12345...102030...


At the Crossroads of Art and Biotech, a Warning: Be Careful What You Wish For. – INDY Week

ARTS WORK IN THE AGE OF BIOTECHNOLOGY: SHAPING OUR GENETIC FUTURES

Through Sunday, March 15

The Gregg Museum of Art & Design, Raleigh

Where do we draw the lines dividing art from science, natural from unnatural, and boldness from hubris?

An exhibit at N.C. States Gregg Museum of Art & Design doesnt answer these questions. Instead, it offers head-spinning new ways to ask them at the nexus of art and biotechnology, sharpening our insight into the fields future and expanding our understanding of it into the past.

These hard-to-classify collaborations between artists and scientistsseethe with hot-button issues related to ethics, privacy, human nature, and more. But if they have one message in common, its to be careful what you wish for.

Arts Work in the Age of Biotechnology: Shaping Our Genetic Futures is the result of more than two years of planning led by Molly Renda, the exhibit program librarian at N.C. State University Libraries, and the universitys Genetic Engineering and Society Center. Guest-curated by Hannah Star Rogers, who studies the intersection of art and science, the main exhibit at the Gregg has annexes in Hill and Hunt libraries.

On a recent tour of the exhibit, Renda and Fred Gould, the co-director of the GESC, said that they wanted to bring artists into the welter of science-and-design innovation taking place at the university because their differing perspectives on fundamental human issues create balance, tension, and discovery.

In the course of this, Ive found that artists tend to be more dystopian and designers are more utopian, Renda says.

There are different ways of knowing things, Gould adds. Thats why Molly came up with the name: not artwork, but arts work. What is an artist supposed to do?

Some pieces take on the dangers of day-after-tomorrow DNA testing and engineering technology. Heather Dewey-Hagborg is best known for Probably Chelsea, a piece in which she collected DNA samples from Chelsea Manning and generated thirty-two possible portraits of the soldier and activist.

When we worry about biotechnology, we usually worry that our food is going to be dangerous. But sometimes you wish for something thats rare: What happens when biotechnology makes it available to you?

The Gregg is showing a similar piece in which Dewey-Hagborg harvested DNA from cigarette butts and gum she found on the street and created probablebut not definitereplicas of the litterers faces, which hang on the walls above the specimens. Dewey-Hagborg demonstrates not only the unnerving extent of whats currently possible with DNA testing, but also the limits, which create misidentification risks.

Other pieces probe how biotechnology might reshape life as we know it. In a film and a sculpture representing an ancient Greek rite for women, Charlotte Jarvis raises the possibility of creating female sperm, based on the idea that, because stem cells are undifferentiated, you could theoretically teach womens stem cells to develop into sperm.

Still other pieces pointedly poke holes in the boundary between science and art. Adam Zaretskys Errorarium (entitled "Bipolar Flowers")looks like a cross between an arcade cabinet and a terrarium. It houses a few genetically modified Arabidopsis specimens, which Gould calls the white mice of research plants. When you turn the knobs, it changes the sonic parameters of a synthesizer, notionally testing the effects of the sound on the mutant plants.

It doesnt really do anythingor does it? Zaretskys experiment with no hypothesis is a playful tweak on science with something a little dangerous in the background.

Joe Davis, a bio-art pioneer, touches on something similar in his piece, which consists of documentation of an experiment where mice roll dice to determine if luck can be bred. Renda says that Davis couldnt get permission to run the test (universities are wary of drawing attention for ridiculous-seeming experiments), so he did it as conceptual art at N.C. State, instead.

Its notable that two artists home in on luck, one of many human concepts that genetic engineering, which will allow us to take control of our bodies and environment in untested ways, will transform. In We Make Our Own Luck Here, Ciara Redmond has bred four-leaf clovers (without genetic modification), which ruins themtheyrelucks evidence, not its cause. This whimsical iteration of unconsidered consequences raises a serious question: What else are we not thinking of?

When we worry about biotechnology, we usually worry that our food is going to be dangerous, Gould says. But sometimes you wish for something thats rare: What happens when biotechnology makes it available to you?

The exhibit takes an expansive view of biotechnology. Maria McKinney uses semen-extraction straws to sculpt proteins from double-muscled breeding bulls, underscoring that weve been tampering with life since long before CRISPR. Biotech feels radically new, but its revealed as part of a centuries-long process.

Another part of the exhibit, which closed at the end of October but can still be experienced through virtual reality at the Gregg, was From Teosinte to Tomorrow, Rendas land-art project at the North Carolina Museum of Art. In what was essentially a walk back through agricultural history, a bed of teosinte, which is thought to be the ancestor of modern maize, waited at the center of a corn maze.

That teosinte was in some sense genetically enhanced by subsistence farmers in Mexico since the time of the Aztecs, Gould says. Now were doing it in the laboratory with the same genesso whats the difference? Arts work is to make us think and question.

Contact arts and culture editor Brian Howe at bhowe@indyweek.com

Support independent local journalism.Join the INDY Press Clubto help us keep fearless watchdog reporting and essential arts and culture coverage viable in the Triangle.

Link:

At the Crossroads of Art and Biotech, a Warning: Be Careful What You Wish For. - INDY Week

Scientists write to US universities for inviting anti-science activist Vandana Shiva – ThePrint

Text Size:A- A+

Bengaluru: Scientists and biotechnology experts from around the world have written two open letters to the Stanford University and the University of California-Santa Cruz (UC-SC) protesting invitations extended to Indian anti-biotechnology activist Vandana Shiva to speak on equitable and sustainable farming methods.

The letters raise concern about Shivas constant use of anti-scientific rhetoric to support unethical positions. They also lay out some of her earlier positions on farming and comments which the experts believe are factually incorrect.

Shiva is a prominent proponent of land redistribution and farmers rights, besides Ayurveda and organic foods. She has been accused of being funded by organic food companies to speak out against conventional agriculture practices.

Known as one of the staunchest critics of genetically modified organisms (GMO), she claims them to be toxic for human consumption a stance that has attractedstrong criticism from the scientific community.

GMOs are widely considered safe and endorsed by most scientific and medical bodies across the world.

Shiva has also been profiled by The New Yorker in an article titled Seeds of Doubt by Michael Specter. The piece is an attempt too debunk her claims.

She has also spoken out against the company Monsanto, which has been accused of engaging in predatory practices while funding genetic and cancer research as well as protecting its seed patents.

ThePrint tried to get in touch with Shiva and both the universities via emails. This report will be updated if and when replies are received.

Also read: A post-chemical world is building as agribusinesses go green

Calling Shivas philosophy unscientific and anti-social, the letter addressed to Stanford cites some ironies associated with Shiva being invited by the institution.

The first concerns Shivas invitation having come from Students for a Sustainable Stanford, because her views are demonstrably, unequivocally anti-sustainable. Her ideas on farming would relegate it to a primitive, low-yielding, wasteful activity.

It goes on to read: Second, the co-discoverer in 1973 of recombinant DNA technology, the prototypic, iconic molecular technique for genetic engineering, was Stanford biochemist Dr. Stanley N. Cohen, who is still a professor of genetics and medicine at the university. Shivas appearance at Stanford is an affront to Professor Cohen and all of the universitys other scientists.

The letter also accuses Shiva of taking large honoraria for dispensing her mendacious and antisocial opinion.

The one addressed to UC-SC similarly expresses surprise that a science-based and ethically inspired institution has extended an invitation to her.

Read the full text of the letter to UC-SC below:

Dear Organizers and Professors,

We are scholars of life sciences and social sciences who have published many scholarly papers and articles about agriculture, food and related biotechnologies.

Perhaps you are unaware of Dr. Vandana Shivas constant use of anti-scientific rhetoric to support unethical positions. We are very surprised that any science-based and ethically inspired institution would invite her to speak.

Here are some (only some) examples of her prejudicial, anti-science, anti-social stances:

Her astonishing tendency to nonsense. See the absurd statement regarding the supposed functioning of the Genetic Use Restriction technology (GURT), from her book Stolen Harvest (p. 82-83):

Molecular biologists are examining the risk of the Terminator function escaping the genome of the crops into which it has been intentionally incorporated, and moving into surrounding open-pollinated crops or wild, related plants in fields nearby.Given Natures incredible adaptability and the fact that the technology has never been tested on a large scale, the possibility that the Terminator may spread to surrounding food crops or to the natural environment MUST be taken seriously. The gradual spread of sterility in seeding plants would result in a global catastrophe that could eventually wipe out higher life forms, including humans, from the planet.

One may need to read these statements twice, because they are too bewildering to be understood at first sight. In fact, she claims that sterile seeds which of course cannot germinate can spread sterility. A middle school student expressing such views would fail the biology exam.

Her stunning ignorance: Most #GMOs are #Bt toxin or #HT herbicide tolerant crops. Toxins are poisons. GMOs=Poison Producing Plants. Poisons have no place in food.

Somebody should explain to her that Bt proteins are toxic to some clearly identified classes of insects (plant pests), but not to fish, birds, mammals. See also the scientific papers quoted in response to her delusional post, in particular, a classic study which clarifies that plants naturally produce substances to defend themselves from pests and 99.99% of pesticidal substances in food are natural and harmless to humans.

Her proclivity to offend: Saying farmers should be free to grow GMOs which can contaminate organic farms is like saying rapists should have freedom to rape. She is comparing farmers, who grow crops which are scientifically and legally recognized as safe, to rapists! Its a grotesque insult to millions of honest workers who use modern technologies to farm sustainably and efficiently. Understandably, her outrageous abuse raised many angry reactions (see the replies to the same post).

Her rejection of technologies which help farmers (mostly women and children) to alleviate the painful, back-breaking labor of hand-weeding: Indian women selectively do weeding by hand, hereby preserving our biodiversity (Photo and caption at p. 21.) This is a preposterous statement; any act of weeding is exactly aimed at eliminating detrimental plant biodiversity which, in a field, stifles crops.

As a final treat, a ridiculous statement: Fertilizer should never have been allowed in agriculture, she said in a 2011 speech. I think its time to ban it. Its a weapon of mass destruction. Its use is like war, because it came from war. Let us ask her if she is going to ban metallurgy, since it has been used to forge cannons.

