12345...10...


10 technology trends that could prove to be real game-changers – Mint

Smarter algorithms and machine language: AI has been the driving force for most products, applications and even devices that we use today. On 22 November, Gartner predicted that the total revenue in the AI software market is expected to hit $62.5 billion in 2022, an increase of 21.3% from 2021. The AI software market is picking up speed, but its long-term trajectory will depend on enterprises advancing their AI maturity," said Alys Woodward, senior research director at Gartner.

AI deployment in 2022 will be in knowledge management, virtual assistants, autonomous vehicles, digital workplaces and crowdsourced data, Gartner said. In addition, companies like Google are developing newer language learning models like LaMDALanguage Model for Dialogue Applicationswhich, the company claims, can hold their own in natural conversations.

Faster networks with bigger bandwidth: 5G has been in the works for what seems like years now, but 2022 may finally be the year we see these next-generation networks rolling out. India has already approved trial spectrum for telcos such as Bharti Airtel and Reliance Jio. The 5G spectrum auctions are expected in the first half of next year. 5G networks will start rolling out to the public next year if all goes well. In short, 5G means lower latency, which is what users perceive as speed. The new networks will allow new use cases for enterprises, enable smart city implementations and more.

Intelligent cloud and edge computing: The new use cases with 5G networks are heavily dependent on 5G. For instance, in September, Airtel tested Indias first cloud-gaming session in a 5G environment at its Manesar facility. The companys chief technology officer, Randip Sekhon, said cloud gaming would be among the biggest use cases" for 5G networks. The dependency on the cloud will only increase among enterprises.

Moreover, edge computing is finally set to flourish. It is helping enterprises bring the data and computing requirements closer to the users device. This trend will help make products like driverless or autonomous vehicles more efficient.

More interconnected devices that talk to each other: Earlier this month, Airtel, Invest India and the National Investment Promotion and Facilitation Agency announced a Startup Innovation Challenge. The challenge asks early-stage startups to create new use cases involving IoT. As data flows faster and computing power comes from large server farms using the cloud, more devices can start connecting and working as one. A June report by Gartner said the IoT endpoint electronics and communications market will touch $21.3 billion in 2022, increasing its forecast by 22% against the 2021 predictions. This is driven by governments using IoT for surveillance, enterprises using connected devices for everything from banking to communication, and delivering new products.

Privacy gaining ground: After about two years of deliberation, the joint parliamentary committee (JPC) on the Data Protection Bill was finally able to table its report on the bill during the ongoing winter session of Parliament. The JPC recommended that India have one bill to regulate personal and non-personal data and stop companies from profiling childrens accounts and using targeted ads for them. The bill also gives consumers rights over their data. But India isnt the only country looking into such data regulations. Indias bill borrows heavily from the European General Data Protection Regulation (GDPR), and governments worldwide are also considering such regulations. Big Tech firms are fighting lawsuits against government bodies, competition regulations and more. The outcome of all these cases will impact how our data is used in the future.

Mixing and blending realities: In 1964, an animated science-fiction franchise called Jonny Quest imagined a virtual world called QuestWorld. The protagonists would put on futuristic virtual reality (VR) headsets and fight battles in a virtual world. It was futuristic then, but VR and augmented reality (AR) headsets are all too familiar now. In fact, they have been for almost a decade now. But in 2021, Facebook launched a product called Ray-Ban Stories, partnering with eyeglass maker Ray-Ban for a pair of smart glasses that look and feel almost exactly like regular spectacles. Tech firms aim to make these devices ubiquitous and reach economies of scale that comes from selling millions of devices worldwide.

Immutable and interconnected ledgers: If AI was the key change maker over the past decade, blockchain might well enable the next step in the technology. According to many estimates, India has become one of the top players in cryptocurrency adoption worldwide, but whats seen as a trading asset today has more significant implications. Cryptocurrencies are powered by blockchain technology, and in April, the International Data Corp. said that organizations would spend as much as $6.6 billion on blockchain solutions in 2021 alonea 50% increase from 2020. The market researcher also predicted an annual average growth rate of 48% between 2020 and 2024. Indias second crypto unicorn, CoinSwitch Kuber, has said that it aims to support other blockchain firms in India. Industry stakeholders and experts understand that blockchains will power cross-border payments, banking and much more in future. Even the Reserve Bank of Indias upcoming Central Bank Digital Currency, or a digital rupee, will be powered by blockchain technologies.

The third generation of the internet: The hit HBO show Silicon Valley has imagined a new internet void of dominance by Big Tech firms, governments and more. The idea may sound utopian, but thats exactly what companies building apps for the third generation of the internet (web3) are building today. Companies like Google, Apple, Facebook and others benefit greatly from the fact that most of the worlds data flows through their servers. However, with web3, the power is handed back to the users in a way. It runs without servers, depends on a network of phones, computers and other devices, and bars any one person or entity on the network to wield control on datain a word, decentralization. For instance, Noida-based Ayush Ranjan has built the worlds first decentralized video chat app. Unlike Google Meet, Zoom, the Huddle 01 app doesnt require users to create an account, and the company doesnt have its own data centres to store your data in or record calls. Instead, it stores all the data in a decentralized manner and uses computing power from users devices to power the calls.

Rise of the metaverse: 5G, cloud computing, IoT, web3 are all tools in a larger vision that technologists and technology leaders have right now. And thats called the metaverse. Facebooks Mark Zuckerberg is so confident that the metaverse is coming that he rebranded his company, one of the most valuable in the world, to Meta as an effort to show where his focus is today. Author Neal Stephenson is often credited with coining the term in his 1992 novel Snow Crash, and it has also been explored in contemporary movies like Ready Player One. The metaverse is not a technology; it is a concept. Zuckerberg and others expect that we will do everything from conducting meetings to hosting parties in a virtual space and through very realistic looking avatars. Instead of shopping on an e-commerce store, the avatar will walk into a virtual store, try on a product and have the physical product delivered to our homes too. However, hardware veterans like Intels Raja Koduri have warned that the computing power we have today is nowhere close to being sufficient for the metaverse Zuckerberg imagines.

Quantum computing: That brings us to what could be the most transformational trend in technologyquantum computing. Any country with aspirations to be a leader in technology has its sights set on quantum computing. While web3 is a new internet, quantum computing establishes a whole new computer. Our traditional computers can take information in 0 and 1, and their computations are limited by this. Quantum computers, on the other hand, use concepts of quantum physics to enhance the amount of computing power we can use. A quantum computer is far from reality right now, and it could be the kind of computing power Koduri says we need for the metaverse. In the 2020 Budget, the government had allocated 8,000 crore over the next five years for developing quantum computing tech. It has also launched a Quantum Simulator, which allows researchers to build quantum applications without a real computer.

Subscribe to Mint Newsletters

* Enter a valid email

* Thank you for subscribing to our newsletter.

Never miss a story! Stay connected and informed with Mint. Download our App Now!!

Read the original:

10 technology trends that could prove to be real game-changers - Mint

Neural’s best quantum computing and physics stories from 2021 – The Next Web

2021 will be remembered for a lot of things, but when its all said and done we think itll eventually get called the year quantum computing finally came into focus.

Thats not to say useful quantum computers have actually arrived yet. Theyre still somewhere between a couple years and a couple centuries away. Sorry for being so vague, but when youre dealing with quantum physics there arent yet many guarantees.

This is because physics is an incredibly complex and challenging field of study. And the difficulty gets cranked up exponentially when you start adding theoretical and quantum to the research.

Were talking about physics at the very edge of reason. Like, for example, imagining a quantum-powered artificial intelligence capable of taking on the Four Horseman of the Apocalypse.

That might sound pretty wacky, but this story explains why its not quite as out there as you might think.

But lets go even further. Lets go past the edge of reason and into the realm of the speculative science. Earlier this year we wondered what would happen if physicists could actually prove that reality as we know it isnt real.

Per that article:

Theoretically, if we could zoom in past the muons and leptons and keep going deeper and deeper, we could reach a point where all objects in the universe are indistinguishable from each other because, at the quantum level, everything that exists is just a sea of nearly-identical subparticulate entities.

This version of reality would render the concepts of space and time pointless. Time would only exist as a construct by which we give meaning to our own observations. And those observations would merely be the classical side-effects of existing in a quantum universe.

So, in the grand scheme of things, its possible that our reality is little more than a fleeting, purposeless arrangement of molecules. Everything that encompasses our entire universe may be nothing more than a brief hallucination caused by a quantum vibration.

Nothing makes you feel special like trying to conceive of yourself as a few seasoning particles in an infinite soup of gooey submolecules.

If having an existential quantum identity-crisis isnt your thing, we also covered a lot of cool stuff that doesnt require you to stop seeing yourself as an individual stack of materials.

Does anyone remember the time China said it had built a quantum computer a million times more powerful than Googles? We dont believe it. But thats the claim the researchersmade. You can read more about that here.

Oh, and that Google quantum system the Chinese researchers referenced? Yeah, it turns out it wasnt exactly the massive upgrade over classical supercomputers it was chalked up to be either.

But, of course, we forgive Google for its marketing faux pas. And thats because, hands down, the biggest story of the year for quantum computers was the time crystal breakthrough.

As we wrote at the time:

If Googles actually created time-crystals, it could accelerate the timeline for quantum computing breakthroughs from maybe never to maybe within a few decades.

At the far-fetched, super-optimistic end of things we could see the creation of a working warp drive in our lifetimes. Imagine taking a trip to Mars or the edge of our solar system, and being back home on Earth in time to catch the evening news.

And, even on the conservative end with more realistic expectations, its not hard to imagine quantum computing-based chemical and drug discovery leading to universally-effective cancer treatments.

Talk about a eureka moment!

But there were even bigger things in the world of quantum physics than just advancing computer technology.

Scientists from the University of Sussex determined that black holes emanate a specific kind of quantum pressure that could lend some credence to multiple universe theories.

