12345...10...


Artificial intelligence – Wikipedia

Intelligence demonstrated by machines

In computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of “intelligent agents”: any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.[1] More in detail, Kaplan and Haenlein define AI as a systems ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation.[2] Colloquially, the term “artificial intelligence” is applied when a machine mimics “cognitive” functions that humans associate with other human minds, such as “learning” and “problem solving”.

The scope of AI is disputed: as machines become increasingly capable, tasks considered as requiring “intelligence” are often removed from the definition, a phenomenon known as the AI effect, leading to the quip in Tesler’s Theorem, “AI is whatever hasn’t been done yet.”[4] For instance, optical character recognition is frequently excluded from “artificial intelligence”, having become a routine technology.[5] Modern machine capabilities generally classified as AI include successfully understanding human speech, competing at the highest level in strategic game systems (such as chess and Go),[7] autonomously operating cars, and intelligent routing in content delivery networks and military simulations.

Borrowing from the management literature, Kaplan and Haenlein classify artificial intelligence into three different types of AI systems: analytical, human-inspired, and humanized artificial intelligence.[8] Analytical AI has only characteristics consistent with cognitive intelligence generating cognitive representation of the world and using learning based on past experience to inform future decisions. Human-inspired AI has elements from cognitive as well as emotional intelligence, understanding, in addition to cognitive elements, also human emotions considering them in their decision making. Humanized AI shows characteristics of all types of competencies (i.e., cognitive, emotional, and social intelligence), able to be self-conscious and self-aware in interactions with others.

Artificial intelligence was founded as an academic discipline in 1956, and in the years since has experienced several waves of optimism,[9][10] followed by disappointment and the loss of funding (known as an “AI winter”),[11][12] followed by new approaches, success and renewed funding.[10][13] For most of its history, AI research has been divided into subfields that often fail to communicate with each other.[14] These sub-fields are based on technical considerations, such as particular goals (e.g. “robotics” or “machine learning”),[15] the use of particular tools (“logic” or artificial neural networks), or deep philosophical differences.[16][17][18] Subfields have also been based on social factors (particular institutions or the work of particular researchers).[14]

The traditional problems (or goals) of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects.[15] General intelligence is among the field’s long-term goals.[19] Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, artificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer science, information engineering, mathematics, psychology, linguistics, philosophy, and many others.

The field was founded on the claim that human intelligence “can be so precisely described that a machine can be made to simulate it”.[20] This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence which are issues that have been explored by myth, fiction and philosophy since antiquity.[21] Some people also consider AI to be a danger to humanity if it progresses unabated.[22] Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.[23]

In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science, software engineering and operations research.[24][13]

Thought-capable artificial beings appeared as storytelling devices in antiquity,[25] and have been common in fiction, as in Mary Shelley’s Frankenstein or Karel apek’s R.U.R. (Rossum’s Universal Robots).[26] These characters and their fates raised many of the same issues now discussed in the ethics of artificial intelligence.[21]

The study of mechanical or “formal” reasoning began with philosophers and mathematicians in antiquity. The study of mathematical logic led directly to Alan Turing’s theory of computation, which suggested that a machine, by shuffling symbols as simple as “0” and “1”, could simulate any conceivable act of mathematical deduction. This insight, that digital computers can simulate any process of formal reasoning, is known as the ChurchTuring thesis.[27] Along with concurrent discoveries in neurobiology, information theory and cybernetics, this led researchers to consider the possibility of building an electronic brain. Turing proposed that “if a human could not distinguish between responses from a machine and a human, the machine could be considered “intelligent”.[28] The first work that is now generally recognized as AI was McCullouch and Pitts’ 1943 formal design for Turing-complete “artificial neurons”.

The field of AI research was born at a workshop at Dartmouth College in 1956.[30] Attendees Allen Newell (CMU), Herbert Simon (CMU), John McCarthy (MIT), Marvin Minsky (MIT) and Arthur Samuel (IBM) became the founders and leaders of AI research.[31] They and their students produced programs that the press described as “astonishing”: computers were learning checkers strategies (c. 1954)[33] (and by 1959 were reportedly playing better than the average human),[34] solving word problems in algebra, proving logical theorems (Logic Theorist, first run c. 1956) and speaking English.[35] By the middle of the 1960s, research in the U.S. was heavily funded by the Department of Defense[36] and laboratories had been established around the world.[37] AI’s founders were optimistic about the future: Herbert Simon predicted, “machines will be capable, within twenty years, of doing any work a man can do”. Marvin Minsky agreed, writing, “within a generation… the problem of creating ‘artificial intelligence’ will substantially be solved”.[9]

They failed to recognize the difficulty of some of the remaining tasks. Progress slowed and in 1974, in response to the criticism of Sir James Lighthill and ongoing pressure from the US Congress to fund more productive projects, both the U.S. and British governments cut off exploratory research in AI. The next few years would later be called an “AI winter”,[11] a period when obtaining funding for AI projects was difficult.