We are confident that our reasoned remarks will be seen by the addressees of this letter, by their colleagues and by students at UCSC as constructive criticism. We are afraid that none of us will be able to attend the event to challenge Dr. Shiva in person. We would appreciate if you can make our letter available to the participants.

Also read: Whats the fuss over the new variety of GM cotton that farmers are batting for

ThePrint is now on Telegram. For the best reports & opinion on politics, governance and more, subscribe to ThePrint on Telegram.

Read the rest here:

Scientists write to US universities for inviting anti-science activist Vandana Shiva - ThePrint

Cuba’s revolutionary cancer vaccine builds bridges between the island and the United States – AL DIA News

Despite the fact that Donald Trump's government is determined to continue sanctioning Cuba - the charter flights from the U.S. to nine Cuban airports were suspended last week because of the country's support for Maduro's regime, according to statements by Secretary of State Mike Pompeo - the collaboration between the United States and the island continues, at least on scientific matters. And this should not surprise us, taking into account the great medical advances made by Cuban professionals in the treatment of various types of cancer.

This is what we'll be able to witness in "Cuba's Cancer Hope," a documentary by Llew Smith that will be released next April by PBS and that sheds light on CimaVax, a revolutionary treatment against lung cancer that prolongs the life of patients in very advanced stages and that the Center of Molecular Immunology (CIM) in Habana has taken more than twenty years to develop.

In fact, the results are so encouraging that the Roswell Park Comprehensive Cancer Center in New York soon joined the project and will be the first U.S. institution to conduct a clinical trial of the drug produced on the island.

"The future of our country must necessarily be a future of men of science and thought, because that is precisely what we are sowing most," Fidel Castro, 1960.

Llew Smith himself was one of the volunteers to test this pioneering treatment, according to Prensa Latina, and his results, which were made known two years ago, will be part of the documentary.

"The wonderful thing about working with our Cuban colleagues is that they really believe, in their heart of hearts, that medical care is a human right," said Dr. Kevin Lee, director of the Roswell Park immunology department, in a dialogue with the press, praising the medical advances being made in Cuba and its "great potential to treat and prevent cancer of various kinds."

Cuba a pioneer in science

Biotechnology is one of the most developed branches of Cuban science, which began to be promoted in 1980, when Fidel Castro's government created a group dedicated to the production of interphenon, a possible cancer drug, in addition to promoting scientific parks.

This is a commitment to progress that the current president of Cuba, Miguel Daz-Canel Bermdez, acknowledged to Castro on the occasion of the documentary, and which the late revolutionary leader already advocated in a speech made in 1960when he said:

"The future of our country must necessarily be a future of men of science and thoughtbecause that is precisely what we are sowing most."

But the CimaVax is not the only discovery of Cuban scientists, whose achievements can be traced in the history of the island:

In 1881, the scientist Carlos Juan Finlay was the discoverer of the agent that transmits yellow fever, the Aedes aegypti mosquito, which made it possible to clean up the areas invaded by this infectious agent and which, in the end, has prevented millions of deaths.

"The wonderful thing about working with our Cuban colleagues is that they truly believe, deep in their hearts, that medical care is a human right," Dr. Kevin Lee from Roswell Park.

Also at Cuba's Center for Genetic Engineering and Biotechnology (CIGB), Heberprot-P was developed, a unique drug that prevents the amputation of diabetic feet by healing ulcers.

In addition, Cuba was recognized by WHO as the first country in the world to eliminate mother-to-child transmission of HIV.

The documentary "Cuba's Cancer Hope" also includes other therapies being experimented with on the island, specifically for the treatment of different types of cancer, which once again confirms thatscientific advances are breaking down the walls that apparently separate us.

See original here:

Cuba's revolutionary cancer vaccine builds bridges between the island and the United States - AL DIA News

Red Biotechnology Market Size, Status and Recent Advancements, Forecast 2020 to 2025 – MENAFN.COM

(MENAFN - Ameliorate Solutions)

The report presents an in-depth assessment of the Global Red Biotechnology including enabling technologies, key trends, market drivers, challenges, standardization, regulatory landscape, deployment models, operator case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents forecasts for Global Red Biotechnology investments from 2020 till 2025.

Industry Overview-

The Red Biotechnology Market is expected to register a CAGR of 5.7% during the forecast period. Red biotechnology is a process that utilizes organisms to improve health and helps the body to fight against diseases. Red biotechnology has become a very important part of the field of diagnostics, gene therapy, and clinical research and trials. Genetic engineering and the development and production of various new medicinal products to treat life-threatening diseases are also part of the benefits of red biotechnology. Severe Combined Immune Deficiency (SCID) and Adenosine deaminase (ADA) deficiency are genetic disorders that were successfully treated with gene therapy. Several promising gene therapies are under development for the treatment of cancer and genetic disorders. According to the World Health Organization (WHO), approximately 6,000 to 8,000 rare diseases found and out of them, nearly 80% are genetic disorders. Rising incidence and prevalence of chronic and rare diseases and increased funding in the healthcare industry are the key driving factors in the red biotechnology market.

Click the link to get a free Sample Copy of the Report:

https://www.marketinsightsreports.com/reports/01091744865/red-biotechnology-market-growth-trends-and-forecast-2020-2025/inquiry?Mode=21

Top Leading Manufactures-

Pfizer Inc, AstraZeneca PLC, F. Hoffmann-La Roche Ltd, Celgene Corporation, Takeda Pharmaceutical Company Limited, Biogen Inc, Amgen Inc, Gilead Sciences Inc, Merck KGaA, CSL Limited

Biopharmaceutical Industry Segment is Expected to Hold a Major Market Share in the Red biotechnology Market

- Biopharmaceuticals are medical drugs that are produced by using biotechnology. Biopharmaceuticals are proteins, antibodies, DNA, RNA or antisense oligonucleotides used for therapeutic or diagnostic purposes, and these products are produced by means other than direct extraction from a native (non-engineered) biological source.- The first biopharmaceutical product approved for therapeutic use was recombinant human insulin (Humulin), which was developed by Genentech and marketed by Eli Lily in the year 1982 and in the year 2019, Novartis received FDA approval for gene therapy product in the treatment of spinal muscular atrophy (SMA) condition. Using an AAV9 viral vector, called Zolgensma, which delivers SMN protein into the motor neurons of afflicted patients.- According to the World Health Organization (WHO), globally Cancer is the second leading cause of death and an estimated 9.6 million deaths in the year 2018.- Increasing incidence and prevalence of chronic and rare diseases and rapid expansion of the biopharmaceutical industries are the key driving factors in the biopharmaceutical industry segment.

North America is Expected to Hold a Significant Share in the Market and Expected to do Same in the Forecast Period

North America expected to hold a major market share in the global red biotechnology market due to the rising prevalence of chronic and rare diseases, increased expenditure in the healthcare industry in this region. According to the National Institutes of Health (NIH), in the year 2019, approximately 1.8 million people will be diagnosed with cancer in the United States and estimated 268,600 women and 2,670 men will be diagnosed with breast cancer. Moreover, the rise in the adoption of advanced technologies in gene therapy and increasing investments in research and development is fueling the growth of the overall regional market to a large extent.

Inquire for Discount:

https://www.marketinsightsreports.com/reports/01091744865/red-biotechnology-market-growth-trends-and-forecast-2020-2025/discount?Mode=21

Key Strategic Developments : The study also includes the key strategic developments of the market, comprising R & D, new product launch, M & A, agreements, collaborations, partnerships, joint ventures, and regional growth of the leading competitors operating in the market on a Global and regional scale.

Key Market Features: The report evaluated key market features, including revenue, price, capacity, capacity utilization rate, gross, production, production rate, consumption, import/export, supply/demand, cost, market share, CAGR, and gross margin. In addition, the study offers a comprehensive study of the key market dynamics and their latest trends, along with pertinent market segments and sub-segments.

Analytical Tools: Global Red Biotechnology Market report includes the accurately studied and assessed data of the key industry players and their scope in the market by means of a number of analytical tools. The analytical tools such as Porter's five forces analysis, feasibility study, and investment return analysis have been used to analyzed the growth of the key players operating in the market.

The research includes historic data from 2014 to 2020 and forecasts until 2025 which makes the reports an invaluable resource for industry executives, marketing, sales and product managers, consultants, analysts, and other people looking for key industry data in readily accessible documents with clearly presented tables and graphs.

Media Contact Us:

Irfan Tamboli (Head of Sales) Market Insights Reports

Phone: + 1704 266 3234 | +91-750-707-8687

|

MENAFN18012020007010643ID1099570077

Read more:

Red Biotechnology Market Size, Status and Recent Advancements, Forecast 2020 to 2025 - MENAFN.COM

Postdoctoral Fellowship Under A Indo-French Academia-Industry job with VELLORE INSTITUTE OF TECHNOLOGY | 192385 – Times Higher Education (THE)

Job Description

Applications are invited for a temporary Post ofPostdoctoral Fellowship under a Indo-French Academia-Industry Collaborative Projectfunded by CEFIPRA, in Centre for Bio Separation Technology, Vellore Institute of Technology (VIT).

Title of the Project:

Cost effective strategy for the induction of immune tolerance to therapeutic Factor VIII in haemophilia A

Qualification:

PhD in Biochemistry /Molecular Biology/Genetic Engineering/Biotechnology/ Microbiology/Life Sciences

Desirable (if any):

Experience in molecular cloning, expression and purification of proteins

Stipend:Rs.47,000/ per month + 10% HRASponsoring Agency:CEFIPRADuration:Upto April 2020 (3 months)

Principal Investigator:

Principal Investigator: Dr.Krishnan V (Professor & Director, Centre for BioSeparation Technology)

Coinvestigator: Prof.M.A.Vijyalakshmi (Professor, Centre for BioSeparation Technology)

Send your resume along with relevant documents pertaining to the details of qualifications, scientific accomplishments, experience (if any) and latest passport size photo etc. on or before(20/01/2020)through onlinehttp://careers.vit.ac.in

Salary:Not Disclosed by RecruiterIndustry:Education / Teaching / TrainingFunctional Area:Teaching, Education, Training, CounsellingRole:Trainee

Keyskills

immune toleranceBiochemistry/

Desired Candidate Profile

Please refer to the Job description above

Education-

Doctorate:Ph.D - Microbiology, Bio-Chemistry/Bio-Technology

Company Profile

Vellore Institute of Technology

VIT was established with the aim of providing quality higher education on par with international standards. It persistently seeks and adopts innovative methods to improve the quality of higher education on a consistent basis.The campus has a cosmopolitan atmosphere with students from all corners of the globe. Experienced and learned teachers are strongly encouraged to nurture the students. The global standards set at VIT in the field of teaching and research spur us on in our relentless pursuit of excellence. In fact, it has become a way of life for us. The highly motivated youngsters on the campus are a constant source of pride. Our Memoranda of Understanding with various international universities are our major strength. They provide for an exchange of students and faculty and encourage joint research projects for the mutual benefit of these universities. Many of our students, who pursue their research projects in foreign universities, bring high quality to their work and esteem to India and have done us proud. With steady steps, we continue our march forward. We look forward to meeting you here at VIT.