Basically, we cant explain where the pressure comes from. Could this be blow back from white holes swallowing up energy and matter in a dark, doppelganger universe that exists parallel to our own? Nobody knows! You can read more here though.

Still there were even bigger philosophical questions in play over the course of 2021 when it came to interpreting physics research.

Are we incapable of finding evidence for God because were actually gods in our rights? That might sound like philosophy, but there are some pretty radical physics interpretations behind that assertion.

And, if we are gods, can we stop time? Turns out, whether were just squishy mortal meatbags or actual deities, we actually can!

Alright. If none of those stories impress you, weve saved this one for last. If being a god, inventing time crystals, or even stopping time doesnt float your boat, how about immortality? And not just regular boring immortality, butquantum immortality.

Its probably not probable, and adding the word quantum to something doesnt necessarily make it cooler, but anythings possible in an infinite universe. Plus, the underlying theories involving massive-scale entanglement are incredible read more here.

Seldom a day goes by where something incredible isnt happening in the world of physics research. But thats nothing compared to the magic weve yet to uncover out there in this fabulous universe we live in.

Luckily for you, Neural will be back in 2022 to help make sense of it all. Stick with us for the most compelling, wild, and deep reporting on the quantum world this side of the non-fiction realm.

The rest is here:

Neural's best quantum computing and physics stories from 2021 - The Next Web

Breaking Up Tech Is a Gift to China – The Wall Street Journal

Few issues unite both sides of the political divide more than anger at U.S. tech companies, whether for censorship of conservative viewpoints or for failing to counter misinformation online. In response to these concerns, legislation introduced in Congress would weaken the U.S. tech industry, ostensibly in the name of breaking up monopolies. Unfortunately, the various bills would hurt the U.S. and strengthen the hand of our greatest geopolitical rival, the Peoples Republic of China.

As of 2018, nine of the top 20 global technology firms by valuation were based in China. President Xi Jinping has stated his intention to spend $1.4 trillion by 2025 to surpass the U.S. in key technology areas, and the Chinese government aggressively subsidizes national champion firms. Beginning with the Made in China 2025 initiative, Beijing has made clear that it wont stop until it dominates technologies such as quantum computing, artificial intelligence, autonomous systems and more. Last month the National Counterintelligence and Security Center warned that these are technologies where the stakes are potentially greatest for U.S. economic and national security.

Follow this link:

Breaking Up Tech Is a Gift to China - The Wall Street Journal

Senator reflects on a year in service to NM – Albuquerque Journal

As I took my oath of office in January, I was struck by the absence of friends and family, who, if not for the pandemic, would have been at each senators side. The emptiness of the Senate Chamber brought into focus the year of challenges that lay ahead. Though I stood alone as I swore my oath, I stand with New Mexico always and am proud of what we accomplished during this difficult year.

To address the pandemics effects on our lives, my colleagues and I passed landmark legislation that addresses New Mexicos specific needs and combats the consequences of COVID, both economically and in terms of public health.

In March, Congress passed the American Rescue Plan, which put money in pockets, children back in schools and parents back to work. Following through on the work I did in the House, this law provided more than $360 billion in emergency funding for state, local and tribal governments to keep front-line workers on the job.

One of my first Senate achievements was authorizing $17 billion in the United States Innovation and Competition Act for our national laboratories. These investments will empower our Sandia and Los Alamos labs to further research and develop such critical projects as semiconductors, carbon-capture technologies and quantum computing. Once passed and signed into law, this funding will allow New Mexico to continue its innovative leadership.

To further strengthen New Mexicos economy, my colleagues and I helped send the Infrastructure and Jobs Investment Act to President Bidens desk. This bipartisan legislation included my REGROW Act, which employs skilled energy workers to clean up tens of thousands of orphaned oil and gas wells across the country, creating an estimated 13,500 good-paying jobs.

This law contains my RIDE Act, which will make our roads safer by helping to end drunken and impaired driving. Additionally, I fought to provide billions for Indian Health Service (IHS) water and wastewater infrastructure, a long overdue investment. As chair of the Subcommittee on Communications, Media and Broadband, I also advocated for expanded access to broadband, especially in rural communities, making internet access more affordable for nearly 800,000 New Mexicans with an estimated $750 million going to our state to support broadband buildout.

Throughout the year, I used my committee positions to advocate for the well-being of all New Mexicans. I introduced the bipartisan Native American Voting Rights Act to protect the sacred right to vote for tribal nations and voters living on tribal lands. In various committee hearings, I challenged the power of Big Tech by grilling CEOs on harmful algorithms that prioritize profit margins at the expense of our health and our democracy. My Committee assignments allow me to serve New Mexicos working families.

Though I enjoy policymaking in Washington, connecting with my constituents remains the highlight of my job. While COVID made it difficult to visit with constituents in person, traveling across 28 counties in the past year and hearing the needs of families firsthand makes it all the more gratifying to share how this Democratic Congress has delivered. From meeting with local officials across southern New Mexico to having meaningful dialogues with tribal and pueblo leaders to opening a new constituent services office in Las Vegas, I cherish opportunities to hear from you and underscore how I am working in Washington to lift up our states communities. As this year concludes and the pandemic rages on, I remain committed to bringing New Mexican values to the policies we craft, defending our states priorities, and ensuring economic opportunity for you and your family.

Excerpt from:

Senator reflects on a year in service to NM - Albuquerque Journal

Nearly all of these Philly C-suite execs expect to hire tech talent in 2022 – Technical.ly

Backing up reports of wild tech jobs growth, nearly all surveyed C-suite execs in the region expect to hire more technologists next year and to be able to do so in Philadelphia.

Accenture and the Chamber of Commerce for Greater Philadelphia conducted the survey to get a better idea of tech talent needs in 2022. Theyasked 200 regional executives people with titles like CEO, chief operating officer, chief financial officer, chief technology officer and chief human resources officer about their companys 2022 hiring plans. Only 7% indicated that they were maintaining the same level of tech personnel in 2022, and no one said theyd be reducing it.

And as the majority will be seeking more tech talent in 2022, nearly all 98% said they feel confident they can get that talent in the Philadelphia region.

There are a few factors making the area attractive, the survey found: Top reasons include Philadelphias diversity of people, diversity of industries and its access to public transportation. Also listed were its access to parks and recreation, educational institutions, cultural institutions and cost of living.

The most in-demand skills listed were artificial intelligence and machine learning, cloud skills, cybersecurity, blockchain and quantum computing. The top cities competing for tech talent listed were Chicago and New York City, and more than a third of the executives reported that tech talent is lost to New York, Pittsburgh and Salt Lake City.

In-demand tech skills. (Philadelphia Metro Tech Hiring Survey Results Fall 2021 report)

When it comes to the breakdown of where people are working, it looks like a mix.

Some 17% of executives reported some part of their workforce will remain fully remote, and 34% said the majority of their workforce will remain fully remote. Nearly half said they plan to have their workforce return to the office in some capacity. The executives also said that a safe and healthy workforce and availability of affordable office space were their top ways to attract tech talent.

And when it came to where they are finding talent, 61% of survey respondents indicated that theyll be doing some internal work to upskill current employees, along with 51% who said theyll be hiring new talent.

Where executives will look for talent. (Philadelphia Metro Tech Hiring Survey Results Fall 2021 report)

Many indicated theyre using personal networking and in-house recruiting as their top methods of hiring, and that they have the hardest time finding mid-career talent. Almost all of the executives said they have not worked with nonprofit coding schools or apprenticeship programs to hire, and they are not investing in apprenticeship programs as an alternative talent pipeline even as apprenticeships become more common overall in the tech industry.

For further reading on these trends, check out Technical.lys editorial series on the City of PhiladelphiasPHL: Most Diverse Tech Hub, the initiative seeking to boost tech skills for the future talent pipeline specifically Black and brown Philadelphians looking to move into technology careers.

More here:

Nearly all of these Philly C-suite execs expect to hire tech talent in 2022 - Technical.ly

Drone wars? – The Week Magazine

The smartest insight and analysis, from all perspectives, rounded up from around the web:

New restrictions on a key dronemaker show how serious the U.S. is about cutting its reliance on Chinese technology, said Bruce Einhorn and Todd Shields in Bloomberg. China's DJI Technology is "the world's top producer of unmanned aerial vehicles" and controls "more than half of the U.S. drone market." But the Treasury Department last week added DJI and seven other Chinese tech companies to a growing "blacklist," blocking it from receiving any U.S. investments. Though DJI is a private company, it "has become the poster child for a much wider national security threat" China's "ability to obtain sensitive data on millions of Americans," as "everything from cars to yoga mats to toilets are now transmitting data." Harnessing that information is viewed as a "key to dominating technologies like artificial Intelligence" and "exploiting weaknesses in strategic foes." The move against DJI echoes how the U.S. started its campaign against Huawei, China's leading phonemaker, said Gina Chon in BreakingViews. But "it was relatively easy to make" the Chinese telecom disappear from the U.S., because it was just making its first inroads. DJI is a different story. "More than 900 U.S. public safety agencies use its products," including the New York Police Department, making a commercial ban "unrealistic." The pressure to disengage, though, comes from both countries, said the Financial Times in an editorial. China pressured Didi to delist shortly after it "launched the biggest listing of a Chinese company since Alibaba in 2014," and has allowed a "slow unraveling" of property giant Evergrande, which defaulted on debts held by foreign investors. The moves seem to be part of "a bulwark" against "mistrusted foreign forces" as Beijing constructs a new "Fortress China."

Fine let's shut our doors to China, too, said Henry Olsen in The Washington Post, even if it hurts corporate profits in the short term. U.S. companies are now "self-censoring anything that might offend the Communist Party of China." It was reported recently that Apple secretly agreed to a $275 billion deal in 2016 to buy more Chinese-made components in return for reduced Chinese regulatory pressure. That and "hundreds of other corporate decisions" have helped China design weapons systems "more sophisticated than our own." Our addiction to China's cheap goods is "endangering our national security." China is not a stable market for U.S. corporations, anyway, said Desmond Lachlan in The Hill. President Xi Jinping's recent "clampdown on the high-tech sector" in the pursuit of "common prosperity" threatens China's future growth. Meanwhile, the country's property sector is imploding. "One has to wonder whether the Chinese economy might prove to have clay feet."