In the early 1980s, AI research was revived by the commercial success of expert systems,[39] a form of AI program that simulated the knowledge and analytical skills of human experts. By 1985, the market for AI had reached over a billion dollars. At the same time, Japan’s fifth generation computer project inspired the U.S and British governments to restore funding for academic research.[10] However, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, longer-lasting hiatus began.[12]

In the late 1990s and early 21st century, AI began to be used for logistics, data mining, medical diagnosis and other areas.[24] The success was due to increasing computational power (see Moore’s law), greater emphasis on solving specific problems, new ties between AI and other fields (such as statistics, economics and mathematics), and a commitment by researchers to mathematical methods and scientific standards.[40] Deep Blue became the first computer chess-playing system to beat a reigning world chess champion, Garry Kasparov, on 11 May 1997.

In 2011, a Jeopardy! quiz show exhibition match, IBM’s question answering system, Watson, defeated the two greatest Jeopardy! champions, Brad Rutter and Ken Jennings, by a significant margin. Faster computers, algorithmic improvements, and access to large amounts of data enabled advances in machine learning and perception; data-hungry deep learning methods started to dominate accuracy benchmarks around 2012.[43] The Kinect, which provides a 3D bodymotion interface for the Xbox 360 and the Xbox One, uses algorithms that emerged from lengthy AI research[44] as do intelligent personal assistants in smartphones.[45] In March 2016, AlphaGo won 4 out of 5 games of Go in a match with Go champion Lee Sedol, becoming the first computer Go-playing system to beat a professional Go player without handicaps.[7][46] In the 2017 Future of Go Summit, AlphaGo won a three-game match with Ke Jie,[47] who at the time continuously held the world No. 1 ranking for two years.[48][49] This marked the completion of a significant milestone in the development of Artificial Intelligence as Go is an extremely complex game, more so than Chess.

According to Bloomberg’s Jack Clark, 2015 was a landmark year for artificial intelligence, with the number of software projects that use AI within Google increased from a “sporadic usage” in 2012 to more than 2,700 projects. Clark also presents factual data indicating that error rates in image processing tasks have fallen significantly since 2011.[50] He attributes this to an increase in affordable neural networks, due to a rise in cloud computing infrastructure and to an increase in research tools and datasets.[13] Other cited examples include Microsoft’s development of a Skype system that can automatically translate from one language to another and Facebook’s system that can describe images to blind people.[50] In a 2017 survey, one in five companies reported they had “incorporated AI in some offerings or processes”.[51][52] Around 2016, China greatly accelerated its government funding; given its large supply of data and its rapidly increasing research output, some observers believe it may be on track to becoming an “AI superpower”.[53][54]

A typical AI perceives its environment and takes actions that maximize its chance of successfully achieving its goals.[1] An AI’s intended goal function can be simple (“1 if the AI wins a game of Go, 0 otherwise”) or complex (“Do actions mathematically similar to the actions that got you rewards in the past”). Goals can be explicitly defined, or can be induced. If the AI is programmed for “reinforcement learning”, goals can be implicitly induced by rewarding some types of behavior and punishing others.[a] Alternatively, an evolutionary system can induce goals by using a “fitness function” to mutate and preferentially replicate high-scoring AI systems; this is similar to how animals evolved to innately desire certain goals such as finding food, or how dogs can be bred via artificial selection to possess desired traits. Some AI systems, such as nearest-neighbor, instead reason by analogy; these systems are not generally given goals, except to the degree that goals are somehow implicit in their training data. Such systems can still be benchmarked if the non-goal system is framed as a system whose “goal” is to successfully accomplish its narrow classification task.[57]

AI often revolves around the use of algorithms. An algorithm is a set of unambiguous instructions that a mechanical computer can execute.[b] A complex algorithm is often built on top of other, simpler, algorithms. A simple example of an algorithm is the following recipe for optimal play at tic-tac-toe:

Many AI algorithms are capable of learning from data; they can enhance themselves by learning new heuristics (strategies, or “rules of thumb”, that have worked well in the past), or can themselves write other algorithms. Some of the “learners” described below, including Bayesian networks, decision trees, and nearest-neighbor, could theoretically, if given infinite data, time, and memory, learn to approximate any function, including whatever combination of mathematical functions would best describe the entire world. These learners could therefore, in theory, derive all possible knowledge, by considering every possible hypothesis and matching it against the data. In practice, it is almost never possible to consider every possibility, because of the phenomenon of “combinatorial explosion”, where the amount of time needed to solve a problem grows exponentially. Much of AI research involves figuring out how to identify and avoid considering broad swaths of possibilities that are unlikely to be fruitful.[59] For example, when viewing a map and looking for the shortest driving route from Denver to New York in the East, one can in most cases skip looking at any path through San Francisco or other areas far to the West; thus, an AI wielding an pathfinding algorithm like A* can avoid the combinatorial explosion that would ensue if every possible route had to be ponderously considered in turn.[61]