Go here to read the rest:

Postdoctoral Fellowship Under A Indo-French Academia-Industry job with VELLORE INSTITUTE OF TECHNOLOGY | 192385 - Times Higher Education (THE)

How food and beverage marketing claims can affect the production process – Food Engineering Magazine

How food and beverage marketing claims can affect the production process | 2020-01-17 | Food Engineering This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more. This Website Uses CookiesBy closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.

Read the rest here:

How food and beverage marketing claims can affect the production process - Food Engineering Magazine

Gone Fishing? No Fish but Plenty of Pesticides and a Public Health Crisis – CounterPunch

There ismounting evidencethat a healthy soil microbiome protects plants from pests and diseases.One of the greatest natural assets that humankind has is soil. But when you drench it with proprietary synthetic chemicals or continuously monocrop as part of a corporate-controlled industrial farming system, you can kill essential microbes, upset soil balance and end up feeding soil a limiteddoughnut dietof unhealthy inputs.

Armed with their synthetic biocides, this is what the transnational agritech conglommerates do. These companies attempt to get various regulatory and policy-making bodies to bow before the altar of corporate science. But, in reality, they have limited insight into the long-term impacts their actions have on soil and itscomplex networksof microbes and microbiological processes. Soil microbiologists are themselves still trying to comprehend it all.

That much is clearwhen Linda Kinkelof the University of Minnesotas Department of Plant Pathology said back in 2014: We understand only a fraction of what microbes do to aid in plant growth.

And its the same where human soil is concerned.

People have a deep microbiological connection to soils and traditional processing and fermentation processes, which all affect the gut microbiome the up to six pounds of bacteria, viruses and microbes akin to human soil. And as with actual soil, the microbiome can become degraded according to what we ingest (or fail to ingest). Many nerve endings from major organs are located in the gut and the microbiome effectively nourishes them. There is ongoing research taking place into how the microbiome is disrupted by the modern globalised food production/processing system and the chemical bombardment it is subjected to.

The human microbiome is of vital importance to human health yet it is under chemical attack from agri-food giants and theiragrochemicals and food additives. As soon as we stopped eating locally-grown, traditionally-processed food, cultivated in healthy soils and began eating food subjected to chemical-laden cultivation and processing activities, we began to change ourselves. Along with cultural traditions surrounding food production and the seasons, we also lost our deep-rooted microbiological connection with our localities. It was traded in for corporate chemicals and seeds and global food chains dominated by the likes of Monsanto (now Bayer), Nestle and Cargill.

Environmentalist Dr Rosemary Mason says that glyphosate disrupts the shikimate pathway within these gut bacteria and is a strong chelator of essential minerals, such as cobalt, zinc, manganese, calcium, molybdenum and sulphate. In addition, it kills off beneficial gut bacteria and allows toxic bacteria to flourish. She adds that we are therefore facing a global metabolic health crisis linked to glyphosate.

Many key neurotransmitters are located in the gut. Aside from affecting the functioning of major organs, these transmitters affect our moods and thinking. There is strong evidence that gut bacteria can have a direct physical impact on the brain. Alterations in the composition of the gut microbiome have been implicated in a wide range of neurological and psychiatric conditions, including autism, chronic pain, depression and Parkinsons Disease.

Recently published research indicates that glyphosate and Roundup are proven to disrupt gut microbiome by inhibiting the shikimate pathway.Dr Michael Antoniou of Kings College Londonhas found thatRoundup herbicide and its active ingredient glyphosate cause a dramatic increase in the levels of two substances, shikimic acid and 3-dehydroshikimic acid, in the gut, which are a direct indication that the EPSPS enzyme of the shikimic acid pathway has been severely inhibited. The researchers found that Roundup and glyphosate affected the microbiome at all dose levels tested, causing shifts in bacterial populations.

This confirms what Mason has been highlighting for some time. However, she has also been pointing out the environmental degradation resulting from the spiralling use of glyphosate-based herbicides and has just written an open letter tothe Principal Fisheries Officer of Natural Resources Wales (NRW), Peter Gough (NRW is the environment agency for Wales).

The letter runs to 20 pages and focuses on glyphosate and neonicotinoid insecticides. She asks who would re-authorise a pesticide that istoxic to aquatic life with long lasting effects and is causing serious eye damage along with various forms of cancers and a wide range of other health conditions?

She answers her question by saying the European Glyphosate Task Force and Jean-Claude Juncker President of the EC along with various regulators in Europe who have basically capitulated to an industry agenda. Mason argues that the European Glyphosate Task Force (who actually did the re-assessment of glyphosate) omitted all the studies from South America where they had been growing GM Roundup Ready crops since 1996. She discusses the suppression of key research which indicated the harmful effects of glyphosate.

The Principal Fisheries Scientist Wales sent Mason two NRW Reports two years ago. In it, Mason discovered that giant hogweed on the River Usk bank had been treated with a glyphosate-based herbicide. NRW had also admitted to not studying the effects of neonicotinoids, which had been introduced in 1994. Mason pointed out to NRW that run-off from farms of clothianidin in seeds would be enough to kill off aquatic invertebrates.

In early January, NRW attempted to explain the absence of salmon and trout in the River Usk on climate change (warming of the river), rather than poisoning of the river, which is what Mason had warned the agency about two years ago.

In Britain, information on emerging water contaminants has been suppressed, according to Mason, and there is no monitoring of either neonics or glyphosate in surface or ground water. In the US, though, measurements of these chemicals have been carried out on farmland and their correlation with massive declines in invertebrates byseparate agenciesand universities in the US and Canada.

Mason notes there has been 70 years of poisoning the land with pesticides. Although the National Farmers Union and the Department for Environment and Rural Affairs in the UK say fewer pesticides are now being applied, the Soil Association indicates massive increases of increasing numbers of pesticides at decreasing intervals (official statistics obtained via a Freedom of Information request).

Readers should consult the full text of Masons open letter on theacamedia.edusite to gain wider insight into the issues outlined above and many more, such as government collusion with major agrochemical corporations, the shaping of official narratives on illness and disease to obscure the role of pesticides and Monsantos poisoning of Wales.

What Mason outlines is not specific to Wales or the UK; the increasing use of damaging agrochemicals and government collusion with the industry transcends national borders. Nation states are becoming increasingly obsolete and powerless in the face of globalised capitalist interests that seek to capture and exploit markets, especially in the Global South.

What follows is the e-mail that Mason sent to Peter Gough by way of introducing her letter to him.

Dear Peter,

The European Chemicals Agency (ECHA) classified glyphosate as a substance that is toxic to aquatic life with long lasting effects

Your colleague Dave Charlesworth declared on BBC 1 Breakfast last week that the declines in salmon and trout were due to climate change and warming of the rivers. I told you just over 2 years ago that it was due to pesticides and showed you the proof from assorted NRW documents you sent me.

Why are NRW, the government, top UK doctors, farmers, the corporations, the media and global pesticides regulators protecting the agrochemical industry? All of you could suffer from the effects of pesticides in food, in water, in the air and in rain. Why dont you inform the people?

Monsanto claims that Roundup doesnt affect humans, but their sealed secret studies that scientist Anthony Samsel obtained from the US EPA, shows evidence of cancers and that bioaccumulation of14C labelled glyphosate occurred in every organ of the body (page 9).

The NFU and Defra deny they are responsible for 70 years of poisoning the land and the subsequent insect apocalypse; they should read their own document Healthy Harvest.The National Farmers Union (NFU), the Crop Protection Association (CPA) and the Agricultural Industries Confederation (AIC) combined to lobby the EU not to restrict the 320+ pesticides available to them. The publication is called:HEALTHY HARVEST.[1](Pages 6-9)

The Department of Health and the Chief Medical Officer for England claim that parents are responsible for obesity in primary school children. However, Pesticides Action Network (PAN) analysed the Department of Healths Schools Fruit and Vegetable Scheme and found that there were residues of 123 pesticides in it,some of which are linked to serious health problems such as cancer and disruption of the hormone system.

When PAN informed them, they said that pesticides were not the concern of the DOH. (Page 14, 13-16).

Dr Don Huber, Emeritus Professor of Plant Pathology, Purdue University, US, speaking about GMO crops and glyphosate, said: Future historians may well look back upon our time and write, not about how many pounds of pesticide we did or didnt apply, but by how willing we are to sacrifice our children and future generations for this massive genetic engineering experiment that is based on flawed science and failed promises just to benefit the bottom line of a commercial enterprise. (Page 18)

Kind regards,

Rosemary

Go here to read the rest:

Gone Fishing? No Fish but Plenty of Pesticides and a Public Health Crisis - CounterPunch

Economists explore the consequences of steering technological progress – The Economist

Jan 16th 2020

SINCE THE ancient Greeks, at least, people have recognised that civilisational progress tends to create havoc as well as opportunity. Economists have had little time for such concerns. To them, technological progress is the wellspring of long-run growth, and the only interesting question is how best to coax more innovation out of the system. But in the face of looming social challenges, from climate change to inequality, some are now asking whether, when it comes to innovation, what sort is as relevant as how much.