The U.S. still should fear China's technological gains, said Graham Allison and Eric Schmidt, the former CEO of Google, in The Wall Street Journal. Experts say it "could soon be the global leader" in artificial intelligence, semiconductors, 5G wireless, quantum computing, biotechnology, and green energy if it doesn't already hold the dominant position. The U.S. holds sway in aeronautics, medicine, and nanotechnology, but China has "emerged as a serious competitor" in these fields, too. Lawmakers are just "beginning to wake up to this reality."

This article was first published in the latest issue of The Week magazine. If you want to read more like it, you can try six risk-free issues of the magazine here.

Read more:

Drone wars? - The Week Magazine

What is quantum computing?

Quantum computing is an area of study focused on the development of computer based technologies centered around the principles ofquantum theory. Quantum theory explains the nature and behavior of energy and matter on thequantum(atomic and subatomic) level. Quantum computing uses a combination ofbitsto perform specific computational tasks. All at a much higher efficiency than their classical counterparts. Development ofquantum computersmark a leap forward in computing capability, with massive performance gains for specific use cases. For example quantum computing excels at like simulations.

The quantum computer gains much of its processing power through the ability for bits to be in multiple states at one time. They can perform tasks using a combination of 1s, 0s and both a 1 and 0 simultaneously. Current research centers in quantum computing include MIT, IBM, Oxford University, and the Los Alamos National Laboratory. In addition, developers have begun gaining access toquantum computers through cloud services.

Quantum computing began with finding its essential elements. In 1981, Paul Benioff at Argonne National Labs came up with the idea of a computer that operated with quantum mechanical principles. It is generally accepted that David Deutsch of Oxford University provided the critical idea behind quantum computing research. In 1984, he began to wonder about the possibility of designing a computer that was based exclusively on quantum rules, publishing a breakthrough paper a few months later.

Quantum Theory

Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.

Quantum Theory

Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.

The Essential Elements of Quantum Theory:

Further Developments of Quantum Theory

Niels Bohr proposed the Copenhagen interpretation of quantum theory. This theory asserts that a particle is whatever it is measured to be, but that it cannot be assumed to have specific properties, or even to exist, until it is measured. This relates to a principle called superposition. Superposition claims when we do not know what the state of a given object is, it is actually in all possible states simultaneously -- as long as we don't look to check.

To illustrate this theory, we can use the famous analogy of Schrodinger's Cat. First, we have a living cat and place it in a lead box. At this stage, there is no question that the cat is alive. Then throw in a vial of cyanide and seal the box. We do not know if the cat is alive or if it has broken the cyanide capsule and died. Since we do not know, the cat is both alive and dead, according to quantum law -- in a superposition of states. It is only when we break open the box and see what condition the cat is in that the superposition is lost, and the cat must be either alive or dead.

The principle that, in some way, one particle can exist in numerous states opens up profound implications for computing.

A Comparison of Classical and Quantum Computing

Classical computing relies on principles expressed by Boolean algebra; usually Operating with a 3 or 7-modelogic gateprinciple. Data must be processed in an exclusive binary state at any point in time; either 0 (off / false) or 1 (on / true). These values are binary digits, or bits. The millions of transistors and capacitors at the heart of computers can only be in one state at any point. In addition, there is still a limit as to how quickly these devices can be made to switch states. As we progress to smaller and faster circuits, we begin to reach the physical limits of materials and the threshold for classical laws of physics to apply.

The quantum computer operates with a two-mode logic gate:XORand a mode called QO1 (the ability to change 0 into a superposition of 0 and 1). In a quantum computer, a number of elemental particles such as electrons or photons can be used. Each particle is given a charge, or polarization, acting as a representation of 0 and/or 1. Each particle is called a quantum bit, or qubit. The nature and behavior of these particles form the basis of quantum computing and quantum supremacy. The two most relevant aspects of quantum physics are the principles of superposition andentanglement.

Superposition

Think of a qubit as an electron in a magnetic field. The electron's spin may be either in alignment with the field, which is known as aspin-upstate, or opposite to the field, which is known as aspin-downstate. Changing the electron's spin from one state to another is achieved by using a pulse of energy, such as from alaser. If only half a unit of laser energy is used, and the particle is isolated the particle from all external influences, the particle then enters a superposition of states. Behaving as if it were in both states simultaneously.

Each qubit utilized could take a superposition of both 0 and 1. Meaning, the number of computations a quantum computer could take is 2^n, where n is the number of qubits used. A quantum computer comprised of 500 qubits would have a potential to do 2^500 calculations in a single step. For reference, 2^500 is infinitely more atoms than there are in the known universe. These particles all interact with each other via quantum entanglement.

In comparison to classical, quantum computing counts as trueparallel processing. Classical computers today still only truly do one thing at a time. In classical computing, there are just two or more processors to constitute parallel processing.EntanglementParticles (like qubits) that have interacted at some point retain a type can be entangled with each other in pairs, in a process known ascorrelation. Knowing the spin state of one entangled particle - up or down -- gives away the spin of the other in the opposite direction. In addition, due to the superposition, the measured particle has no single spin direction before being measured. The spin state of the particle being measured is determined at the time of measurement and communicated to the correlated particle, which simultaneously assumes the opposite spin direction. The reason behind why is not yet explained.

Quantum entanglement allows qubits that are separated by large distances to interact with each other instantaneously (not limited to the speed of light). No matter how great the distance between the correlated particles, they will remain entangled as long as they are isolated.

Taken together, quantum superposition and entanglement create an enormously enhanced computing power. Where a 2-bit register in an ordinary computer can store only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit register in a quantum computer can store all four numbers simultaneously. This is because each qubit represents two values. If more qubits are added, the increased capacity is expanded exponentially.

Quantum Programming

Quantum computing offers an ability to write programs in a completely new way. For example, a quantum computer could incorporate a programming sequence that would be along the lines of "take all the superpositions of all the prior computations." This would permit extremely fast ways of solving certain mathematical problems, such as factorization of large numbers.

The first quantum computing program appeared in 1994 by Peter Shor, who developed a quantum algorithm that could efficiently factorize large numbers.

The Problems - And Some Solutions

The benefits of quantum computing are promising, but there are huge obstacles to overcome still. Some problems with quantum computing are:

There are many problems to overcome, such as how to handle security and quantum cryptography. Long time quantum information storage has been a problem in the past too. However, breakthroughs in the last 15 years and in the recent past have made some form of quantum computing practical. There is still much debate as to whether this is less than a decade away or a hundred years into the future. However, the potential that this technology offers is attracting tremendous interest from both the government and the private sector. Military applications include the ability to break encryptions keys via brute force searches, while civilian applications range from DNA modeling to complex material science analysis.

Continued here:

What is quantum computing?

Google AI Blog: Quantum Supremacy Using a Programmable …

This result is the first experimental challenge against the extended Church-Turing thesis, which states that classical computers can efficiently implement any reasonable model of computation. With the first quantum computation that cannot reasonably be emulated on a classical computer, we have opened up a new realm of computing to be explored.

The Sycamore ProcessorThe quantum supremacy experiment was run on a fully programmable 54-qubit processor named Sycamore. Its comprised of a two-dimensional grid where each qubit is connected to four other qubits. As a consequence, the chip has enough connectivity that the qubit states quickly interact throughout the entire processor, making the overall state impossible to emulate efficiently with a classical computer.

The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects.

We designed the circuit in a two-dimensional square grid, with each qubit connected to four other qubits. This architecture is also forward compatible for the implementation of quantum error-correction. We see our 54-qubit Sycamore processor as the first in a series of ever more powerful quantum processors.

ApplicationsThe Sycamore quantum computer is fully programmable and can run general-purpose quantum algorithms. Since achieving quantum supremacy results last spring, our team has already been working on near-term applications, including quantum physics simulation and quantum chemistry, as well as new applications in generative machine learning, among other areas.

We also now have the first widely useful quantum algorithm for computer science applications: certifiable quantum randomness. Randomness is an important resource in computer science, and quantum randomness is the gold standard, especially if the numbers can be self-checked (certified) to come from a quantum computer. Testing of this algorithm is ongoing, and in the coming months we plan to implement it in a prototype that can provide certifiable random numbers.

Whats Next?Our team has two main objectives going forward, both towards finding valuable applications in quantum computing. First, in the future we will make our supremacy-class processors available to collaborators and academic researchers, as well as companies that are interested in developing algorithms and searching for applications for todays NISQ processors. Creative researchers are the most important resource for innovation now that we have a new computational resource, we hope more researchers will enter the field motivated by trying to invent something useful.

Second, were investing in our team and technology to build a fault-tolerant quantum computer as quickly as possible. Such a device promises a number of valuable applications. For example, we can envision quantum computing helping to design new materials lightweight batteries for cars and airplanes, new catalysts that can produce fertilizer more efficiently (a process that today produces over 2% of the worlds carbon emissions), and more effective medicines. Achieving the necessary computational capabilities will still require years of hard engineering and scientific work. But we see a path clearly now, and were eager to move ahead.

AcknowledgementsWed like to thank our collaborators and contributors University of California Santa Barbara, NASA Ames Research Center, Oak Ridge National Laboratory, Forschungszentrum Jlich, and many others who helped along the way.

Today we published the results of this quantum supremacy experiment in the Nature article, Quantum Supremacy Using a Programmable Superconducting Processor. We developed a new 54-qubit processor, named Sycamore, that is comprised of fast, high-fidelity quantum logic gates, in order to perform the benchmark testing. Our machine performed the target computation in 200 seconds, and from measurements in our experiment we determined that it would take the worlds fastest supercomputer 10,000 years to produce a similar output.