The earliest (and easiest to understand) approach to AI was symbolism (such as formal logic): “If an otherwise healthy adult has a fever, then they may have influenza”. A second, more general, approach is Bayesian inference: “If the current patient has a fever, adjust the probability they have influenza in such-and-such way”. The third major approach, extremely popular in routine business AI applications, are analogizers such as SVM and nearest-neighbor: “After examining the records of known past patients whose temperature, symptoms, age, and other factors mostly match the current patient, X% of those patients turned out to have influenza”. A fourth approach is harder to intuitively understand, but is inspired by how the brain’s machinery works: the artificial neural network approach uses artificial “neurons” that can learn by comparing itself to the desired output and altering the strengths of the connections between its internal neurons to “reinforce” connections that seemed to be useful. These four main approaches can overlap with each other and with evolutionary systems; for example, neural nets can learn to make inferences, to generalize, and to make analogies. Some systems implicitly or explicitly use multiple of these approaches, alongside many other AI and non-AI algorithms;[62] the best approach is often different depending on the problem.[64]

Learning algorithms work on the basis that strategies, algorithms, and inferences that worked well in the past are likely to continue working well in the future. These inferences can be obvious, such as “since the sun rose every morning for the last 10,000 days, it will probably rise tomorrow morning as well”. They can be nuanced, such as “X% of families have geographically separate species with color variants, so there is an Y% chance that undiscovered black swans exist”. Learners also work on the basis of “Occam’s razor”: The simplest theory that explains the data is the likeliest. Therefore, to be successful, a learner must be designed such that it prefers simpler theories to complex theories, except in cases where the complex theory is proven substantially better. Settling on a bad, overly complex theory gerrymandered to fit all the past training data is known as overfitting. Many systems attempt to reduce overfitting by rewarding a theory in accordance with how well it fits the data, but penalizing the theory in accordance with how complex the theory is. Besides classic overfitting, learners can also disappoint by “learning the wrong lesson”. A toy example is that an image classifier trained only on pictures of brown horses and black cats might conclude that all brown patches are likely to be horses. A real-world example is that, unlike humans, current image classifiers don’t determine the spatial relationship between components of the picture; instead, they learn abstract patterns of pixels that humans are oblivious to, but that linearly correlate with images of certain types of real objects. Faintly superimposing such a pattern on a legitimate image results in an “adversarial” image that the system misclassifies.[c][67][68][69]

Compared with humans, existing AI lacks several features of human “commonsense reasoning”; most notably, humans have powerful mechanisms for reasoning about “nave physics” such as space, time, and physical interactions. This enables even young children to easily make inferences like “If I roll this pen off a table, it will fall on the floor”. Humans also have a powerful mechanism of “folk psychology” that helps them to interpret natural-language sentences such as “The city councilmen refused the demonstrators a permit because they advocated violence”. (A generic AI has difficulty inferring whether the councilmen or the demonstrators are the ones alleged to be advocating violence.)[72][73][74] This lack of “common knowledge” means that AI often makes different mistakes than humans make, in ways that can seem incomprehensible. For example, existing self-driving cars cannot reason about the location nor the intentions of pedestrians in the exact way that humans do, and instead must use non-human modes of reasoning to avoid accidents.[75][76][77]

The overall research goal of artificial intelligence is to create technology that allows computers and machines to function in an intelligent manner. The general problem of simulating (or creating) intelligence has been broken down into sub-problems. These consist of particular traits or capabilities that researchers expect an intelligent system to display. The traits described below have received the most attention.[15]

Early researchers developed algorithms that imitated step-by-step reasoning that humans use when they solve puzzles or make logical deductions.[78] By the late 1980s and 1990s, AI research had developed methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[79]

These algorithms proved to be insufficient for solving large reasoning problems, because they experienced a “combinatorial explosion”: they became exponentially slower as the problems grew larger.[59] In fact, even humans rarely use the step-by-step deduction that early AI research was able to model. They solve most of their problems using fast, intuitive judgements.[80]

Knowledge representation[81] and knowledge engineering[82] are central to classical AI research. Some “expert systems” attempt to gather together explicit knowledge possessed by experts in some narrow domain. In addition, some projects attempt to gather the “commonsense knowledge” known to the average person into a database containing extensive knowledge about the world. Among the things a comprehensive commonsense knowledge base would contain are: objects, properties, categories and relations between objects;[83] situations, events, states and time;[84] causes and effects;[85] knowledge about knowledge (what we know about what other people know);[86] and many other, less well researched domains. A representation of “what exists” is an ontology: the set of objects, relations, concepts, and properties formally described so that software agents can interpret them. The semantics of these are captured as description logic concepts, roles, and individuals, and typically implemented as classes, properties, and individuals in the Web Ontology Language.[87] The most general ontologies are called upper ontologies, which attempt to provide a foundation for all other knowledge[88] by acting as mediators between domain ontologies that cover specific knowledge about a particular knowledge domain (field of interest or area of concern). Such formal knowledge representations can be used in content-based indexing and retrieval,[89] scene interpretation,[90] clinical decision support,[91] knowledge discovery (mining “interesting” and actionable inferences from large databases),[92] and other areas.[93]

Among the most difficult problems in knowledge representation are:

Intelligent agents must be able to set goals and achieve them.[100] They need a way to visualize the futurea representation of the state of the world and be able to make predictions about how their actions will change itand be able to make choices that maximize the utility (or “value”) of available choices.[101]

