings instead of five), and sugar (four servings when we don’t need any).

Overly Full Plate

The researchers don’t just point out the problem, though — they also calculated what it would take to address the lack of healthy foods while also helping the environment.

“For a growing population, our calculations suggest that the only way to eat a nutritionally balanced diet, save land, and reduce greenhouse gas emission is to consume and produce more fruits and vegetables as well as transition to diets higher in plant-based protein,” said Fraser.

A number of companies dedicated to making plant-based proteins mainstream are already gaining traction. But unfortunately, it’s unlikely that the agriculture industry will decide to prioritize growing fruits and veggies over less healthy options as long as people prefer having the latter on their plates.

READ MORE: Not Enough Fruits, Vegetables Grown to Feed the Planet, U of G Study Reveals [University of Guelph]

More on food scarcity: To Feed a Hungry Planet, We’re All Going to Need to Eat Less Meat

Read the original:

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth

WHO Director: Air Pollution Is the “New Tobacco”

Wrong Direction

Breathing polluted air is as likely to kill you as tobacco use — worldwide, each kills about 7 million people annually. But while the world is making progress in the war against tobacco, air pollution is getting worse.

The Director General of the World Health Organization (WHO) hopes to change that.

“The world has turned the corner on tobacco,” wrote Tedros Adhanom Ghebreyesus in an opinion piece published by The Guardian on Saturday. “Now it must do the same for the ‘new tobacco’ — the toxic air that billions breathe every day.”

Taking Action

According to the WHO, nine out of 10 people in the world breathe polluted air.

This week, the organization is hosting the first Global Conference on Air Pollution and Health, and Ghebreyesus is hopeful world leaders will use the conference as the opportunity to commit to cutting air pollution in their nations.

“Despite the overwhelming evidence, political action is still urgently needed to boost investments and speed up action to reduce air pollution,” he wrote, noting that this action could take the form of more stringent air quality standards, improved access to clean energy, or increased investment in green technologies.

Reduced Risk

The impact sustained action against air pollution could have on public health is hard to overstate.

“No one, rich or poor, can escape air pollution. A clean and healthy environment is the single most important precondition for ensuring good health,” wrote Ghebreyesus in his Guardian piece. “By cleaning up the air we breathe, we can prevent or at least reduce some of the greatest health risks.”

The conference ends on Thursday, so we won’t have to wait long to see which nations do — or don’t — heed the WHO’s call to action.

READ MORE: Air Pollution Is the New Tobacco. Time to Tackle This Epidemic [The Guardian]

More on air pollution: Dumber Humans — That’s Just One Effect of a More Polluted Future

Read more:

WHO Director: Air Pollution Is the “New Tobacco”

Scientists May Have Put Microbes in a State of Quantum Entanglement

Hall of Mirrors

A few years ago, the journal Small published a study showing how photosynthetic bacteria could absorb and release photons as the light bounced across a minuscule gap between two mirrors.

Now, a retroactive look at the study’s data published in The Journal of Physics Communications suggests something more may have been going on. The bacteria may have been the first living organisms to operate in the realm of quantum physics, becoming entangled with the bouncing light at the quantum scale.

Cat’s Cradle

The experiment in question, as described by Scientific American, involved individual photons — the smallest quantifiable unit of light that can behave like a tiny particle but also a wave of energy within quantum physics — bouncing between two mirrors separated by a microscopic distance.

But a look at the energy levels in the experimental setup suggests that the bacteria may have become entangled, as some individual photons seem to have simultaneously interacted with and missed the bacterium at the same time.

Super Position

There’s reason to be skeptical of these results until someone actually recreates the experiment while looking for signs of quantum interactions. As with any look back at an existing study, scientists are restricted to the amount and quality of data that was already published. And, as Scientific American noted, the energy levels of the bacteria and the mirror setup should have been recorded individually — which they were not — in order to verify quantum entanglement.

But if this research holds up, it would be the first time a life form operated on the realm of quantum physics, something usually limited to subatomic particles. And even though the microbes are small, that’s a big deal.

READ MORE“Schrödinger’s Bacterium” Could Be a Quantum Biology Milestone [Scientific American]

More on quantum physics: The World’s First Practical Quantum Computer May Be Just Five Years Away

Read the original here:

Scientists May Have Put Microbes in a State of Quantum Entanglement


12345...102030...