Each run of a random quantum circuit on a quantum computer produces a bitstring, for example 0000101. Owing to quantum interference, some bitstrings are much more likely to occur than others when we repeat the experiment many times. However, finding the most likely bitstrings for a random quantum circuit on a classical computer becomes exponentially more difficult as the number of qubits (width) and number of gate cycles (depth) grow.

The Sycamore ProcessorThe quantum supremacy experiment was run on a fully programmable 54-qubit processor named Sycamore. Its comprised of a two-dimensional grid where each qubit is connected to four other qubits. As a consequence, the chip has enough connectivity that the qubit states quickly interact throughout the entire processor, making the overall state impossible to emulate efficiently with a classical computer.

The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects.

We designed the circuit in a two-dimensional square grid, with each qubit connected to four other qubits. This architecture is also forward compatible for the implementation of quantum error-correction. We see our 54-qubit Sycamore processor as the first in a series of ever more powerful quantum processors.

ApplicationsThe Sycamore quantum computer is fully programmable and can run general-purpose quantum algorithms. Since achieving quantum supremacy results last spring, our team has already been working on near-term applications, including quantum physics simulation and quantum chemistry, as well as new applications in generative machine learning, among other areas.

We also now have the first widely useful quantum algorithm for computer science applications: certifiable quantum randomness. Randomness is an important resource in computer science, and quantum randomness is the gold standard, especially if the numbers can be self-checked (certified) to come from a quantum computer. Testing of this algorithm is ongoing, and in the coming months we plan to implement it in a prototype that can provide certifiable random numbers.

Whats Next?Our team has two main objectives going forward, both towards finding valuable applications in quantum computing. First, in the future we will make our supremacy-class processors available to collaborators and academic researchers, as well as companies that are interested in developing algorithms and searching for applications for todays NISQ processors. Creative researchers are the most important resource for innovation now that we have a new computational resource, we hope more researchers will enter the field motivated by trying to invent something useful.

Second, were investing in our team and technology to build a fault-tolerant quantum computer as quickly as possible. Such a device promises a number of valuable applications. For example, we can envision quantum computing helping to design new materials lightweight batteries for cars and airplanes, new catalysts that can produce fertilizer more efficiently (a process that today produces over 2% of the worlds carbon emissions), and more effective medicines. Achieving the necessary computational capabilities will still require years of hard engineering and scientific work. But we see a path clearly now, and were eager to move ahead.

AcknowledgementsWed like to thank our collaborators and contributors University of California Santa Barbara, NASA Ames Research Center, Oak Ridge National Laboratory, Forschungszentrum Jlich, and many others who helped along the way.

Original post:

Google AI Blog: Quantum Supremacy Using a Programmable ...

Role of Quantum Computing and AI in Healthcare Industry – Analytics Insight

One of our ages major achievements in healthcare. Medical research has advanced rapidly, extending life expectancy around the world. However, as people live longer, healthcare systems face increased demand, rising expenses, and a staff that is straining to meet the needs of the patient.

Population aging, changing patients needs, a change in life choices, and the never-ending loop of innovation are just a few of the relentless forces driving demand. The consequences of an aging population stand out among these. Healthcare is one of our generations main achievements. Medical research has progressed at a breakneck pace, extending life expectancy all around the world.

When you use the classic computing method, your machine doubles in size every time the number of data doubles. Processing the vast amounts of data necessary in many areas, such as healthcare, manufacturing, big data, and financial services, is difficult and time-consuming as a result.

Quantum computing doubles the computers potentiality with each additional cubit rather than increasing the programs size. Without growing the footprint, computers can process progressively massive amounts of data in near real-time. Quantum computing is already being used in a variety of businesses with vast volumes of data to swiftly solve previously intractable tasks.

Quantum computings advantages are already being observed in healthcare, particularly in personalized medicine, where researchers and healthcare providers are working to forecast health risks and find the best therapy for groups of people who share certain features. Personalized medicine, in comparison to conventional medicine, is patient-centered care that analyses a patients genetic profile to identify health risks and provide therapies that are tailored to their specific needs.

Specialists in the burgeoning sector are increasingly depending on quantum computers unique capacity to tackle complicated data managerial challenges with high speed in order to effectively process enormous amounts of health data from millions of disparate data points. This is in favor of customized medicines development and its favorable impact on healthcare systems.

Researchers discussed their efforts to develop policies that address critical concerns about emerging technologies, highlighting the distinctions between capacity-building basic open basic and applied competitive study with direct state defense and commercial ramifications.

Foster discussed impending legislation that will expand the National Quantum Initiative by assisting in the creation of a larger pool of workers with the highly specialized skills required. The money will be used to boost military training as well as quantum-related college programs. The goal is to strengthen the Department of Defenses quantum staff, which will aid in the attempt to harness quantums power and speed to solve the most difficult problems.

Dr. Paul Lopata, Ph.D., Principal Head for Quantum Science, shared his thoughts on what businesses should be doing now to set themselves up for future quantum success. He emphasized that high-performance computing is made up of supercomputers, application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), and GPUs, rather than a single technique.

According to Lopata, businesses should think about the long game with quantum computing and begin thinking about the future now. In quantum computing, he revealed his 3 phases to long-term thinking:

1. Adhere to the values of your company

2. Develop your own specialty

3. Collaborate with organizations that share your values.

Quantum computing can be one of several game-changing technologies that help us improve our ability to assure healthy lives and encourage well-being for people of all ages, as well as help us build a more long-term sustainable society. Quantum computing combined with artificial intelligence allows us to address some of todays most pressing concerns while also creating re-creatable and scalable technology foundations and procedures as we strive toward global healthcare for all.

The applications that have an impact on care delivery, such as how existing tasks are completed and how they are disturbed by changing healthcare requirements or the processes necessary to fulfill them. From day-to-day operational improvement in clinical organizations to population-health management and the realm of healthcare technology, applications that support and develop healthcare delivery. Its a broad term that encompasses natural language processing (NLP), image processing, and machine learning-based predictive analytics.

While there are many issues about what is actually in AI in healthcare nowadays, this paper examined 23 applications currently in use and presents case studies for 14 of them. These examples show how AI can impact a wide range of domains, from applications that help patients control their own treatment to online symptom detectors and e-triage AI systems, virtual assistants that can perform duties in hospitals, and bionic pancreas to assist diabetic patients.

Read the rest here:

Role of Quantum Computing and AI in Healthcare Industry - Analytics Insight

Why Blockchain isnt as secure as you think – Evening Standard

B

lockchain has rapidly become one of the most disruptive technologies of the 21st century, but with the continuous improvements in quantum computing, the foundations of the technology are starting to falter.

Blockchain, cryptocurrencies, NFTs and decentralised finance have become common terms, with blockchain now hailed as an extremely secure and much faster method of recording transactions due to the computational intensity of attempting to break it. Both companies and people have poured endless amounts of capital into the technology by buying cryptocurrencies or by developing their own currency or asset chains.

But in a dynamic cyber environment, is this $2.7 trillion dollar market really future-proof and secure?

With every innovation in quantum computing, the threat to blockchain increases.

There are two main issues that face the technology, the first being its reliance on a form of encryption known as public key cryptography; and second, its reliance on a type of algorithm called a hash function.

Public key cryptography is a method of encryption that publishes a key for the world to use so that they can encrypt information that only the holder of the private key can see.

A hash is generated by running a widely known and well-established algorithm on a piece of information to create a near unique digital representation of it. It is computationally impossible to construct the original information from a hashed representation, and they are said to be resistant to finding another piece of data that has the exact same digital representation. In both proof-of-work and proof-of-stake blockchains, digitally signed hashes are used in combination with random numbers to sign off a block.

The threat from quantum computing to public key encryption is a known issue and has been discussed at length by many experienced professionals. It is an issue that both governments and commercial entities have recognised. NIST, the US National Institute of Standards and Technology, is currently in the process of defining what the next phase of encryption (also known as post-quantum encryption) will be. Many experts will highlight that the types of quantum computers that are capable of cracking this are still far away, which is true, but various competing technologies alongside quantum are bringing this to the forefront of the cybersecurity threat vector.

Therefore, one can see that the main near-term issue facing the chain comes from the threat to the hashing algorithm from quantum computing or quantum accelerated hardware. There are a few issues with the hash-method, however, the main issue facing these chains is that a quantum computer will be able to solve for these hashes at a much faster rate than any computational-based approach, thereby taking ownership of a network. Significant progress has been made in the past two years on a type of quantum algorithm called Grovers algorithm, which poses the greatest risk to the network as a fully well error-corrected quantum computer is not needed.

Evaluating and understanding the risk only gets us part way, says David Worrall, co-founder of Secqai. It is now time to implement the solutions available to prepare us for the future.

This risk is further accentuated due to the decentralised nature of blockchain, where the latest cyber technology hasnt been built to integrate easily with, for example, new hardware based cryptography such as secure entropy sources or quantum random number generators.

Indeed, research has shown that the deployment of post quantum safe algorithms in todays blockchain architectures is not possible without a huge increase in transaction costs sometimes outweighing the value of the transaction.

Conversely, traditional banking infrastructure is relatively easy to update as the back-end software and hardware is managed centrally by each bank and each integrated party, i.e. the list of parties that need to be secure is well known.

Blockchain developers understand the challenge today, and as has been shown need to start the work of preparing their systems by integrating post-quantum methods into their infrastructure and adopt best practice techniques to ensure that they are prepared for a quantum world.