In classical planning problems, the agent can assume that it is the only system acting in the world, allowing the agent to be certain of the consequences of its actions.[102] However, if the agent is not the only actor, then it requires that the agent can reason under uncertainty. This calls for an agent that can not only assess its environment and make predictions, but also evaluate its predictions and adapt based on its assessment.[103]

Multi-agent planning uses the cooperation and competition of many agents to achieve a given goal. Emergent behavior such as this is used by evolutionary algorithms and swarm intelligence.[104]

Machine learning, a fundamental concept of AI research since the field’s inception,[105] is the study of computer algorithms that improve automatically through experience.[106][107]

Unsupervised learning is the ability to find patterns in a stream of input, without requiring a human to label the inputs first.[108] Supervised learning includes both classification and numerical regression, which requires a human to label the input data first. Classification is used to determine what category something belongs in, after seeing a number of examples of things from several categories. Regression is the attempt to produce a function that describes the relationship between inputs and outputs and predicts how the outputs should change as the inputs change.[107] Both classifiers and regression learners can be viewed as “function approximators” trying to learn an unknown (possibly implicit) function; for example, a spam classifier can be viewed as learning a function that maps from the text of an email to one of two categories, “spam” or “not spam”. Computational learning theory can assess learners by computational complexity, by sample complexity (how much data is required), or by other notions of optimization.[109] In reinforcement learning[110] the agent is rewarded for good responses and punished for bad ones. The agent uses this sequence of rewards and punishments to form a strategy for operating in its problem space.

Natural language processing[111] (NLP) gives machines the ability to read and understand human language. A sufficiently powerful natural language processing system would enable natural-language user interfaces and the acquisition of knowledge directly from human-written sources, such as newswire texts. Some straightforward applications of natural language processing include information retrieval, text mining, question answering[112] and machine translation.[113] Many current approaches use word co-occurrence frequencies to construct syntactic representations of text. “Keyword spotting” strategies for search are popular and scalable but dumb; a search query for “dog” might only match documents with the literal word “dog” and miss a document with the word “poodle”. “Lexical affinity” strategies use the occurrence of words such as “accident” to assess the sentiment of a document. Modern statistical NLP approaches can combine all these strategies as well as others, and often achieve acceptable accuracy at the page or paragraph level, but continue to lack the semantic understanding required to classify isolated sentences well. Besides the usual difficulties with encoding semantic commonsense knowledge, existing semantic NLP sometimes scales too poorly to be viable in business applications. Beyond semantic NLP, the ultimate goal of “narrative” NLP is to embody a full understanding of commonsense reasoning.[114]

Machine perception[115] is the ability to use input from sensors (such as cameras (visible spectrum or infrared), microphones, wireless signals, and active lidar, sonar, radar, and tactile sensors) to deduce aspects of the world. Applications include speech recognition,[116] facial recognition, and object recognition.[117] Computer vision is the ability to analyze visual input. Such input is usually ambiguous; a giant, fifty-meter-tall pedestrian far away may produce exactly the same pixels as a nearby normal-sized pedestrian, requiring the AI to judge the relative likelihood and reasonableness of different interpretations, for example by using its “object model” to assess that fifty-meter pedestrians do not exist.[118]

AI is heavily used in robotics.[119] Advanced robotic arms and other industrial robots, widely used in modern factories, can learn from experience how to move efficiently despite the presence of friction and gear slippage.[120] A modern mobile robot, when given a small, static, and visible environment, can easily determine its location and map its environment; however, dynamic environments, such as (in endoscopy) the interior of a patient’s breathing body, pose a greater challenge. Motion planning is the process of breaking down a movement task into “primitives” such as individual joint movements. Such movement often involves compliant motion, a process where movement requires maintaining physical contact with an object.[122][123] Moravec’s paradox generalizes that low-level sensorimotor skills that humans take for granted are, counterintuitively, difficult to program into a robot; the paradox is named after Hans Moravec, who stated in 1988 that “it is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility”.[124][125] This is attributed to the fact that, unlike checkers, physical dexterity has been a direct target of natural selection for millions of years.[126]

Moravec’s paradox can be extended to many forms of social intelligence.[128][129] Distributed multi-agent coordination of autonomous vehicles remains a difficult problem.[130] Affective computing is an interdisciplinary umbrella that comprises systems which recognize, interpret, process, or simulate human affects. Moderate successes related to affective computing include textual sentiment analysis and, more recently, multimodal affect analysis (see multimodal sentiment analysis), wherein AI classifies the affects displayed by a videotaped subject.[134]

In the long run, social skills and an understanding of human emotion and game theory would be valuable to a social agent. Being able to predict the actions of others by understanding their motives and emotional states would allow an agent to make better decisions. Some computer systems mimic human emotion and expressions to appear more sensitive to the emotional dynamics of human interaction, or to otherwise facilitate humancomputer interaction.[135] Similarly, some virtual assistants are programmed to speak conversationally or even to banter humorously; this tends to give nave users an unrealistic conception of how intelligent existing computer agents actually are.[136]