Early models of growth did not explain technological progress at all, treating it rather like manna from heaven. In the 1980s some economists worked to build endogenous-growth models that said where innovation came from. They explained it as the consequence of investment in research and development, increases in the stock of human capital, or the (temporary) extra profits that can be reaped by firms with new technologies. Other economists have focused more on data than on theory. Who Becomes an Inventor in America? The Importance of Exposure to Innovation, a paper published in 2018 in the Quarterly Journal of Economics, identifies factors that seem to encourage young people to become innovators. Children who grow up where innovation rates are high, for instance, are more likely to become inventors themselves.

Research has also made clear, however, that technological discovery is not linear, but veers about depending on economic conditions. Some economic historians reckon that early industrialisation was motivated by a desire to replace scarce resources, such as skilled labour, with abundant ones, such as unskilled labour and coal. Early inventors were not simply discovering natures truths one by one, in other words, but trying to solve specific problems. Work on such technological bias blossomed in the 1990s as economists sought to explain why the wage premium earned by college graduates kept rising even as the supply of graduates increased. The answer, some reckoned, was that technological change in the 20th century was skill-biased, boosting the productivity of workers with degrees, but not of others.

In a paper published in 2001, Daron Acemoglu of the Massachusetts Institute of Technology collected these strands in a model of directed technical change. Technological progress, he suggested, is influenced by the relative scarcity of factors such as labour and capital; by how easily one factor can be substituted for another; and by the path of past innovation. Research on a particular technology may reduce the cost of developing complementary innovations in future. Directed technical change is fascinating to contemplate because it allows for alternative technological futures: worlds in which firms wring every efficiency from Zeppelins and pneumatic tubes, rather than from internal-combustion engines and Twitter. If the direction of progress is not set in stone, policy choices could lead an economy down one technological path rather than another. That raises an immediate question: if innovation can be steered, should it be, and if so, how?

Since 2000, published work on directed technical change has focused largely on environmental challenges. Path dependence means that research on fossil-fuel technologies can often be more fertile than research on cleaner alternatives. There are more experts in the relevant disciplines, better-funded research labs and an established complementary economic infrastructure. Efficient decarbonisation might thus require subsidies for clean-energy research, as well as a carbon price. Indeed, efforts to slow global warming represent a massive attempt to realise one technological futurea zero-carbon versionrather than another.

Why stop there? Some futurists, and a few economists, worry that rapid progress in artificial intelligence could lead to mass displacement of labour and social crisis. But in a recent paper Anton Korinek of the University of Virginia notes that not all uses of AI are alike. Clever machines could indeed replace human workersor might instead be engineered to assist human labour: to help people navigate complicated processes or take difficult decisions. Private firms, focused on their bottom lines rather than the potential knock-on effects of their investment decisions, might be indifferent between the two approaches in the absence of a government nudge, just as polluting firms tend not to worry about the social costs of environmental harm unless made to do so by governments. In a working paper co-written with Joseph Stiglitz, a Nobel laureate in economics, Mr Korinek concludes that directing technical change to favour labour-assisting rather than labour-displacing forms of AI could be a second-best way to manage progress, if governments cannot sufficiently redistribute the gains from automation from winners to losers. This may sound far-fetched, but policy proposals such as Bill Gatess suggestion that robots should be taxed to slow the pace of automation represent steps toward a more micromanaged technological future.

Environmental policies aside, such steps seem premature. A more sophisticated view of technological progress is to be welcomed. But economics lacks the tools, at least for now, to judge which technological path is preferable. The world is too complex to allow economists to compare hypothetical technological futures: to know whether a Zeppelin-based society would operate more efficiently overall than a car-based one. Economists cannot know what surprises lie down one innovation path rather than another.

And questions of technology are not solely, or even mostly, about efficiency. Many are ethical. Innovations with overwhelming productivity advantages could prove devastating to social trust or equity. In the face of radical technological changein AI, robotics and genetic engineeringsocieties will inevitably argue over which technological paths should be explored. Economists views belong in these conversationsprovided they are crafted with humility and care.

This article appeared in the Finance and economics section of the print edition under the headline "Economists explore the consequences of steering technological progress"

Go here to see the original:

Economists explore the consequences of steering technological progress - The Economist

Gene editing could revolutionize the food industry, but it’ll have to fight the PR war GMO foods lost – CBC.ca

In his greenhouse at the Cold SpringHarbor Laboratory in Long Island, N.Y., plant geneticist Zach Lippman is growing cherry tomatoes.

But they don't look like the ones that most people grow in their gardens and greenhouses.

Lippman's tomatoes have shorter stemsand the fruit is more tightly clustered, looking more like grapes.

"With gene editing, we now have the ability to fine-tune at will," he said. "So instead of having black or white, small fruit [or] big fruit, you can have everything in between."

Lippman used CRISPR arevolutionarygene-editing tool that can quickly and precisely edit DNA to tweak three of the plant's genes, and make them suitable for large-scale urban agriculture for the first time.

With CRISPR, researchers can precisely target and cut any kind of genetic material. Don't want your mushrooms to turn brown after a few days? Remove the gene that causes thatand problem solved.

There's a lot of excitement about the introduction of gene-edited products into the Canadian food system over the next few years, but a lot of trepidation as well.

The food industry's last foray into genetic engineering genetically modified organisms (GMOs) in the 1990s was a financial success. But the practice is an ongoing public relations nightmare, as many Canadians remain wary of products critics have labelled "Frankenfoods."

Currently, the only gene-edited product commercially available is a soybean oil being used by a restaurant chain in the American Midwest for cooking and salad dressings. It has a longer shelf life than other cooking oils and produces less saturated fat and no trans fat.

Ian Affleck, vice-president of plant biotechnology at CropLife Canada, a trade association that represents Canadian manufacturers of pesticides and plant-breeding products, estimates the soybean oil might be in Canada in a year or two, followed by some altered fruits and vegetables.

Even then, he said, supplies will likely be limited while farmers and food companies determine if consumers will embrace genetically edited food.

All the major health organizations in the world, including Health Canada, have concluded that eating GMO foods does not pose eithershort or long-term health risks.

According to the World Health Organization, GMO goods currently approved for the market "have passed safety assessments and are not likely to present risks for human health."

But Canadians remain stubbornly unconvinced even though about 90 per cent of the corn, soybeansand canola grown in Canada is genetically modified, as is almost all of the processed food we consume.

A 2018 pollby market research company Statista found only 37 per cent of people surveyed strongly or somewhat strongly agreed that GMOs were safe to eat, while 34 per cent strongly or somewhat strongly disagreed.

Industry representatives now say they spent too much time marketing their GMOproducts to farmersand not enough time communicating the benefitsto consumers.

"We spoke to two per cent of the population, who are those who farm," said Affleck. "And those who opposed the technology spoke to the other 98 per cent of the population."

"We thought it was just another transition in plant breeding," recalled Stuart Smyth, who holds the University of Saskatchewan's industry-funded research chair in agri-food innovation. "Nobody expected the environmental groups to develop into a political opposition."

With gene-edited foods, Smyth believes the industry needs to focus on public education to counteract what he calls the "propaganda" that will be coming from the other side.

Gene-edited foods will differ from GMOs in one important respect.

When foods are genetically modified, foreign genes are often added to an existing genome. If you want a vegetable to grow better in cold weather, you could add a gene from a fish that lives in icy water.That's what earned GMO products the "Frankenfoods" moniker.

With gene-editing tools like CRISPR, genes can be cut out, or "turned off," but nothing new is added to the genome.

Lucy Sharratt, co-ordinator of the Canadian Biotechnology Action Network, isn't convinced there's a significant difference.

"The new techniques of gene editing are clearly techniques of genetic engineering," she said. "They are all invasive methods of changing a genome directly at the molecular level.

"While we can produce organisms with new traits, that doesn't mean we know exactly all of what we've done to that organism. There can be many unintended effects," Sharratt further argued.

Unlike GMOs, which require extensive regulatory approval before going to market, gene-edited foods will likely appear without undergoing a risk assessment by Canadian regulators.

Health Canada doesn't require safety testing for new products if it determines those products aren't introducing "novel traits" into the food system. Since it considers gene editing to be an extension of traditional plant breeding, no stamp of approval will be necessary.

That concerns Jennifer Kuzma, co-director of the Genetic Engineering and Society Center at North Carolina State University, whothinks gene-edited products should be tracked and monitored "for those low-level health effects that some products might be contributing to."

Sharratt is also skeptical that gene editing will produce the benefits its supporters claim, pointing to "a biotech industry that has oversold technology and made all kinds of broad promises for the use of genetic engineering that didn't come to pass." Things like reduced pesticide use and greater drought resistance, for example.

Kuzma agrees that GMO researchers have sometimes been guilty of "perhaps overstating the promise of the technology and understating potential risk."But she believes those involved in developing gene-editing techniques want to avoid repeating the mistakes of the past.

"They have a really sincere desire to be more open and transparent in the ways that they communicate and in the sharing of information," she said. "They do realize that the first generation of genetic engineering did not go so well from a public confidence perspective."

The GMO food industry has fiercely opposed one of the most obvious methods to boost public confidence: mandatory labelling, even as a 2018 survey from Dalhousie University showed an overwhelming majority of Canadians support it.

Sixty-four countries require mandatory labelling for GMO products. Canada is not one of them.

There are no plans to require mandatory labelling of gene-edited foods, either.

Jonathan Latham, executive director of the Bioscience Resource Project, a New York-based non-profit organization that researches genetic engineering, thinks that's a mistake.

"If you want people to make informed decisions and you want them to make that in a democratic fashion, then the more information you give them, the better," he said. "And so to deny people information about the content of their food is to violate a very basic democratic right."

Lathamalso believes that not labelling genetically engineered productsincreases consumer skepticism.

"[Consumers] don't really understand why, if a company wants to produce a product and advertise it and tell everybody how good it is, why they shouldn't also want to label it," he said.

Sharratt would like to see Canada adopt the approach taken by the European Court of Justice, which ruled in 2018 that gene-edited foods must undergo the same testing as GMOs before being allowed on grocery store shelves.

Lippman doesn't believe that will happen. In fact, he thinks the potential of gene-edited foods is so great that the public will demand even greater access to suchproducts.

"People will start to be educated and see that there's nothing harmful about it. It's completely fine. And then the only issue sticking out there will be whether we're over-promising.That'll be it."

Click 'listen' above to hear Ira Basen's documentary, The Splice of Life.