Rahul Tyagi is an ex-management consultant, inventor and co-founder of cyber security start-up Secqai

Read more here:

Why Blockchain isnt as secure as you think - Evening Standard

Why Is Quantum Computing So Hard to Explain – Quanta Magazine

Quantum computers, you might have heard, are magical uber-machines that will soon cure cancer and global warming by trying all possible answers in different parallel universes. For 15 years, on my blog and elsewhere, Ive railed against this cartoonish vision, trying to explain what I see as the subtler but ironically even more fascinating truth. I approach this as a public service and almost my moral duty as a quantum computing researcher. Alas, the work feels Sisyphean: The cringeworthy hype about quantum computers has only increased over the years, as corporations and governments have invested billions, and as the technology has progressed to programmable 50-qubit devices that (on certain contrived benchmarks) really can give the worlds biggest supercomputers a run for their money. And just as in cryptocurrency, machine learning and other trendy fields, with money have come hucksters.

In reflective moments, though, I get it. The reality is that even if you removed all the bad incentives and the greed, quantum computing would still be hard to explain briefly and honestly without math. As the quantum computing pioneer Richard Feynman once said about the quantum electrodynamics work that won him the Nobel Prize, if it were possible to describe it in a few sentences, it wouldnt have been worth a Nobel Prize.

Not that thats stopped people from trying. Ever since Peter Shor discovered in 1994 that a quantum computer could break most of the encryption that protects transactions on the internet, excitement about the technology has been driven by more than just intellectual curiosity. Indeed, developments in the field typically get covered as business or technology stories rather than as science ones.

That would be fine if a business or technology reporter could truthfully tell readers, Look, theres all this deep quantum stuff under the hood, but all you need to understand is the bottom line: Physicists are on the verge of building faster computers that will revolutionize everything.

The trouble is that quantum computers will not revolutionize everything.

Yes, they might someday solve a few specific problems in minutes that (we think) would take longer than the age of the universe on classical computers. But there are many other important problems for which most experts think quantum computers will help only modestly, if at all. Also, while Google and others recently made credible claims that they had achieved contrived quantum speedups, this was only for specific, esoteric benchmarks (ones that I helped develop). A quantum computer thats big and reliable enough to outperform classical computers at practical applications like breaking cryptographic codes and simulating chemistry is likely still a long way off.

But how could a programmable computer be faster for only some problems? Do we know which ones? And what does a big and reliable quantum computer even mean in this context? To answer these questions we have to get into the deep stuff.

Lets start with quantum mechanics. (What could be deeper?) The concept of superposition is infamously hard to render in everyday words. So, not surprisingly, many writers opt for an easy way out: They say that superposition means both at once, so that a quantum bit, or qubit, is just a bit that can be both 0 and 1 at the same time, while a classical bit can be only one or the other. They go on to say that a quantum computer would achieve its speed by using qubits to try all possible solutions in superposition that is, at the same time, or in parallel.

This is what Ive come to think of as the fundamental misstep of quantum computing popularization, the one that leads to all the rest. From here its just a short hop to quantum computers quickly solving something like the traveling salesperson problem by trying all possible answers at once something almost all experts believe they wont be able to do.

The thing is, for a computer to be useful, at some point you need to look at it and read an output. But if you look at an equal superposition of all possible answers, the rules of quantum mechanics say youll just see and read a random answer. And if thats all you wanted, you couldve picked one yourself.

What superposition really means is complex linear combination. Here, we mean complex not in the sense of complicated but in the sense of a real plus an imaginary number, while linear combination means we add together different multiples of states. So a qubit is a bit that has a complex number called an amplitude attached to the possibility that its 0, and a different amplitude attached to the possibility that its 1. These amplitudes are closely related to probabilities, in that the further some outcomes amplitude is from zero, the larger the chance of seeing that outcome; more precisely, the probability equals the distance squared.

But amplitudes are not probabilities. They follow different rules. For example, if some contributions to an amplitude are positive and others are negative, then the contributions can interfere destructively and cancel each other out, so that the amplitude is zero and the corresponding outcome is never observed; likewise, they can interfere constructively and increase the likelihood of a given outcome. The goal in devising an algorithm for a quantum computer is to choreograph a pattern of constructive and destructive interference so that for each wrong answer the contributions to its amplitude cancel each other out, whereas for the right answer the contributions reinforce each other. If, and only if, you can arrange that, youll see the right answer with a large probability when you look. The tricky part is to do this without knowing the answer in advance, and faster than you could do it with a classical computer.

Twenty-seven years ago, Shor showed how to do all this for the problem of factoring integers, which breaks the widely used cryptographic codes underlying much of online commerce. We now know how to do it for some other problems, too, but only by exploiting the special mathematical structures in those problems. Its not just a matter of trying all possible answers at once.

Compounding the difficulty is that, if you want to talk honestly about quantum computing, then you also need the conceptual vocabulary of theoretical computer science. Im often asked how many times faster a quantum computer will be than todays computers. A million times? A billion?

This question misses the point of quantum computers, which is to achieve better scaling behavior, or running time as a function of n, the number of bits of input data. This could mean taking a problem where the best classical algorithm needs a number of steps that grows exponentially with n, and solving it using a number of steps that grows only as n2. In such cases, for small n, solving the problem with a quantum computer will actually be slower and more expensive than solving it classically. Its only as n grows that the quantum speedup first appears and then eventually comes to dominate.

But how can we know that theres no classical shortcut a conventional algorithm that would have similar scaling behavior to the quantum algorithms? Though typically ignored in popular accounts, this question is central to quantum algorithms research, where often the difficulty is not so much proving that a quantum computer can do something quickly, but convincingly arguing that a classical computer cant. Alas, it turns out to be staggeringly hard to prove that problems are hard, as illustrated by the famous P versus NP problem (which asks, roughly, whether every problem with quickly checkable solutions can also be quickly solved). This is not just an academic issue, a matter of dotting is: Over the past few decades, conjectured quantum speedups have repeatedly gone away when classical algorithms were found with similar performance.

Note that, after explaining all this, I still havent said a word about the practical difficulty of building quantum computers. The problem, in a word, is decoherence, which means unwanted interaction between a quantum computer and its environment nearby electric fields, warm objects, and other things that can record information about the qubits. This can result in premature measurement of the qubits, which collapses them down to classical bits that are either definitely 0 or definitely 1. The only known solution to this problem is quantum error correction: a scheme, proposed in the mid-1990s, that cleverly encodes each qubit of the quantum computation into the collective state of dozens or even thousands of physical qubits. But researchers are only now starting to make such error correction work in the real world, and actually putting it to use will take much longer. When you read about the latest experiment with 50 or 60 physical qubits, its important to understand that the qubits arent error-corrected. Until they are, we dont expect to be able to scale beyond a few hundred qubits.

Once someone understands these concepts, Id say theyre ready to start reading or possibly even writing an article on the latest claimed advance in quantum computing. Theyll know which questions to ask in the constant struggle to distinguish reality from hype. Understanding this stuff really is possible after all, it isnt rocket science; its just quantum computing!

View original post here:

Why Is Quantum Computing So Hard to Explain - Quanta Magazine

Honeywell Takes Quantum Leap. The Apple of Quantum Computing Is Here. – Barron’s

Text size

Honeywell International and Cambridge Quantum Computing are merging their fledgling quantum-computing businesses into a stand-alone company, signaling that quantum computing is just about ready for prime time.

The deal, essentially, combines Honeywells (ticker: HON) quantum hardware expertise with privately held Cambridges software and algorithms. It is as if the two had formed the Apple (AAPL) of the quantum computing world, in that Apple makes hardware, operating systems, and software applications.

This is an inflection point company that will drive the future of quantum computing, said Tony Uttley, currently the president of Honeywells quantum business. He will be president of the new company.

Honeywell says quantum computing can be a trillion-dollar-a-year industry some day, just like smartphones, although for now, the smartphone market is some 2,000 times bigger. Moving now, at the point before the gap begins to close, could be a win.

We are at a [industry] phase where people are looking to hear more about practical quantum use cases and investors want to know if this is investible, said Daniel Newman, founder of Futurum, a research and advisory firm focused on digital innovation and market-disrupting technologies.

This deal will speed the process of investor education. The new business is targeting $1 billion in annual revenue in the next two to four years. Wed be disappointed if we were only at a billion in a few years, said Ilyas Khan, Cambridges CEO and founder. He will be CEO of the new company, which he said will decide whether to pursue an initial public offering by the end of the year.

A name for the business has yet to be chosen.

The new company plans to have commercial products as soon as late 2021. The initial offerings will be in web security, with products such as unhackable passwords. Down the road, there are commercial applications in chemicals and drug development.

In terms of sheer brainpower the new enterprise is impressive. It will have about 350 employees, including 200 scientists, 120 of them with doctorate degrees.

The company will start off with a cash injection of about $300 million from Honeywell. The industrial giant will own about 54% of the new company for contributing its cash and technology.

Honeywell stock isnt reacting to the news. Quantum computing is still too small to move the needle for a $160 billion conglomerate. Shares were down slightly in early Tuesday trading, similar to moves in the S&P 500 and Dow Jones Industrial Average.

Year to date, Honeywell stock has gained 7%.

Write to Al Root at allen.root@dowjones.com

Go here to read the rest:

Honeywell Takes Quantum Leap. The Apple of Quantum Computing Is Here. - Barron's

BBVA and Zapata Computing Release Study Showing the Potential to Speed Up Monte Carlo Calculations for – GlobeNewswire

The research proposes novel circuit designs that significantly reduce the resources needed to gain a quantum advantage in derivative pricing calculations

BOSTON, June 09, 2021 (GLOBE NEWSWIRE) -- Zapata Computing, a leading enterprise software company for quantum-classical applications, today announced the results of a research project conducted with the global bank BBVA. The projects aim was to identify challenges and opportunities for quantum algorithms to speed up Monte Carlo simulations in finance. Monte Carlo simulations are commonly used for credit valuation adjustment (CVA) and derivative pricing. The research proposes novel circuit designs that significantly reduce the resources needed to gain a practical quantum advantage in derivative calculations, taking years off the projected timeline for the day when financial institutions can generate real value from quantum computers.