Historically, projects such as the Cyc knowledge base (1984) and the massive Japanese Fifth Generation Computer Systems initiative (19821992) attempted to cover the breadth of human cognition. These early projects failed to escape the limitations of non-quantitative symbolic logic models and, in retrospect, greatly underestimated the difficulty of cross-domain AI. Nowadays, the vast majority of current AI researchers work instead on tractable “narrow AI” applications (such as medical diagnosis or automobile navigation).[137] Many researchers predict that such “narrow AI” work in different individual domains will eventually be incorporated into a machine with artificial general intelligence (AGI), combining most of the narrow skills mentioned in this article and at some point even exceeding human ability in most or all these areas.[19][138] Many advances have general, cross-domain significance. One high-profile example is that DeepMind in the 2010s developed a “generalized artificial intelligence” that could learn many diverse Atari games on its own, and later developed a variant of the system which succeeds at sequential learning.[139][140][141] Besides transfer learning,[142] hypothetical AGI breakthroughs could include the development of reflective architectures that can engage in decision-theoretic metareasoning, and figuring out how to “slurp up” a comprehensive knowledge base from the entire unstructured Web. Some argue that some kind of (currently-undiscovered) conceptually straightforward, but mathematically difficult, “Master Algorithm” could lead to AGI. Finally, a few “emergent” approaches look to simulating human intelligence extremely closely, and believe that anthropomorphic features like an artificial brain or simulated child development may someday reach a critical point where general intelligence emerges.[144][145]

Many of the problems in this article may also require general intelligence, if machines are to solve the problems as well as people do. For example, even specific straightforward tasks, like machine translation, require that a machine read and write in both languages (NLP), follow the author’s argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author’s original intent (social intelligence). A problem like machine translation is considered “AI-complete”, because all of these problems need to be solved simultaneously in order to reach human-level machine performance.

There is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[146] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence by studying psychology or neurobiology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[16]Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[17]

In the 1940s and 1950s, a number of researchers explored the connection between neurobiology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter’s turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[147] By 1960, this approach was largely abandoned, although elements of it would be revived in the 1980s.

When access to digital computers became possible in the middle 1950s, AI research began to explore the possibility that human intelligence could be reduced to symbol manipulation. The research was centered in three institutions: Carnegie Mellon University, Stanford and MIT, and as described below, each one developed its own style of research. John Haugeland named these symbolic approaches to AI “good old fashioned AI” or “GOFAI”.[148] During the 1960s, symbolic approaches had achieved great success at simulating high-level thinking in small demonstration programs. Approaches based on cybernetics or artificial neural networks were abandoned or pushed into the background.[149]Researchers in the 1960s and the 1970s were convinced that symbolic approaches would eventually succeed in creating a machine with artificial general intelligence and considered this the goal of their field.

Economist Herbert Simon and Allen Newell studied human problem-solving skills and attempted to formalize them, and their work laid the foundations of the field of artificial intelligence, as well as cognitive science, operations research and management science. Their research team used the results of psychological experiments to develop programs that simulated the techniques that people used to solve problems. This tradition, centered at Carnegie Mellon University would eventually culminate in the development of the Soar architecture in the middle 1980s.[150][151]

Unlike Simon and Newell, John McCarthy felt that machines did not need to simulate human thought, but should instead try to find the essence of abstract reasoning and problem-solving, regardless of whether people used the same algorithms.[16] His laboratory at Stanford (SAIL) focused on using formal logic to solve a wide variety of problems, including knowledge representation, planning and learning.[152] Logic was also the focus of the work at the University of Edinburgh and elsewhere in Europe which led to the development of the programming language Prolog and the science of logic programming.[153]

Researchers at MIT (such as Marvin Minsky and Seymour Papert)[154] found that solving difficult problems in vision and natural language processing required ad-hoc solutionsthey argued that there was no simple and general principle (like logic) that would capture all the aspects of intelligent behavior. Roger Schank described their “anti-logic” approaches as “scruffy” (as opposed to the “neat” paradigms at CMU and Stanford).[17] Commonsense knowledge bases (such as Doug Lenat’s Cyc) are an example of “scruffy” AI, since they must be built by hand, one complicated concept at a time.[155]

When computers with large memories became available around 1970, researchers from all three traditions began to build knowledge into AI applications.[156] This “knowledge revolution” led to the development and deployment of expert systems (introduced by Edward Feigenbaum), the first truly successful form of AI software.[39] A key component of the system architecture for all expert systems is the knowledge base, which stores facts and rules that illustrate AI.[157] The knowledge revolution was also driven by the realization that enormous amounts of knowledge would be required by many simple AI applications.

By the 1980s, progress in symbolic AI seemed to stall and many believed that symbolic systems would never be able to imitate all the processes of human cognition, especially perception, robotics, learning and pattern recognition. A number of researchers began to look into “sub-symbolic” approaches to specific AI problems.[18] Sub-symbolic methods manage to approach intelligence without specific representations of knowledge.

This includes embodied, situated, behavior-based, and nouvelle AI. Researchers from the related field of robotics, such as Rodney Brooks, rejected symbolic AI and focused on the basic engineering problems that would allow robots to move and survive.[158] Their work revived the non-symbolic viewpoint of the early cybernetics researchers of the 1950s and reintroduced the use of control theory in AI. This coincided with the development of the embodied mind thesis in the related field of cognitive science: the idea that aspects of the body (such as movement, perception and visualization) are required for higher intelligence.