Visit link:

Gene editing could revolutionize the food industry, but it'll have to fight the PR war GMO foods lost - CBC.ca

The Top Biotech Trends We’ll Be Watching in 2020 – Singularity Hub

Last year left us with this piece of bombshell news: He Jiankui, the mastermind behind the CRISPR babies scandal, has been sentenced to three years in prison for violating Chinese laws on scientific research and medical management. Two of his colleagues also face prison for genetically engineering human embryos that eventually became the worlds first CRISPRd babies.

The story isnt over: at least one other scientist is eagerly following Hes footsteps in creating gene-edited humans, although he stresses that he wont implant any engineered embryos until receiving regulatory approval.

Biotech stories are rarely this dramatic. But as gene editing tools and assisted reproductive technologies increase in safety and precision, were bound to see ever more mind-bending headlines. Add in a dose of deep learning for drug discovery and synthetic biology, and its fair to say were getting closer to reshaping biology from the ground upboth ourselves and other living creatures around us.

Here are two stories in biotech were keeping our eyes on. Although successes likely wont come to fruition this year (sorry), these futuristic projects may be closer to reality than you think.

The idea of human-animal chimeras immediately triggers ethical aversion, but the dream of engineering replacement human organs in other animals is gaining momentum.

There are two main ways to do this. The slightly less ethically-fraught idea is to grow a fleet of pigs with heavily CRISPRd organs to make them more human-like. It sounds crazy, but scientists have already successfully transplanted pig hearts into baboonsa stand-in for people with heart failurewith some recipients living up to 180 days before they were euthanized. Despite having foreign hearts, the baboons were healthy and acted like their normal buoyant selves post-op.

But for cross-species transplantation, or xenotransplants to work in humans, we need to deal with PERVsa group of nasty pig genes scattered across the porcine genome, remnants of ancient viral infections that can tag along and potentially infect unsuspecting human recipients.

Theres plenty of progress here too: back in 2017 scientists at eGenesis, a startup spun off from Dr. George Churchs lab, used CRISPR to make PERV-free pig cells that eventually became PERV-free piglets after cloning. Then last month, eGenesis reported the birth of Pig3.0, the worlds most CRISPRd animal to further increase organ compatibility. These PERV-free genetic wonders had three pig genes that stimulate immunorejection removed, and nine brand new human genes to make themin theorymore compatible with human physiology. When raised to adulthood, pig3.0 could reproduce and pass on their genetic edits.

Although only a first clinical propotype that needs further validation and refinement, eGenesis is hopeful. According to one (perhaps overzealous) estimate, the first pig-to-human xenotranplant clinical trial could come in just two years.

The more ethically-challenged idea is to grow human organs directly inside other animalsin other words, engineer human-animal hybrid embryos and bring them to term. This approach marries two ethically uncomfortable technologies, germline editing and hybrids, into one solution that has many wondering if these engineered animals may somehow receive a dose of humanness by accident during development. What if, for example, human donor cells end up migrating to the hybrid animals brain?

Nevertheless, this year scientists at the University of Tokyo are planning to grow human tissue in rodent and pig embryos and transplant those hybrids into surrogates for further development. For now, bringing the embryos to term is completely out of the question. But the line between humans and other animals will only be further blurred in 2020, and scientists have begun debating a new label, substantially human, for living organisms that are mainly human in characteristicsbut not completely so.

With over 800 gene therapy trials in the running and several in mature stages, well likely see a leap in new gene medicine approvals and growth in CAR-T spheres. For now, although transformative, the three approved gene therapies have had lackluster market results, spurring some to ponder whether companies may cut down on investment.

The research community, however, is going strong, with a curious bifurcating trend emerging. Let me explain.

Genetic medicine, a grab-bag term for treatments that directly change genes or their expression, is usually an off-the-shelf solution. Cell therapies, such as the blood cancer breakthrough CAR-T, are extremely personalized in that a patients own immune cells are genetically enhanced. But the true power of genetic medicine lies in its potential for hyper-personalization, especially when it comes to rare genetic disorders. In contrast, CAR-Ts broader success may eventually rely on its ability to become one-size-fits-all.

One example of hyper-tailored gene medicine success is the harrowing story of Mila, a six-year-old with Batten disease, a neurodegenerative genetic disorder that is always fatal and was previously untreatable. Thanks to remarkable efforts from multiple teams, however, in just over a year scientists developed a new experimental therapy tailored to her unique genetic mutation. Since receiving the drug, Milas condition improved significantly.

Milas case is a proof-of-concept of the power of N=1 genetic medicine. Its unclear whether other children also carry her particular mutationBatten has more than a dozen different variants, each stemming from different genetic miscodingor if anyone else would ever benefit from the treatment.

For now, monumental costs and other necessary resources make it impossible to pull off similar feats for a broader population. This is a shame, because inherited diseases rarely have a single genetic cause. But costs for genome mapping and DNA synthesis are rapidly declining. Were starting to better understand how mutations lead to varied disorders. And with multiple gene medicines, such as antisense oligonucleotides (ASOs) finally making a comeback after 40 years, its not hard to envision a new era of hyper-personalized genetic treatments, especially for rare diseases.

In contrast, the path forward for CAR-T is to strip its personalization. Both FDA-approved CAR-T therapies require doctors to collect a patients own immune T cells, preserved and shipped to a manufacturer, genetically engineered to boost their cancer-hunting abilities, and infused back into patients. Each cycle is a race against the cancer clock, requiring about three to four weeks to manufacture. Shipping and labor costs further drive up the treatments price tag to hundreds of thousands of dollars per treatment.

These considerable problems have pushed scientists to actively research off-the-shelf CAR-T therapies, which can be made from healthy donor cells in giant batches and cryopreserved. The main stumbling block is immunorejection: engineered cells from donors can cause life-threatening immune problems, or be completely eliminated by the cancer patients immune system and lose efficacy.

The good news? Promising results are coming soon. One idea is to use T cells from umbilical cord blood, which are less likely to generate an immune response. Another is to engineer T cells from induced pluripotent stem cells (iPSC)mature cells returned back to a young, stem-like state. A patients skin cells, for example, could be made into iPSCs that constantly renew themselves, and only pushed to develop into cancer-fighting T cells when needed.

Yet another idea is to use gene editing to delete proteins on T cells that can trigger an immune responsethe first clinical trials with this approach are already underway. With at least nine different off-the-shelf CAR-T in early human trials, well likely see movement in industrialized CAR-T this year.

Theres lots of other stories in biotech we here at Singularity Hub are watching. For example, the use of AI in drug discovery, after years of hype, may finally meet its reckoning. That is, can the technology actually speed up the arduous process of finding new drug targets or the design of new drugs?

Another potentially game-changing story is that of Biogens Alzheimers drug candidate, which reported contradicting results last year but was still submitted to the FDA. If approved, itll be the first drug to slow cognitive decline in a decade. And of course, theres always the potential for another mind-breaking technological leap (or stumble?) thats hard to predict.

In other words: we cant wait to bring you new stories from biotechs cutting edge in 2020.

Image Credit: Image by Konstantin Kolosov from Pixabay

Read the rest here:

The Top Biotech Trends We'll Be Watching in 2020 - Singularity Hub

This Week’s Awesome Tech Stories From Around the Web (Through January 11) – Singularity Hub

ARTIFICIAL INTELLIGENCE

Can an AI Be an Inventor? Not Yet.Angela Chen | MIT Technology Review[Ryan Abbott] believes there will be more and more cases where AI should be considered a genuine inventor and that the law needs to be ready. At stake in this discussion is the future of innovation, he says. Not allowing AI be recognized as an inventor is not only morally problematic, he says, but will lead to unintended consequences.

The Superpowers of Super-Thin MaterialsAmos Zeeberg | The New York TimesAs researchers like [Toms Palacios] see it, two-dimensional materials will be the linchpin of the internet of everything. They will be painted on bridges and form the sensors to watch for strain and cracks. They will cover windows with transparent layers that become visible only when information is displayed. Increasingly, the future looks flat.

Panasonics VR Glasses Support HDR and Look Pretty SteampunkSam Byford | The VergeThe problem with VR headsets is that they still all look like VR headsetsglorified ski goggles that shut you off from the world. my main takeaway from the demo was that hey, turns out its possible to make VR glasses that are both better qualityand with a better form factor.

Why the Quantum Internet Should Be Built in SpaceEmerging Technology From the arXiv | MIT Technology Review[Sumeet Khatri and colleagues have] studied the various ways a quantum internet could be built and say the most cost-effective approach is to create a constellation of quantum-enabled satellites capable of continuously broadcasting entangled photons to the ground. In other words, the quantum internet should be space-based.

The Gene Drive Dilemma: We Can Alter Entire Species, but Should We?Jennifer Kahn | The New York Times MagazineA new genetic engineering technology could help eliminate malaria and stave off extinctionsif humanity decides to unleash it.

Bots Are Destroying Political Discourse as We Know ItBruce Schneier | The AtlanticSoon, AI-driven personas will be able to write personalized letters to newspapers and elected officials, submit individual comments to public rule-making processes, and intelligently debate political issues on social media. They will be replicated in the millions and engage on the issues around the clock, sending billions of messages, long and short. Putting all this together, theyll be able to drown out any actual debate on the internet.

Image Credit: Karlis Reimanis /Unsplash

Read the original:

This Week's Awesome Tech Stories From Around the Web (Through January 11) - Singularity Hub

Bayer and Azitra partner to harness the human skin microbiome as a source for new natural skin care products for sensitive and eczema-prone skin |…

DetailsCategory: More NewsPublished on Sunday, 12 January 2020 11:23Hits: 327

LEVERKUSEN, Germany & FARMINGTON, CT, USA I January 10, 2020 I Bayer and Azitra Inc., a clinical-stage medical dermatology biotech company, today announced a joint development agreement to collaborate in the identification and characterization of skin microbiome bacteria. The partnership will leverage Azitras proprietary panel of Staphylococcus epidermidis strains to identify potential candidates for the treatment of adverse skin conditions and diseases. Based on the results of the research partnership, Bayer plans to develop selected Staphylococcus epidermidis strains into new natural skin care products under a future License Agreement. Prospective areas of application include medicated skin care products for sensitive, eczema-prone skin as well as therapeutic products for skin diseases such as atopic dermatitis.