Fueled by regulatory pressure to minimize systemic financial risk since the global financial crisis of 2008, banks and other financial institutions have been increasingly focused on accounting for credit risk in derivative pricing. In the US, similar regulation exists to stress-test financial scenarios for Comprehensive Capital Analysis andReview (CCAR) and Dodd-Frank compliance. Monte Carlo simulation is the standard approach for this type of risk analysis, but the calculations required which must account for all possible credit default scenarios are immensely complex and prohibitively time-consuming for classical computers. Zapata and BBVAs research reveals practical ways for quantum algorithms to speed up the Monte Carlo simulation process.

Our innovative approach to quantum-accelerated Monte Carlo methods uses a novel form of amplitude estimation, combined with additional improvements that make the quantum circuit much shallower, in some cases hundreds of times shallower than the well-known alternatives in the literature, said Yudong Cao, CTO and founder of Zapata Computing. This approach reduces the time needed for a quantum computer to complete the CVA calculation by orders of magnitude, and also dramatically reduces the number of qubits needed to gain a quantum advantage over classical methods. Zapata highlights that, in their enterprise customer collaborations, they perform in-depth studies of how much quantum computing resource will be required to obtain practical benefit for business operations. This type of in-depth research can directly inform the hardware specifications needed for quantum advantage in specific use cases.

Improving the performance of these calculations in realistic settings will have a direct impact on the technological resources and costs required for financial risk management, said Andrea Cadarso, BBVA Mexicos Team Lead for Quantitative & Business Solutions. The implications of this research are not limited to CVA calculations. We intend to extend our approach to other applications in quantitative finance, where Monte Carlo simulations are widely used for everything from policy making and risk assessment to financial product pricing calculations.

The BBVA-Zapata Computing joint publication is the result of one in a series of research initiatives thatBBVA Research & Patents launched in 2019. These projects, conducted in partnership with leading institutions and companies including Spanish National Research Council, Multiverse, Fujitsu and Accenture, explore the potential advantages of applying quantum computing in the financial sector.

Escolstico Snchez, leader of the Research & Patents discipline at BBVA, emphasized BBVA's intention to continue exploring this cutting-edge technology: BBVA is fully committed to its work in the quantum area. The bank has assembled a quantum team and is getting professionals from different areas involved in the development of a set of quantum solutions that meet the bank's needs.

About Zapata ComputingZapata Computing, Inc. builds quantum-ready applications for enterprise deployment using our flagship product Orquestra. Zapata has pioneered a new quantum-classical development and deployment paradigm that focuses on a range of use cases, including ML, optimization and simulation. Orquestra integrates best-in-class quantum and classical technologies including Zapatas leading-edge algorithms, open-source libraries in Python, and more. Zapata partners closely with hardware providers across the quantum ecosystem such as Amazon, Google, Honeywell, IBM, IonQ, Microsoft and Rigetti. Investors in Zapata include Comcast Ventures, BASF Venture Capital, Honeywell Ventures, Itochu Corporation, Merck Global Health and Robert Bosch Venture Capital.

Media Contact:Anya NelsonScratch Marketing + Media for Zapata Computinganyan@scratchmm.com617.817.6559

Read the rest here:

BBVA and Zapata Computing Release Study Showing the Potential to Speed Up Monte Carlo Calculations for - GlobeNewswire

IBM partners with U.K. on $300M quantum computing research initiative – VentureBeat

Elevate your enterprise data technology and strategy at Transform 2021.

The U.K. government and IBM this week announced a five-year 210 million ($297.5 million) artificial intelligence (AI) and quantum computing collaboration, in the hopes of making new discoveries and developing sustainable technologies in fields ranging from life sciences to manufacturing.

The program will hire 60 scientists, as well as bringing in interns and students to work under the auspices of IBM Research and the U.K.s Science and Technology Facilities Council (STFC) at the Hartree Centre in Daresbury, Cheshire. The newly formed Hartree National Centre for Digital Innovation (HNCDI) will apply AI, high performance computing (HPC) and data analytics, quantum computing, and cloud technologies to advance research in areas like materials development and environmental sustainability, IBM said in a statement.

Artificial intelligence and quantum computing have the potential to revolutionize everything from the way we travel to the way we shop. They are exactly the kind of fields I want the U.K. to be leading in, U.K. Science Minister Amanda Solloway said.

The Hartree Centre was opened in 2012 by UK Research and Innovations STFC as an HPC, data analytics, and AI research facility. Its housed within Sci-Tech Daresburys laboratory for research in accelerator science, biomedicine, physics, chemistry, materials, engineering, computational science, and more.

The program is part of IBMs Discovery Accelerator initiative to accelerate discovery and innovation based on a convergence of advanced technologies at research centers like HNCDI, the company said. This will be IBMs first Discovery Accelerator research center in Europe.

As part of the HNCDI program, the STFC Hartree Center is joining over 150 global organizations, ranging from Fortune 500 companies to startups, with an IBM Hybrid Cloud-accessible connection to the IBM Quantum Network. The Quantum Network is the computing giants assembly of premium quantum computers and development tools. IBM will also provide access to its commercial and experimental AI products and tools for work in areas like material design, scaling and automation, supply chain logistics, and trusted AI applications, the company said.

IBM has been busy inking Discovery Accelerator deals with partners this year. The company last month made a $200 million investment in a 10-year joint project with the Grainger College of Engineering at the University of Illinois Urbana-Champaign (UIUC). As with the HNCDI in the U.K., the planned IBM-Illinois Discovery Accelerator Institute at UIUC will build out new research facilities and hire faculty and technicians.

Earlier this year, IBM announced a 10-year quantum computing collaboration with the Cleveland Clinic to build the computational foundation of the future Cleveland Clinic Global Center for Pathogen Research & Human Health. That project will see the installation of the first U.S.-based on-premises, private sector IBM Quantum System One, the company said. In the coming years, IBM also plans to install one of its first next-generation 1,000+ qubit quantum systems at another Cleveland client site.

The pandemic added urgency to the task of harnessing quantum computing, AI, and other cutting-edge technologies to help solve medicines most pressing problems, IBM chair and CEO Arvind Krishna said in March at the time of the Cleveland Clinic announcement.

The COVID-19 pandemic has spawned one of the greatest races in the history of scientific discovery one that demands unprecedented agility and speed, Krishna said in a statement.

At the same time, science is experiencing a change of its own with high-performance computing, hybrid cloud, data, AI, and quantum computing being used in new ways to break through long-standing bottlenecks in scientific discovery. Our new collaboration with Cleveland Clinic will combine their world-renowned expertise in health care and life sciences with IBMs next-generation technologies to make scientific discovery faster and the scope of that discovery larger than ever, Krishna said.

Continued here:

IBM partners with U.K. on $300M quantum computing research initiative - VentureBeat

Swedish university is behind quantum computing breakthrough – ComputerWeekly.com

Swedens Chalmers University of Technology has achieved a quantum computing efficiency breakthrough through a novel type of thermometer that is capable of simplifying and rapidly measuring temperatures during quantum calculations.

The discovery adds a more advanced benchmarking tool that will accelerate Chalmers work in quantum computing development.

The novel thermometer is the latest innovation to emerge from the universitys research to develop an advanced quantum computer. The so-called OpenSuperQ project at Chalmers is coordinated with technology research organisation the Wallenberg Centre for Quantum Technology (WACQT), which is the OpenSuperQ projects main technology partner.

WACQT has set the goal of building a quantum computer capable of performing precise calculations by 2030. The technical requirements behind this ambitious target are based on superconducting circuits and developing aquantum computer with at least 100 well-functioning qubits. To realise this ambition, the OpenSuperQ project will require a processor working temperature close to absolute zero, ideally as low as 10 millikelvin (-273.14 C).

Headquartered at Chalmers Universitys research hub in Gothenburg, the OpenSuperQ project, launched in 2018, is intended to run until 2027. Working alongside the university in Gothenburg, WACQT is also operating support projects being run at the Royal Institute of Technology (Kungliga Tekniska Hgskolan) in Stockholm and collaborating universities in Lund, Stockholm, Linkping and Gothenburg.

Pledged capital funding for the WACQT-managed OpenSuperQ project which has been committed by the Knut and Alice Wallenberg Foundation together with 20 other private corporations in Sweden, currently amounts to SEK1.3bn (128m). In March, the foundation scaled up its funding commitment to WACQT, doubling its annual budget to SEK80m over the next four years.

The increased funding by the foundation will lead to the expansion of WACQTs QC research team, and the organisation is looking to recruit a further 40 researchers for the OpenSuperQ project in 2021-2022. A new team is to be established to study nanophotonic devices, which can enable the interconnection of several smaller quantum processors into a large quantum computer.

The Wallenberg sphere incorporates 16 public and private foundations operated by various family members. Each year, these foundations allocate about SEK2.5bn to research projects in the fields of technology, natural sciences and medicine in Sweden.

The OpenSuperQ project aims to take Sweden to the forefront of quantum technologies, including computing, sensing, communications and simulation, said Peter Wallenberg, chairman of the Knut and Alice Wallenberg Foundation.

Quantum technology has enormous potential, so it is vital that Sweden has the necessary expertise in this area. WACQT has built up a qualified research environment and established collaborations with Swedish industry. It has succeeded in developing qubits with proven problem-solving ability. We can move ahead with great confidence in what WACQT will go on to achieve.

The novel thermometer breakthrough opens the door to experiments in the dynamic field of quantum thermodynamics, said Simone Gasparinetti, assistant professor at Chalmers quantum technology laboratory.

Our thermometer is a superconducting circuit and directly connected to the end of the waveguide being measured, said Gasparinetti. It is relatively simple and probably the worlds fastest and most sensitive thermometer for this particular purpose at the millikelvin scale.

Coaxial cables and waveguides the structures that guide waveforms and serve as the critical connection to the quantum processor remain key components in quantum computers. The microwave pulses that travel down the waveguides to the quantum processor are cooled to extremely low temperatures along the way.