Within developmental robotics, developmental learning approaches are elaborated upon to allow robots to accumulate repertoires of novel skills through autonomous self-exploration, social interaction with human teachers, and the use of guidance mechanisms (active learning, maturation, motor synergies, etc.).[159][160]

Interest in neural networks and “connectionism” was revived by David Rumelhart and others in the middle of the 1980s.[163] Artificial neural networks are an example of soft computingthey are solutions to problems which cannot be solved with complete logical certainty, and where an approximate solution is often sufficient. Other soft computing approaches to AI include fuzzy systems, evolutionary computation and many statistical tools. The application of soft computing to AI is studied collectively by the emerging discipline of computational intelligence.[164]

Much of traditional GOFAI got bogged down on ad hoc patches to symbolic computation that worked on their own toy models but failed to generalize to real-world results. However, around the 1990s, AI researchers adopted sophisticated mathematical tools, such as hidden Markov models (HMM), information theory, and normative Bayesian decision theory to compare or to unify competing architectures. The shared mathematical language permitted a high level of collaboration with more established fields (like mathematics, economics or operations research).[d] Compared with GOFAI, new “statistical learning” techniques such as HMM and neural networks were gaining higher levels of accuracy in many practical domains such as data mining, without necessarily acquiring semantic understanding of the datasets. The increased successes with real-world data led to increasing emphasis on comparing different approaches against shared test data to see which approach performed best in a broader context than that provided by idiosyncratic toy models; AI research was becoming more scientific. Nowadays results of experiments are often rigorously measurable, and are sometimes (with difficulty) reproducible.[40][165] Different statistical learning techniques have different limitations; for example, basic HMM cannot model the infinite possible combinations of natural language. Critics note that the shift from GOFAI to statistical learning is often also a shift away from Explainable AI. In AGI research, some scholars caution against over-reliance on statistical learning, and argue that continuing research into GOFAI will still be necessary to attain general intelligence.

AI has developed a large number of tools to solve the most difficult problems in computer science. A few of the most general of these methods are discussed below.

Many problems in AI can be solved in theory by intelligently searching through many possible solutions:[174] Reasoning can be reduced to performing a search. For example, logical proof can be viewed as searching for a path that leads from premises to conclusions, where each step is the application of an inference rule.[175] Planning algorithms search through trees of goals and subgoals, attempting to find a path to a target goal, a process called means-ends analysis.[176] Robotics algorithms for moving limbs and grasping objects use local searches in configuration space.[120] Many learning algorithms use search algorithms based on optimization.

Simple exhaustive searches[177] are rarely sufficient for most real-world problems: the search space (the number of places to search) quickly grows to astronomical numbers. The result is a search that is too slow or never completes. The solution, for many problems, is to use “heuristics” or “rules of thumb” that prioritize choices in favor of those that are more likely to reach a goal and to do so in a shorter number of steps. In some search methodologies heuristics can also serve to entirely eliminate some choices that are unlikely to lead to a goal (called “pruning the search tree”). Heuristics supply the program with a “best guess” for the path on which the solution lies.[178] Heuristics limit the search for solutions into a smaller sample size.

A very different kind of search came to prominence in the 1990s, based on the mathematical theory of optimization. For many problems, it is possible to begin the search with some form of a guess and then refine the guess incrementally until no more refinements can be made. These algorithms can be visualized as blind hill climbing: we begin the search at a random point on the landscape, and then, by jumps or steps, we keep moving our guess uphill, until we reach the top. Other optimization algorithms are simulated annealing, beam search and random optimization.[179]

Evolutionary computation uses a form of optimization search. For example, they may begin with a population of organisms (the guesses) and then allow them to mutate and recombine, selecting only the fittest to survive each generation (refining the guesses). Classic evolutionary algorithms include genetic algorithms, gene expression programming, and genetic programming.[180] Alternatively, distributed search processes can coordinate via swarm intelligence algorithms. Two popular swarm algorithms used in search are particle swarm optimization (inspired by bird flocking) and ant colony optimization (inspired by ant trails).[181][182]

Logic[183] is used for knowledge representation and problem solving, but it can be applied to other problems as well. For example, the satplan algorithm uses logic for planning[184] and inductive logic programming is a method for learning.[185]

Several different forms of logic are used in AI research. Propositional logic[186] involves truth functions such as “or” and “not”. First-order logic[187] adds quantifiers and predicates, and can express facts about objects, their properties, and their relations with each other. Fuzzy set theory assigns a “degree of truth” (between 0 and 1) to vague statements such as “Alice is old” (or rich, or tall, or hungry) that are too linguistically imprecise to be completely true or false. Fuzzy logic is successfully used in control systems to allow experts to contribute vague rules such as “if you are close to the destination station and moving fast, increase the train’s brake pressure”; these vague rules can then be numerically refined within the system. Fuzzy logic fails to scale well in knowledge bases; many AI researchers question the validity of chaining fuzzy-logic inferences.[e][189][190]