Recent scientific publications suggest that microorganisms such as bacteria and especially skin-friendly bacteria, commonly referred to as skin microbiome, can significantly contribute to the protection of the skin from hostile invasions. Additional positive effects include supporting the recovery from skin diseases such as atopic dermatitis, acne, and rosacea, and may also accelerate wound healing.

The skin microbiome offers a promising platform for the development and commercialization of natural skin care products more and more people are looking for. As Bayer is committed to the development of science-based consumer health products through our own research as well as external partnerships, were delighted to collaborate with Azitra. The company has already demonstrated tolerability of a selected Staphylococcus epidermidis strain in healthy volunteers and is now planning to start the clinical demonstration of efficacy, Heiko Schipper, Member of the Board of Management of Bayer AG and President of Bayer Consumer Health, comments on the new partnership.

Bayer, a global leader in innovative and trusted skincare solutions, will actively contribute to the research collaboration by providing suitable topical formulations that are able to maintain Staphylococcus epidermidis viability while showing excellent skin compatibility and sensorial performance.

"We are strongly committed to the potential of the microbiome to provide significant benefits for improved skin health and appearance and by working together with Bayer I am confident we can deliver on the promise of this technology," states Richard Andrews, President and CEO of Azitra.

Azitras versatile platform technology offers further screening options for beneficial strains appropriate for the treatment of dermatological diseases such as atopic dermatitis, acne or psoriasis. In addition, Bayer will review the use of Azitras genetically modified bacteria in Dermatology and other Consumer Health areas such as Nutritionals and Digestive Health.

About Azitra

Azitra, Inc. is a clinical-stage medical dermatology company that combines the power of the microbiome with cutting-edge genetic engineering to treat skin disease. The company was founded in 2014 by scientists from Yale University and works with world-leading scientists in dermatology, microbiology, and genetic engineering to advance its pharmaceutical programs to treat cancer therapy associated skin rashes, targeted orphan indications and atopic dermatitis. Learn more at http://www.azitrainc.com

About Bayer

Bayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to benefit people by supporting efforts to overcome the major challenges presented by a growing and aging global population. At the same time, the Group aims to increase its earning power and create value through innovation and growth. Bayer is committed to the principles of sustainable development, and the Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2018, the Group employed around 117,000 people and had sales of 39.6 billion euros. Capital expenditures amounted to 2.6 billion euros, R&D expenses to 5.2 billion euros. For more information, go to http://www.bayer.com.

SOURCE: Bayer

Originally posted here:

Bayer and Azitra partner to harness the human skin microbiome as a source for new natural skin care products for sensitive and eczema-prone skin |...

Genetically engineered poplar trees slash air pollution in 3-year field trial – Genetic Literacy Project

Field trials in the Northwest and Southwest show that poplar trees can be genetically modified to reduce negative impacts on air quality while leaving their growth potential virtually unchanged, says an Oregon State University researcher who collaborated on the study.

The findings, published . in the Proceedings of the National Academy of Sciences, are important because poplar plantations cover 9.4 million hectares globally more than double the land used 15 years ago. Poplars are fast-growing trees that are a source of biofuel and other products including paper, pallets, plywood and furniture frames.

A drawback of poplar plantations is that the trees are also a major producer of isoprene, the key component of natural rubber and a pre-pollutant.

Increases in isoprene negatively affect regional air quality and also unbalance the global energy budget by leading to higher levels of atmospheric aerosol production, more ozone in the air and longer methane life. Ozone and methane are greenhouse gases, and ozone is also a respiratory irritant.

Poplar and other trees including oak, eucalyptus and conifers produce isoprene in their leaves in response to climate stress such as high temperatures.

A research collaboration led by scientists at the University of Arizona, the Institute of Biochemical Plant Pathology in Germany, Portland State University and OSU genetically modified poplars not to produce isoprene, then tested them in three-year trials at plantations in Oregon and Arizona.

They found that trees whose isoprene production was genetically suppressed did not suffer any ill effects in terms of photosynthesis or biomass production they were able to make fuel and grow as well as trees that were producing isoprene.

Steve Strauss, distinguished professor of forest biotechnology in the OSU College of Forestry, said there are a couple of possible explanations for the findings.

One is that, without the ability to produce isoprene, the modified poplars appear to be making compensatory protective compounds.

Another is that most of the trees growth takes place during cooler times of the year, so heat stress, which triggers isoprene production, likely has little effect on photosynthesis at that time.

Our findings suggest that isoprene emissions can be diminished without affecting biomass production in temperate forest plantations, Strauss said. Thats what we wanted to examine can you turn down isoprene production, and does it matter to biomass productivity and general plant health? It looks like it doesnt impair either significantly. In Arizona, where its super hot, if isoprene mattered to productivity, it would show up in a striking way, but it did not. Plants are smart theyll compensate and do something different if they need to.

In this study, scientists used a genetic engineering tool known as RNA interference. RNA, ribonucleic acid, transmits protein coding instructions from each cells DNA, deoxyribonucleic acid, which holds the organisms genetic code.

RNA interference is like a vaccination it triggers a natural and highly specific mechanism whereby specific targets are suppressed, be they the RNA of viruses or endogenous genes, Strauss said. You can also do this with CRISPR at the DNA level, and it usually works even better.

CRISPR, short for clustered regularly interspaced short palindromic repeats, targets specific stretches of genetic code for DNA editing at exact locations.

You could also do the same thing through conventional breeding, Strauss said. It would be a lot less efficient and precise, and it might be a nightmare for breeders who may need to reassess all of their germplasm and possibly exclude their most productive cultivars as a result, but it could be done.

Corresponding author Russ Monson of the University of Arizona said the study lays the groundwork for future isoprene research, including in different growing environments.

The fact that cultivars of poplar can be produced in a way that ameliorates atmospheric impacts without significantly reducing biomass production gives us a lot of optimism, Monson said. Were striving toward greater environmental sustainability while developing plantation scale biomass sources that can serve as fossil fuel alternatives. We also need to keep working toward solutions to the current regulatory and market roadblocks that make large-scale research and commercial uses for genetically engineered trees difficult.

Sustainable forest management systems and their certifying bodies operate under the assumption that genetically modified equates to dangerous, Strauss said.

If something is GMO, its guilty until proven safe in the minds of many and in our regulations today, he said. These technologies are new tools that require scientific research to evaluate and refine them on a case-by-case basis. We have a huge need for expanded production of sustainable and renewable forest products and ecological services, and biotechnologies can help meet that need.

Original article: Poplars genetically modified not to harm air quality grow as well as non-modified trees

Go here to read the rest:

Genetically engineered poplar trees slash air pollution in 3-year field trial - Genetic Literacy Project

Rural broadband and regenerative ag make waves in subcommittee hearing | 2020-01-09 – Agri-Pulse

Agricultural practices have the potential to address climate change by sequestering carbon,witnesses told a Housesubcommittee Thursday at a hearing focused on regenerative agriculture and ag technology.

David Potere, head of GeoInnovation at Indigo Agriculture,outlinedhow his company is creating a new market for a different type of crop: carbon. The company, which was founded in 2014, has begun an initiative to sequester 1 trillion tons of atmospheric carbon dioxide in farmland around the world, and through Indigo Carbon is offering farmers the opportunity to get paid for increasing the carbon content of their soil.

Bringing farmers into the solution can be a definitive part of the solution for climate change because of the potential of ag soils to absorb carbon, Potere told members of the House Innovation and Workforce Development Subcommittee.

Potere pointed totheEnergy Improvement and Extension Act of 2008, which contains a provision allowing oil companies to receive a tax incentive for carbon sequestration when they pull oil out of the ground. The way the act is currently written, farmers don't get the same incentive.

If there is broad bipartisan support for federal policy that incentivizes corporate, industrial and energy producers to sequester carbon, why cant the same support be there when farmers try and do the same?Potere said.

When asked about other ways growers can employ ag technology to make their farms more sustainable, witnesses offered a variety of suggestions.

Roberto Meza, co-founder of Emerald Gardens Microgreens in Bennett, Colo., touted the importance of channeling funding into regenerative agriculture practices to help develop innovative models for producing food.

Interested in more climate changecoverage and insights? Receive a free month of Agri-Pulse or Agri-Pulse West by clickinghere.

Kevin France, president and CEO of SWIIM Systems in Denver,said instead of asking the government to create somethingnew, it should make programssuch as the Environmental Quality Incentives Program more accessible to farmers.

Douglas Jackson-Smith, professor and assistant director of the school of environment and natural resources at Ohio State University, brought up the missed opportunity and regulatory hurdles surroundinggenetic engineering. He said there are many technologies that could benefit farmers and consumers but havent hadthe opportunity to enter the marketplace because of the current regulatory process set in place on genetic engineering.

Witnesses and members of Congress also used the occasion to call for improved rural connectivity. Subcommittee chairman Jason Crow, D-Colo., called connectivitythe backbone of ag tech," noting the ability ofbroadband to makeit possible for farmers to aggregate and analyze data in real time. He emphasized the need forgreater deployment of high-speed internet in rural communities to help ag technology thrive.

Potere commented on the impact rural broadband access has had on his company, sayingIndigo has had tobuildmobile technology that is resilient to the lack of internet connectivity. Creating this technology for farmers has required Indigo to increase itsdevelopment cost, something Potere said puts unnecessary financialpressure on the company, especiallywhen a simple solution such as rural broadband already exists.Farmers, he said, just lack access to it.

For more news, go to http://www.Agri-Pulse.com.

Excerpt from:

Rural broadband and regenerative ag make waves in subcommittee hearing | 2020-01-09 - Agri-Pulse

Bayer and Azitra Partner to Harness the Human Skin Microbiome as a Source for New Natural Skin Care Products for Sensitive and Eczema-Prone Skin -…

LEVERKUSEN, Germany & FARMINGTON, Conn.--(BUSINESS WIRE)--Bayer and Azitra Inc., a clinical-stage medical dermatology biotech company, today announced a joint development agreement to collaborate in the identification and characterization of skin microbiome bacteria. The partnership will leverage Azitras proprietary panel of Staphylococcus epidermidis strains to identify potential candidates for the treatment of adverse skin conditions and diseases. Based on the results of the research partnership, Bayer plans to develop selected Staphylococcus epidermidis strains into new natural skin care products under a future License Agreement. Prospective areas of application include medicated skin care products for sensitive, eczema-prone skin as well as therapeutic products for skin diseases such as atopic dermatitis.