For researchers, a fundamental goal is to ensure that these waveguides are not carrying noise due to the thermal motion of electrons on top of the pulses that they send. Precise temperature measurement readings of the electromagnetic fields are needed at the cold end of the microwave waveguides, the point where the controlling pulses are delivered to the computers qubits.

Working at the lowest possible temperature minimises the risk of introducing errors in the qubits. Until now, researchers have only been able to measure this temperature indirectly, and with relatively long delays. Chalmers Universitys novel thermometer enables very low temperatures to be measured directly at the receiving end of the waveguide with elevated accuracy and with extremely high time resolution.

The novel thermometer developed at the university provides researchers with a value-added tool to measure the efficiency of systems while identifying possible shortcomings, said Per Delsing, a professor at the department of microtechnology and nanoscience at Chalmers and director of WACQT.

A certain temperature corresponds to a given number of thermal photons, and that number decreases exponentially with temperature, he said. If we succeed in lowering the temperature at the end where the waveguide meets the qubit to 10 millikelvin, the risk of errors in our qubits is reduced drastically.

The universitys primary role in the OpenSuperQ project is to lead the work on developing the application algorithms that will be executed on the OpenSuperQ quantum computer. It will also support the development of algorithms for quantum chemistry, optimisation and machine learning.

Also, Chalmers will head up efforts to improve quantum coherence in chips with multiple coupled qubits, including device design, process development, fabrication, packaging and testing. It will also conduct research to evaluate the performance of 2-qubit gates and develop advanced qubit control methods to mitigate systematic and incoherent errors to achieve targeted gate fidelities.

Continued here:

Swedish university is behind quantum computing breakthrough - ComputerWeekly.com

Quantum Computing With Holes: A New and Promising Qubit at a Place Where There Is Nothing – SciTechDaily

The two holes are confined to the germanium-rich layer just a few nanometers thick. On top, the electrical gates are formed by individual wires with voltages applied. The positively charged holes feel the push and pull from the wires and can therefore be moved around within their layer. Credit: Daniel Jirovec

Quantum computers with their promises of creating new materials and solving intractable mathematical problems are a dream of many physicists. Now, they are slowly approaching viable realizations in many laboratories all over the world. But there are still enormous challenges to master. A central one is the construction of stable quantum bits the fundamental unit of quantum computation called qubit for short that can be networked together.

In a study published inNature Materialsand led by Daniel Jirovec from the Katsaros group at IST Austria in close collaboration with researchers from the L-NESS Inter-university Centre in Como, Italy, scientists now have created a new and promising candidate system for reliable qubits.

The researchers created the qubit using the spin of so-called holes. Each hole is just the absence of an electron in a solid material. Amazingly, a missing negatively charged particle can physically be treated as if it were a positively charged particle. It can even move around in the solid when a neighboring electron fills the hole. Thus, effectively the hole described as positively charged particle is moving forward.

In a study published in Nature Materials and led by Daniel Jirovec from the Katsaros group at IST Austria in close collaboration with researchers from the L-NESS Inter-university Centre in Como, Italy, scientists now have created a new and promising candidate system for reliable qubits. Credit: Daniel Jirovec

These holes even carry the quantum-mechanical property of spin and can interact if they come close to each other. Our colleagues at L-NESS layered several different mixtures of silicon and germanium just a few nanometers thick on top of each other. That allows us to confine the holes to the germanium-rich layer in the middle, Jirovec explains. On top, we added tiny electrical wires so-called gates to control the movement of holes by applying voltage to them. The electrically positively charged holes react to the voltage and can be extremely precisely moved around within their layer.

Using this nano-scale control, the scientists moved two holes close to each other to create a qubit out of their interacting spins. But to make this work, they needed to apply a magnetic field to the whole setup. Here, their innovative approach comes into play.

In their setup, Jirovec and his colleagues cannot only move holes around but also alter their properties. By engineering different hole properties, they created the qubit out of the two interacting hole spins using less than ten millitesla of magnetic field strength. This is a weak magnetic field compared to other similar qubit setups, which employ at least ten times stronger fields.

But why is that relevant? By using our layered germanium setup we can reduce the required magnetic field strength and therefore allow the combination of our qubit with superconductors, usually inhibited by strong magnetic fields, Jirovec says. Superconductors materials without any electrical resistance support the linking of several qubits due to their quantum-mechanical nature. This could enable scientists to build new kinds of quantum computers combining semiconductors and superconductors.

In addition to the new technical possibilities, these hole spin qubits look promising because of their processing speed. With up to one hundred million operations per second as well as their long lifetime of up to 150 microseconds they seem particularly viable for quantum computing. Usually, there is a tradeoff between these properties, but this new design brings both advantages together.

Reference: A singlet-triplet hole spin qubit in planar Ge by Daniel Jirovec, Andrea Hofmann, Andrea Ballabio, Philipp M. Mutter, Giulio Tavani, Marc Botifoll, Alessandro Crippa, Josip Kukucka, Oliver Sagi, Frederico Martins, Jaime Saez-Mollejo, Ivan Prieto, Maksim Borovkov, Jordi Arbiol, Daniel Chrastina, Giovanni Isella and Georgios Katsaros, 3 June 2021, Nature Materials.DOI: 10.1038/s41563-021-01022-2

Funding: Scientic Service Units of IST Austria, MIBA Machine Shop and the nanofabrication facility, NOMIS Foundation

Read more:

Quantum Computing With Holes: A New and Promising Qubit at a Place Where There Is Nothing - SciTechDaily

The ‘second quantum revolution’ is almost here. We need to make sure it benefits the many, not the few – The Conversation AU

Over the past six years, quantum science has noticeably shifted, from the domain of physicists concerned with learning about the universe on extremely small scales, to a source of new technologies we all might use for practical purposes. These technologies make use of quantum properties of single atoms or particles of light. They include sensors, communication networks, and computers.

Quantum technologies are expected to impact many aspects of our society, including health care, financial services, defence, weather modelling, and cyber security. Clearly, they promise exciting benefits. Yet the history of technology development shows we cannot simply assume new tools and systems will automatically be in the public interest.

We must look ahead to what a quantum society might entail and how the quantum design choices made today might impact how we live in the near future. The deployment of artificial intelligence and machine learning over the past few years provides a compelling example of why this is necessary.

Lets consider an example. Quantum computers are perhaps the best-known quantum technology, with companies like Google and IBM competing to achieve quantum computation. The advantage of quantum computers lies in their ability to tackle incredibly complex tasks that would take a normal computer millions of years. One such task is simulating molecules behaviour to improve predictions about the properties of prospective new drugs and accelerate their development.

One conundrum posed by quantum computing is the sheer expense of investing in the physical infrastructure of the technology. This means ownership will likely be concentrated among the wealthiest countries and corporations. In turn, this could worsen uneven power distribution enabled by technology.

Other considerations for this particular type of quantum technology include concerns about reduced online privacy.

How do we stop ourselves blundering into a quantum age without due forethought? How do we tackle the societal problems posed by quantum technologies, while nations and companies race to develop them?

Last year, CSIRO released a roadmap that included a call for quantum stakeholders to explore and address social risks. An example of how we might proceed with this has begun at the World Economic Forum (WEF). The WEF is convening experts from industry, policy-making, and research to promote safe and secure quantum technologies by establishing an agreed set of ethical principles for quantum computing.

Australia should draw on such initiatives to ensure the quantum technologies we develop work for the public good. We need to diversify the people involved in quantum technologies in terms of the types of expertise employed and the social contexts we work from so we dont reproduce and amplify existing problems or create new ones.

Read more: Scientists want to build trust in science and technology. The alternative is too risky to contemplate

While we work to shape the impacts of individual quantum technologies, we should also review the language used to describe this second quantum revolution.

The rationale most commonly used to advocate for the field narrowly imagines public benefit of quantum technologies in terms of economic gain and competition between nations and corporations. But framing this as a race to develop quantum technologies means prioritising urgency, commercial interests and national security at the expense of more civic-minded concerns.

Its still early enough to do something about the challenges posed by quantum technologies. Its also not all doom and gloom, with a variety of initiatives and national research and development policies setting out to tackle these problems before they are set in stone.

We need discussions involving a cross-section of society on the potential impacts of quantum technologies on society. This process should clarify societal expectations for the emerging quantum technology sector and inform any national quantum initiative in Australia.

Read more: Why are scientists so excited about a recently claimed quantum computing milestone?

View post:

The 'second quantum revolution' is almost here. We need to make sure it benefits the many, not the few - The Conversation AU

UK govt and IBM together to build 210M AI & quantum computing centre in Daresbury – UKTN (UK Technology News

Modern-day complex problems require power-packed technological solutions to revamp industrial growth. UK government is stepping into helping industries get maximum access to the latest technology and modernising by establishing an AI and quantum computing centre in Daresbury, Cheshire.

The government will invest 172m over five years through UK Research and Innovation (UKRI) with a further investment of 38m from computing giant IBM. The centre is now aimed at developing next-generation computers using AI and quantum computing technologies to help out the businesses future-ready.

The Centre will be operated through collaboration between IBM and the Science and Technology Facilities Council (STFC). The Hartree National Centre for Digital Innovation (HNCDI) programme will create 60 new job and exciting opportunities for students to witness complex problem solving through technology application.

Further, the centre will support AI & Quantum Computing application to tasks such as optimising complex logistics, power grid distribution, designing and manufacturing, traffic management, warehouse management and product innovation.

HNCDI will work with different sectors, including materials, life sciences, environment and manufacturing. It will also engage in collaboration with academic and industrial research communities, startups as well as small and medium-sized enterprises (SMEs).

Ms Solloway, the science minister said quantum computing and AI were not just far-fetched ideas, but real technologies that are already transforming our lives. Artificial intelligence and quantum computing have the potential to revolutionise everything from the way we travel to the way we shop. The building blocks of everyday products like your laptop or your phone are already products of quantum technology, harnessing the unique ways that light and matter behave at tiny atomic or subatomic levels.