Default logics, non-monotonic logics and circumscription[95] are forms of logic designed to help with default reasoning and the qualification problem. Several extensions of logic have been designed to handle specific domains of knowledge, such as: description logics;[83] situation calculus, event calculus and fluent calculus (for representing events and time);[84] causal calculus;[85] belief calculus;[191] and modal logics.[86]

Overall, qualitiative symbolic logic is brittle and scales poorly in the presence of noise or other uncertainty. Exceptions to rules are numerous, and it is difficult for logical systems to function in the presence of contradictory rules.[193]

Many problems in AI (in reasoning, planning, learning, perception, and robotics) require the agent to operate with incomplete or uncertain information. AI researchers have devised a number of powerful tools to solve these problems using methods from probability theory and economics.[194]

Bayesian networks[195] are a very general tool that can be used for a large number of problems: reasoning (using the Bayesian inference algorithm),[196] learning (using the expectation-maximization algorithm),[f][198] planning (using decision networks)[199] and perception (using dynamic Bayesian networks).[200] Probabilistic algorithms can also be used for filtering, prediction, smoothing and finding explanations for streams of data, helping perception systems to analyze processes that occur over time (e.g., hidden Markov models or Kalman filters).[200] Compared with symbolic logic, formal Bayesian inference is computationally expensive. For inference to be tractable, most observations must be conditionally independent of one another. Complicated graphs with diamonds or other “loops” (undirected cycles) can require a sophisticated method such as Markov Chain Monte Carlo, which spreads an ensemble of random walkers throughout the Bayesian network and attempts to converge to an assessment of the conditional probabilities. Bayesian networks are used on Xbox Live to rate and match players; wins and losses are “evidence” of how good a player is. AdSense uses a Bayesian network with over 300 million edges to learn which ads to serve.

A key concept from the science of economics is “utility”: a measure of how valuable something is to an intelligent agent. Precise mathematical tools have been developed that analyze how an agent can make choices and plan, using decision theory, decision analysis,[201] and information value theory.[101] These tools include models such as Markov decision processes,[202] dynamic decision networks,[200] game theory and mechanism design.[203]

The simplest AI applications can be divided into two types: classifiers (“if shiny then diamond”) and controllers (“if shiny then pick up”). Controllers do, however, also classify conditions before inferring actions, and therefore classification forms a central part of many AI systems. Classifiers are functions that use pattern matching to determine a closest match. They can be tuned according to examples, making them very attractive for use in AI. These examples are known as observations or patterns. In supervised learning, each pattern belongs to a certain predefined class. A class can be seen as a decision that has to be made. All the observations combined with their class labels are known as a data set. When a new observation is received, that observation is classified based on previous experience.[204]

A classifier can be trained in various ways; there are many statistical and machine learning approaches. The decision tree[205] is perhaps the most widely used machine learning algorithm. Other widely used classifiers are the neural network,[207]k-nearest neighbor algorithm,[g][209]kernel methods such as the support vector machine (SVM),[h][211]Gaussian mixture model,[212] and the extremely popular naive Bayes classifier.[i][214] Classifier performance depends greatly on the characteristics of the data to be classified, such as the dataset size, distribution of samples across classes, the dimensionality, and the level of noise. Model-based classifiers perform well if the assumed model is an extremely good fit for the actual data. Otherwise, if no matching model is available, and if accuracy (rather than speed or scalability) is the sole concern, conventional wisdom is that discriminative classifiers (especially SVM) tend to be more accurate than model-based classifiers such as “naive Bayes” on most practical data sets.[215]

Neural networks, or neural nets, were inspired by the architecture of neurons in the human brain. A simple “neuron” N accepts input from multiple other neurons, each of which, when activated (or “fired”), cast a weighted “vote” for or against whether neuron N should itself activate. Learning requires an algorithm to adjust these weights based on the training data; one simple algorithm (dubbed “fire together, wire together”) is to increase the weight between two connected neurons when the activation of one triggers the successful activation of another. The net forms “concepts” that are distributed among a subnetwork of shared[j] neurons that tend to fire together; a concept meaning “leg” might be coupled with a subnetwork meaning “foot” that includes the sound for “foot”. Neurons have a continuous spectrum of activation; in addition, neurons can process inputs in a nonlinear way rather than weighing straightforward votes. Modern neural nets can learn both continuous functions and, surprisingly, digital logical operations. Neural networks’ early successes included predicting the stock market and (in 1995) a mostly self-driving car.[k] In the 2010s, advances in neural networks using deep learning thrust AI into widespread public consciousness and contributed to an enormous upshift in corporate AI spending; for example, AI-related M&A in 2017 was over 25 times as large as in 2015.[218][219]

The study of non-learning artificial neural networks[207] began in the decade before the field of AI research was founded, in the work of Walter Pitts and Warren McCullouch. Frank Rosenblatt invented the perceptron, a learning network with a single layer, similar to the old concept of linear regression. Early pioneers also include Alexey Grigorevich Ivakhnenko, Teuvo Kohonen, Stephen Grossberg, Kunihiko Fukushima, Christoph von der Malsburg, David Willshaw, Shun-Ichi Amari, Bernard Widrow, John Hopfield, Eduardo R. Caianiello, and others.