Recent scientific publications suggest that microorganisms such as bacteria and especially skin-friendly bacteria, commonly referred to as skin microbiome, can significantly contribute to the protection of the skin from hostile invasions. Additional positive effects include supporting the recovery from skin diseases such as atopic dermatitis, acne, and rosacea, and may also accelerate wound healing.

The skin microbiome offers a promising platform for the development and commercialization of natural skin care products more and more people are looking for. As Bayer is committed to the development of science-based consumer health products through our own research as well as external partnerships, were delighted to collaborate with Azitra. The company has already demonstrated tolerability of a selected Staphylococcus epidermidis strain in healthy volunteers and is now planning to start the clinical demonstration of efficacy, Heiko Schipper, Member of the Board of Management of Bayer AG and President of Bayer Consumer Health, comments on the new partnership.

Bayer, a global leader in innovative and trusted skincare solutions, will actively contribute to the research collaboration by providing suitable topical formulations that are able to maintain Staphylococcus epidermidis viability while showing excellent skin compatibility and sensorial performance.

"We are strongly committed to the potential of the microbiome to provide significant benefits for improved skin health and appearance and by working together with Bayer I am confident we can deliver on the promise of this technology," states Richard Andrews, President and CEO of Azitra.

Azitras versatile platform technology offers further screening options for beneficial strains appropriate for the treatment of dermatological diseases such as atopic dermatitis, acne or psoriasis. In addition, Bayer will review the use of Azitras genetically modified bacteria in Dermatology and other Consumer Health areas such as Nutritionals and Digestive Health.

About Azitra

Azitra, Inc. is a clinical-stage medical dermatology company that combines the power of the microbiome with cutting-edge genetic engineering to treat skin disease. The company was founded in 2014 by scientists from Yale University and works with world-leading scientists in dermatology, microbiology, and genetic engineering to advance its pharmaceutical programs to treat cancer therapy associated skin rashes, targeted orphan indications and atopic dermatitis.Learn more at http://www.azitrainc.com

About Bayer

Bayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to benefit people by supporting efforts to overcome the major challenges presented by a growing and aging global population. At the same time, the Group aims to increase its earning power and create value through innovation and growth. Bayer is committed to the principles of sustainable development, and the Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2018, the Group employed around 117,000 people and had sales of 39.6 billion euros. Capital expenditures amounted to 2.6 billion euros, R&D expenses to 5.2 billion euros. For more information, go to http://www.bayer.com.

Forward-Looking Statements

This release may contain forward-looking statements based on current assumptions and forecasts made by Bayer management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayers public reports which are available on the Bayer website at http://www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

Read the original here:

Bayer and Azitra Partner to Harness the Human Skin Microbiome as a Source for New Natural Skin Care Products for Sensitive and Eczema-Prone Skin -...

Acepodia Announces FDA Clearance of IND for its NK Cell Therapy Drug Candidate ACE1702 to Treat Patients with HER2-expressing Solid Tumors |…

DetailsCategory: AntibodiesPublished on Thursday, 09 January 2020 19:01Hits: 759

ACE1702 is a potential off-the-shelf cell therapy developed using Acepodias Antibody-Cell Conjugation technology

SAN FRANCISCO, CA, USA and TAIPEI, Taiwan I January 09, 2020 I Acepodia, a biotechnology company developing cancer immunotherapy based on its novel ACC (Antibody Cell-Conjugation) technology platform, today announced it has received clearance of its Investigational New Drug (IND) application from the US Food and Drug Administration (FDA) to initiate a Phase 1 clinical study of its natural killer (NK) cell therapy and lead drug candidate ACE1702 in patients with HER2-expressing solid tumors.

The FDAs clearance of our IND for ACE1702 is a major milestone for Acepodia that represents an important initial validation of our ACC platform, which can link any antibody, including those that have already proven effective in targeting tumors, to proprietary off-the-shelf natural killer cell line (oNK cells) without the need for genetic engineering, said Sonny Hsiao, Ph.D., chief executive officer of Acepodia, and the inventor of ACC while at University of California, Berkeley. This novel approach allows us to circumvent the complexity and the limitations associated with CAR-T and traditional NK based cell therapies. ACC significantly improves manufacturing costs and has the potential to generate a cost-effective cancer treatment that can deliver increased benefit to patients. We look forward to advancing ACE1702 into its first clinical trial.

About ACE1702ACE1702 is Acepodias lead clinical product candidate developed from the Companys proprietary ACC platform. It targets human HER2-expressing solidtumors using anti-HER2 antibody conjugated oNK cells. ACE1702 has demonstrated enhanced tumor cellkilling activities both in vitro and in vivo, while maintaining a favorable safety profile in GLPtoxicology studies. In preclinical studies, ACE1702 has shown enhanced tumor-killing activities against HER2 IHC 1+, 2+ and 3+ human cancer cells.

About Acepodia Acepodia is a privately held US-Taiwan biotechnology company committed to developing safe, effective, and affordable immunotherapeutic medicines targeting diseases with significant unmet medical needs, with a primary focus on oncology. Acepodias proprietary ACC (Antibody Cell-Conjugation) technology platform links tumor targeting antibodies to the surface of a novel and proprietary human NK cell line that have been specifically selected for their potent antitumor activity. The ACC technology can be seamlessly combined with currently available antibodies allowing for the rapid development of new targeted therapies in multiple indications, without the need for genetic engineering.

SOURCE: Acepodia

Read the original:

Acepodia Announces FDA Clearance of IND for its NK Cell Therapy Drug Candidate ACE1702 to Treat Patients with HER2-expressing Solid Tumors |...

Office of Technology Assessment: It’s time for a second coming | TheHill – The Hill

Congress must deal with a growing number of issues that new technological developments are forcing on the nation. I deliberately write forcing because the way technology works, no one asks the nation or its elected representatives if we need or want a given new technology. Any investor or engineer, these days more often a startup group or a tech corporation, can make the nation adapt to whatever they concoct.

For instance, a small group of young hotshot engineers is perfecting deep fake, a technology that enables one to make a video that will seem to be a very authentic presentation by a well-known politician, only it is completely made up. To consider the implications of this new gift to mankind, imagine that a day before the election, a candidate states that she has changed her mind and now favors something that will completely antagonize her base. By the time denials are issued and the truth comes out, the election may well be lost.

All of this does not point to the need for some licensing board to which technologists will have to apply before they can proceed but to a growing and urgent need for the nation to have the capacity to learn about new technological developments as early as possible, and prepare to deal with the consequences. And, possibly, in some rare cases well need to impose some restrictions on these developments.

Individual members of Congress and their staffs often do not have the resources, time or sufficient technical backgrounds to carry out such assessments. Hence the merit of recent moves to reestablish an Office of Technology Assessment (OTA) to play a major role in preparing technological assessments for Congress.

Last April Rep. Tim RyanTimothy (Tim) RyanOffice of Technology Assessment: It's time for a second coming Key moments in the 2020 Democratic presidential race so far GM among partners planning .3B battery plant in Ohio MORE (D-Ohio) included funding for OTA in a 2020 spending bill. But when the matter was discussed during a hearing of the House Committee on Science, Space and Technology in December, only a few members seemed to favor a full revival of the OTA.

The value of the defunct OTA is captured in an op-ed by Celia Wexler, the senior Washington representative at the Center for Science and Democracy. Wexler wrote:

The information they provided was used to make smart and applicable policy decisions. A 1984 study questioning the reliability of polygraph tests led Congress to enact limits on their use by employers. Another report from 1994 helped lawmakers assess the Social Security Administrations computer procurement plan, and ended up saving the government $368 million. OTA reports in 1987 and 1990, which concluded that Pap smears and mammograms for older women could save thousands of lives, were instrumental in extending Medicare reimbursement for these tests.

In 1972, Congress created the Office of Technology Assessment (OTA) to counsel senators and members of the House of Representatives on topics related to science and technology. Its ambitious goal was to give Congress technical expertise equal to that available to the executive branch through its many departments and agencies. The OTA board included representatives of both political parties and houses of Congress.

For over 20 years it produced approximately 750 reports dealing with issues raised by new technologies.

Congress defunded the OTA in 1995, keeping a promise that Rep. Newt GingrichNewton (Newt) Leroy GingrichMORE (R-Ga.) made during the successful Republican election campaign in 1994. Rep. Robert S. Walker (R-Pa.), who chaired the House Science Committee, disapproved of the OTA, argued that the pieces of legislation its reports were meant to inform often had to proceed without them due to the amount of time it took the OTA to produce a report.

The director of the agency acknowledged that it did not always finish reports in time to inform legislation. But he noted that agency researchers had testified about their work in progress at hearings and prepared less lengthy interim reports, when requested.

No single reason was given for the closing of the OTA. But some Republican lawmakers came to view it as duplicative, wasteful and biased against their party.

Another factor in the demise of OTA were, oddly, its neutrality. A former head of the OTA, Dr. John H. Gibbons, put it this way: If you belong to everyone, you belong to no one.

Another complaint was the dearth of public participation. Jathan Sadowski of the Consortium for Science, Policy & Outcomes at Arizona State University explained that [i]t did not adequately collect and examine the perspectives of a wider citizenryby, say, changing up their advisory panels or through methods like opinion polling and consensus conferences.

A major reason why the OTA must be revived is the accelerating pace of technological innovation, including in countries such as China. To illustrate, we need to assess the effect of AI (whether advanced in the U.S., China, Israel or elsewhere) on the destruction of jobs; the safety of driverless autos; the morality of the use of CRISPR for genetic engineering; facial recognition as a public safety tool; the impact of social media on democracy and society; and much more.

There seems to be ample work for at least one OTA. But it may well need to draw on the help of other organizations, such as the National Academy of Sciences, the NSF and DARPA.