Further, she added, This fantastic new partnership with IBM will not only help businesses get ready for the future of computing but create 60 jobs in the region boosting innovation and growing the economy as we build back better from the pandemic.

A spokesman for the Department for Business, Energy and Industrial Strategy said the centres aim was to make cutting-edge technologies like AI and quantum computing more accessible to businesses and public sector organisations.

As well as breaking down practical barriers to using new technologies, the team of experts will also provide training and support to make sure the UK is at the forefront of the next generation of computing, he added.

Prof Mark Thomson, STFCs executive chairman said that by allowing industry to access a ready-made community of digital experts and cutting-edge technology, it will provide momentum for new ideas and solutions.

This programme has the potential to transform the way UK industry engages with AI and digital technologies, to the benefit of not just research communities but all of society.

Senior VP and Director of IBM Research, Mr Dario Gil said that This partnership establishes our first Discovery Accelerator in Europe driven by our two UK-based IBM Research locations in Hursley and Daresbury as they contribute to our global mission of building discovery-driven communities around the world.

Read the rest here:

UK govt and IBM together to build 210M AI & quantum computing centre in Daresbury - UKTN (UK Technology News

Global Quantum Computing Market to Gain $667.3 Million and Surge at a CAGR of 30.0% from 2020-2027 Timeframe – Exclusive [193 pages] COVID-19 Impact…

The global quantum computing industry is projected to surge from 2020 to 2027 due to the rise in the number of cyber-attacks across the world. Consulting solutions sub-segment is estimated to be the most profitable. The European market is estimated to be the most dominating during the forecasted period.

New York, USA, June 07, 2021 (GLOBE NEWSWIRE) -- According to a recent report studied by Research Dive, the global quantum computing market is speculated to exceed $667.3 million by the end of 2027, rising from a market size of $88.2 million in 2019, at a growth rate of 30.0% during 2020-2027 estimated timeframe. The report highlights the coronavirus mayhem impact on the market, major drivers, hindrances, and regional outlook of the market. The research methodology used in the report is a combination of both primary and secondary research methods.

Download FREE Sample Report of the Global Quantum Computing Market: https://www.researchdive.com/download-sample/8332

Covid-19 Outbreak Impact on the Global Market

The quantum computing market is anticipated to experience a positive impact globally during the coronavirus crises. The reason for market growth is that quantum technology offers augmented performance computing that can shift dynamics for quantum chemistry. Further, quantum technology provides exponential speed for amplified optimization and vital calculations. These facets are predicted to govern the market growth during the coronavirus emergency.

Check out How COVID-19 impacts the Global Quantum Computing Market. Click here to Connect with our Analyst to get more Market Insight: https://www.researchdive.com/connect-to-analyst/8332

Aspects Impacting the Market

The global quantum computing market is projected to witness progressive growth due to rise in the cyber-attack cases. Quantum technology assures security to software systems and applications and protects vital data of organizations from attacks such as ransomware, phishing, worms, and much more. Furthermore, key companies of the market are planning strategic frameworks by utilizing quantum personal computers for cyber-security. These aspects are anticipated to surge the market growth during the forecasted timeframe. However, a lack of awareness of quantum technology and unskilled employees is expected to hinder the market growth. On the other hand, the ability of quantum technology to aid farmers in augmenting the yield and efficiency of plants is projected to create promising opportunities for the market growth.

Story continues

Access Varied Market Reports Bearing Extensive Analysis of the Market Situation, Updated With The Impact of COVID-19: https://www.researchdive.com/covid-19-insights

Consulting Solutions Sub-Segment to be the Most Profitable

From the offerings type segment, the consulting solutions sub-segment is anticipated to reach newer heights during the timeframe. The sub-segment is expected to register a revenue of $354.0 million by the end of the 2027 timeframe. The sub-segment upsurge is due to the usage of quantum computing in applications such as drug discovery, formulation of chemicals, material science, and automotive. Apart from this, it is also used in the chemical industry, aerospace & defense, healthcare, and energy & power sectors. These wide-scale applications are speculated to bolster the growth of the sub-segment during the forecasted years.

Check out all Information and communication technology & media Industry Reports: https://www.researchdive.com/information-and-communication-technology-and-media

Machine Learning Sub-Segment to Gain Maximum Revenue

From the application segment, the machine learning sub-segment is projected to achieve maximum revenue during the forecasted timeframe. The sub-segment is anticipated to cross $236.9 million by the end of 2027, rising from a market share of $29.7 million in the year 2019. The ability of quantum learning to accelerate machine learning such as optimization, deep learning, Kernel evaluation, and linear algebra is expected to propel the sub-segment market growth during the analyzed timeframe.

Finance & Banking Sub-Segment to Witness Rapid Growth

From the end-user segment, the finance & banking sub-division is speculated to grow rapidly and register a revenue of $159.2 million by 2027. The sub-segment growth is due to the usage of quantum technology in banking for supporting the large-frequency trading aspect.

Regional Outlook

The European market was expected to hold a market size of $28.2 million in 2019 and is speculated to garner a revenue of $221.2 million by the end of 2027. The market growth is mainly attributed to the extensive use of quantum computing in fields such as chemicals, healthcare, pharmaceuticals, and utilities. Moreover, its usage in cryptography, novel drugs, defense, and cybersecurity is predicted to drive the global market during the estimated timeframe.

Major Key Players

QC Ware, Corp. Cambridge Quantum Computing Limited D-Wave Systems Inc., International Business Machines Corporation Rigetti Computing 1QB Information Technologies River Lane Research StationQ Microsoft Anyon Google Inc.

These leading players are planning varied strategies such as acquisitions of companies, product developments, tie-ups & collaborations for maximizing profits, research & development, and organizational development to gain an upper edge in the market worldwide. For example, in April 2021, Nvidia, a computer systems design services company, revealed cuQuantum SDK. This product is a developmental platform for revitalizing quantum circuits on GPU-accelerated systems.

The report consists of various facets of all the vital players that are operative in the market such as financial performance, product portfolio, present strategic moves, major developments and SWOT. Click Here to Get Absolute Top Companies Development Strategies Summary Report.

TRENDING REPORTS WITH COVID-19 IMPACT ANALYSIS

Advanced Persistent Threat (APT) Protection Market https://www.researchdive.com/8335/advanced-persistent-threat-apt-protection-market

Network Slicing Market https://www.researchdive.com/5670/network-slicing-market

Signal Intelligence (SIGINT) Market https://www.researchdive.com/5478/signals-intelligence-sigint-market

Application Security Market https://www.researchdive.com/5735/application-security-market

See the rest here:

Global Quantum Computing Market to Gain $667.3 Million and Surge at a CAGR of 30.0% from 2020-2027 Timeframe - Exclusive [193 pages] COVID-19 Impact...

IBM and UK Government invest 210m in new AI and computing centre – Built Environment Networking

A new artificial intelligence and quantum computing centre has been launched in North West England, thanks to a 210 million investment from the Government and IBM to help cement the UKs status as a science superpower.

The Hartree National Centre for Digital Innovation (HNCDI), based at the Science and Technology Facilities Councils (STFC) Daresbury Laboratory in the Liverpool City Region, will create vacancies for an additional 60 scientists and opportunities for students to gain invaluable hands-on experience.

The centre a partnership between STFC and IBM will bring together world-leading expertise in artificial intelligence (AI) and quantum computing to support the application of the cutting-edge technologies in industry and the public sector.

Possible industry applications of quantum computing include optimising complex logistics such as picking and packing orders in large warehouses for supermarkets; traffic routing; energy distribution; improving design and manufacturing processes across automotive sectors.

The government will invest 172 million over 5 years through UK Research and Innovation (UKRI), with an additional 38 million being invested by IBM. 28 million of the governments investment will be in the first year.

Science Minister Amanda Solloway:

Artificial intelligence and quantum computing have the potential to revolutionise everything from the way we travel to the way we shop.

This fantastic new partnership with IBM will not only help businesses get ready for the future of computing, but create 60 jobs in the region boosting innovation and growing the economy as we build back better from the pandemic.

The HNCDI will make cutting-edge technologies like AI and quantum computing more accessible to businesses and public sector organisations.

As well as breaking down practical barriers to using new technologies, for example by providing access to equipment and infrastructure, the team of experts at HNCDI will also provide training and support to make sure the UK is at the forefront of the next generation of computing.

Dario Gil, Senior Vice President and Director, IBM Research:

The world is facing grand challenges which demand a different approach towards science in computing, including AI and quantum computing, to engage a broad community across industry, government, and academia to accelerate discovery in science and business.

This partnership establishes our first Discovery Accelerator in Europe driven by our two UK-based IBM Research locations in Hursley and Daresbury as they contribute to our global mission of building discovery-driven communities around the world.

The technologies that have transformed our lives the building blocks of modern computers, the mobile phone, the laser, the MRI scanner are all products of quantum science. This involves harnessing the unique ways that light and matter behave at tiny atomic or subatomic levels.

A new generation of quantum technologies exploit breakthroughs in the way that we are able to precisely manipulate and measure these special properties, to engineer quantum devices like sensors and computers with dramatically enhanced functionality and performance.

The centre will work across sectors including materials, life sciences, environment and manufacturing. This will include collaboration with academic and industrial research communities, including start-ups and SMEs, public sector, and government.

Professor Mark Thomson, Executive Chair of STFC:

The HNCDI programme will foster discovery and provide a stimulus for industry innovation in the UK.

By allowing industry to access a ready-made community of digital experts and cutting-edge technology, it will provide momentum for new ideas and solutions.

This programme has the potential to transform the way UK industry engages with AI and digital technologies, to the benefit of not just research communities but all of society.

Read more:

IBM and UK Government invest 210m in new AI and computing centre - Built Environment Networking



12345...10...