Amitai Etzioni is a university professor and professor of international affairs at The George Washington University. Click here to watch a recent, four-minute video Political and Social Life after Trump. His latest book, Reclaiming Patriotism, was published by University of Virginia Press in 2019 and is available for download without charge.

See the original post:

Office of Technology Assessment: It's time for a second coming | TheHill - The Hill

With $110M to add to the bankroll, Generation Bio sets its sights on engineering a revolution in the gene therapy field – Endpoints News

Whoever comes out on top of the current race to gain pioneering approvals for new AAV-delivered gene therapies will have to look over their shoulders to watch the next tech wave forming on the horizon for gene therapy 2.0.

One of those next-gen players, Generation Bio, just brought in $110 million of venture cash to cover the cost of the rest of their preclinical journey toward something completely new in the field. The latest round brings the biotech which now has about 80 staffers up to $235 million in total since its inception about 3 years ago. That will fuel the rest of its preclinical stage of development as it looks to break into human studies in the back half of 2021.

That kind of 4-plus year timeline before the first human dosing could test the endurance level of a venture player. But Generation CEO Geoff McDonough looks over the past 2 years advancing a new lipid nanoparticle delivery system for their closed-end DNA therapies working to the day when gene therapies can be produced and sold for far less than the $2 million-or-so price tag today and sees lots of fast-paced advances.

I think the reality is we didnt have an expectation at the outset (on timelines), McDonough tells me. Recognizing the novel work needed to build the platform, the investors knew it would take time and money to bring them up to a GMP level.

I would say for a 40-year problem, adds the CEO, 2 years seems pretty good.

The founding tech at Generation was designed to do what AAV treatments do in the nucleus, offering enduring expression, while allowing manufacturing at a biologic scale with a more economical, capsid-free production method. Taking a page from the tech handbooks at companies like Alnylam and Moderna, theyre building a gene therapy that they believe can do much better than the fragile, one-time-only pioneers. And without the $1 million production cost that keeps wholesale prices in the low 7-figure range.

Theyre looking for much greater economy, eventually taking these therapies to much broader ailments and out of the realm of rare diseases with a new approach that they believe can be infinitely redosable on an as-needed basis.

Thats the big picture.

Generations team is working on 2 lead programs for hemophilia A and phenylketonuria (PKU) to go into IND-enabling studies. Theyve now identified Wilson disease and Gaucher disease as likely starting points for the next steps as they move past the liver to skeletal muscle and the retina and then other tissues. And McDonough the former CEO at Sobi is looking down the road 12 to 18 months when hed like to turn to the public markets with an IPO to fund the first clinical-stage work.

In the meantime, hed like to concentrate on opening another new chapter of the company on the dealmaking side.

It felt very important not to partner initially, says McDonough. The investors wanted to retain ownership of platform. We just had tremendous good fortune we didnt need to do that for finance reasons. But now that they have a better grasp of the technology and what needs to be done, its time to partner probably later in the year.

T. Rowe Price funds and accounts led the round, with Farallon and Wellington Management Company jumping in alongside. Existing investors Atlas Venture, Fidelity, Invus, Casdin, Deerfield, Foresite Capital and an entity associated with SVB Leerink came back to stay in the syndicate. Cowen served as exclusive placement agent for the offering.

Read the original post:

With $110M to add to the bankroll, Generation Bio sets its sights on engineering a revolution in the gene therapy field - Endpoints News

SAB Biotherapeutics Announces Research Collaboration With CSL Behring – Yahoo Finance

SAB Biotherapeutics (SAB), a clinical-stage biopharmaceutical development company advancing a new class of immunotherapies, today announced that it has entered into multiple collaboration and option agreements with global biotherapeutics leader CSL Behring. The collaborations will explore the possibility and the potential of new therapies to treat challenging autoimmune, infectious and idiopathic diseases by leveraging SABs DiversitAb platform.

SAB has developed a unique platform, through advanced genetic engineering, to naturally and rapidly produce large amounts of human antibodies without using human donors.

The agreement includes a research program which will investigate a potential new source for human immunoglobulin G (IgG). Human IgG is currently used for a number of immunological and neurological diseases including Primary Immunodeficiency, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Guillain-Barre Syndrome (GBS), Immune Thrombocytopenic Purpura (ITP), and Multifocal Motor Neuropathy (MMN).

CSL Behring is a leader in the global immunoglobulins market, which has grown substantially over the last five years. Key factors fueling market growth include an aging population, increased emphasis on the diagnosis and treatment of immune diseases, and its increased use in new indications.

"SAB Biotherapeutics has developed a very interesting and novel platform for the production of human immunoglobulins," said Dr. Andrew Nash, Senior Vice President, Research for CSL Behring. "CSL Behring is committed to the continuous development of innovative therapies that address unmet needs for patients with rare and serious diseases. This collaboration will provide both companies an opportunity to explore the potential of these new approaches to positively impact areas of need."

CSL Behrings R&D footprint includes more than 1,700 scientists across the globe with an R&D investment exceeding $800 million in 2018 - 2019.

"We are excited that CSL Behring has chosen to work with SAB Biotherapeutics to explore new immunotherapies leveraging our technology platform," said Dr. Eddie J. Sullivan, president, CEO and co-founder of SAB Biotherapeutics. "We believe combining our unique human antibody development and production capabilities with CSL Behrings established immunoglobulin franchise and vast expertise in biopharmaceutical development will broaden therapeutic possibilities."

CSL Behring and SAB will share research program and related costs and plan to complete the initial phase in 2020. The collaboration may lead to subsequent development and commercialization agreements.

About SAB Biotherapeutics, Inc.

SAB Biotherapeutics, Inc. (SAB), headquartered in Sioux Falls, S.D. is a clinical-stage, biopharmaceutical development company advancing a new class of immunotherapies leveraging fully human polyclonal antibodies. Utilizing some of the most complex genetic engineering and antibody science in the world, SAB has developed the only platform that can rapidly produce natural, highly targeted, high-potency, immunotherapies at commercial scale. The company is advancing programs in autoimmunity, infectious diseases, inflammation and exploratory oncology.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200107005718/en/

Contacts

Melissa Ullerichmullerich@sabbiotherapeutics.com +1 605.679.4609

More here:

SAB Biotherapeutics Announces Research Collaboration With CSL Behring - Yahoo Finance

Carolyn Cushman Reviews Laughter at the Academy by Seanan McGuire and Sorcery of Thorns by Margaret Rogerson – Locus Online

Seanan McGuire, Laughter at the Academy (Subterranean Press 978-1-59606-928-2, $40.00, 374pp, hc) October 2019. Cover by Carla Speed McNeil.

McGuires introduction calls this her first single-author short story collection, which isnt exactly true, but it is her first collection of non-series stories, 22 of them, all originally published from 2009-2017. The bulk of them are dark tales; she has a tendency to pick one creepy idea and then push it to extremes. Many of the story introductions include trigger warnings, ranging from unapologetic to outright boasting. Most symptomatic, perhaps, is The Tolling of Pavlovs Bells which Contains a remarkably high death toll, even for me, and detailed discussion of disease progression. The story, about a mad doctor determined to teach the world a lesson about not taking the risk of plagues seriously, is truly scary yet amusingly over-the-top germophobes and hypochondriacs beware. The title story also plays with mad science, though with a twist. McGuire likes twisting things like tropes, urban legends, and familiar stories; two look at the legend of Peter Pan, while one of my favorite stories, Emeralds to Emeralds, mixes elements of film noir and Oz, with Dorothy a bitter witch investigating a murder in an Oz where the arrival of too many visitors from Earth has caused the natives of Oz to turn against them. We Are All Misfit Toys is a near-future horror story of what happens when AI toys become too attached to their children. Plague and mad science, AI, genetic engineering, ghosts, Lovecraftian beingstheres a lot of variety here, and not a little humor, but the dark thread is what sticks with you. There are so many ways to envision the end; even a fish story, Threnody for Little Girl, With Tuna, At the End of the World, that had me tearing up. Just a little.

Margaret Rogerson, Sorcery of Thorns (McElderry 978-1-4814-9761-9, $17.99, 453pp, hc) June 2019. Cover by Charlie Bowater.

Libraries and books come alive in this young-adult fantasy about an orphan raised to protect books of spells from the demon-wielding sorcerers who would misuse them. Elisabeth Scrivener, an apprentice librarian in the Great Library of Summershall, dreams of becoming one of the magic-fighting wardens, but things start going wrong. The librarys Director is killed, and a grimoire gets loose and turns into an evil Malefict and has to be destroyed. Elisabeth, who managed to stop the Malefict, is accused of the crime, and carted off to the capital by the powerful sorcerer Nathaniel Thorn who, it turns out, is only 18, and not pure evil as Elisabeth had been raised to expect. Even his demon, Silas, turns out to be less terrifying than punctilious, at least most of the time. Someone is out to stop Elisabeth from telling the truth, and she ends up fighting for her life, facing a high society she doesnt understand, escaping an appalling hospital for disturbed females, and ultimately works to save the world from a sorcerer backed by an ancient conspiracy. With Nathaniels help, she ultimately succeeds, but at a cost. The fantastic battles and magical encounters are nearly non-stop, leavened by Elisabeth and Nathaniels rocky relationship, which is beset by all sorts of absurd misconceptions that both have to get past if they are to work together. The humor and touches of romance make a charming counterpoint to the grim magics they face. Add books that want to join in the fighting and libraries that can choose whom to help, statues that come alive, and otherworldly encounters, and its a wonderfully dramatic and colorfully weird fantasy with a special appeal for book lovers.

Carolyn F. Cushman, Senior Editor, has worked for Locus since 1985, the longest of any of the current staff, and handles our in-house books database, writes our New and Notable section, and does the monthly Books Received column. She is a graduate of Western Washington University with a degree in English. She published a fantasy novel, Witch and Wombat, in 1994.

This review and more like it in the November 2019 issue of Locus.

While you are here, please take a moment to support Locus with a one-time or recurring donation. We rely on reader donations to keep the magazine and site going, and would like to keep the site paywall free, but WE NEED YOUR FINANCIAL SUPPORT to continue quality coverage of the science fiction and fantasy field.

Link:

Carolyn Cushman Reviews Laughter at the Academy by Seanan McGuire and Sorcery of Thorns by Margaret Rogerson - Locus Online


12345...102030...