The main categories of networks are acyclic or feedforward neural networks (where the signal passes in only one direction) and recurrent neural networks (which allow feedback and short-term memories of previous input events). Among the most popular feedforward networks are perceptrons, multi-layer perceptrons and radial basis networks.[220] Neural networks can be applied to the problem of intelligent control (for robotics) or learning, using such techniques as Hebbian learning (“fire together, wire together”), GMDH or competitive learning.[221]

Today, neural networks are often trained by the backpropagation algorithm, which had been around since 1970 as the reverse mode of automatic differentiation published by Seppo Linnainmaa,[222][223] and was introduced to neural networks by Paul Werbos.[224][225][226]

Hierarchical temporal memory is an approach that models some of the structural and algorithmic properties of the neocortex.[227]

To summarize, most neural networks use some form of gradient descent on a hand-created neural topology. However, some research groups, such as Uber, argue that simple neuroevolution to mutate new neural network topologies and weights may be competitive with sophisticated gradient descent approaches. One advantage of neuroevolution is that it may be less prone to get caught in “dead ends”.[228]

Deep learning is any artificial neural network that can learn a long chain of causal links. For example, a feedforward network with six hidden layers can learn a seven-link causal chain (six hidden layers + output layer) and has a “credit assignment path” (CAP) depth of seven. Many deep learning systems need to be able to learn chains ten or more causal links in length.[229] Deep learning has transformed many important subfields of artificial intelligence, including computer vision, speech recognition, natural language processing and others.[230][231][229]

According to one overview,[232] the expression “Deep Learning” was introduced to the Machine Learning community by Rina Dechter in 1986[233] and gained traction afterIgor Aizenberg and colleagues introduced it to Artificial Neural Networks in 2000.[234] The first functional Deep Learning networks were published by Alexey Grigorevich Ivakhnenko and V. G. Lapa in 1965.[235][pageneeded] These networks are trained one layer at a time. Ivakhnenko’s 1971 paper[236] describes the learning of a deep feedforward multilayer perceptron with eight layers, already much deeper than many later networks. In 2006, a publication by Geoffrey Hinton and Ruslan Salakhutdinov introduced another way of pre-training many-layered feedforward neural networks (FNNs) one layer at a time, treating each layer in turn as an unsupervised restricted Boltzmann machine, then using supervised backpropagation for fine-tuning. Similar to shallow artificial neural networks, deep neural networks can model complex non-linear relationships. Over the last few years, advances in both machine learning algorithms and computer hardware have led to more efficient methods for training deep neural networks that contain many layers of non-linear hidden units and a very large output layer.[238]

Deep learning often uses convolutional neural networks (CNNs), whose origins can be traced back to the Neocognitron introduced by Kunihiko Fukushima in 1980.[239] In 1989, Yann LeCun and colleagues applied backpropagation to such an architecture. In the early 2000s, in an industrial application CNNs already processed an estimated 10% to 20% of all the checks written in the US.[240]Since 2011, fast implementations of CNNs on GPUs havewon many visual pattern recognition competitions.[229]

CNNs with 12 convolutional layers were used in conjunction with reinforcement learning by Deepmind’s “AlphaGo Lee”, the program that beat a top Go champion in 2016.[241]

Early on, deep learning was also applied to sequence learning with recurrent neural networks (RNNs)[242] which are in theory Turing complete[243] and can run arbitrary programs to process arbitrary sequences of inputs. The depth of an RNN is unlimited and depends on the length of its input sequence; thus, an RNN is an example of deep learning.[229] RNNs can be trained by gradient descent[244][245][246] but suffer from the vanishing gradient problem.[230][247] In 1992, it was shown that unsupervised pre-training of a stack of recurrent neural networks can speed up subsequent supervised learning of deep sequential problems.[248]

Numerous researchers now use variants of a deep learning recurrent NN called the long short-term memory (LSTM) network published by Hochreiter & Schmidhuber in 1997.[249] LSTM is often trained by Connectionist Temporal Classification (CTC).[250] At Google, Microsoft and Baidu this approach has revolutionised speech recognition.[251][252][253] For example, in 2015, Google’s speech recognition experienced a dramatic performance jump of 49% through CTC-trained LSTM, which is now available through Google Voice to billions of smartphone users.[254] Google also used LSTM to improve machine translation,[255] Language Modeling[256] and Multilingual Language Processing.[257] LSTM combined with CNNs also improved automatic image captioning[258] and a plethora of other applications.

AI, like electricity or the steam engine, is a general purpose technology. There is no consensus on how to characterize which tasks AI tends to excel at.[259] While projects such as AlphaZero have succeeded in generating their own knowledge from scratch, many other machine learning projects require large training datasets.[260][261] Researcher Andrew Ng has suggested, as a “highly imperfect rule of thumb”, that “almost anything a typical human can do with less than one second of mental thought, we can probably now or in the near future automate using AI.”[262] Moravec’s paradox suggests that AI lags humans at many tasks that the human brain has specifically evolved to perform well.[126]

Games provide a well-publicized benchmark for assessing rates of progress. AlphaGo around 2016 brought the era of classical board-game benchmarks to a close. Games of imperfect knowledge provide new challenges to AI in the area of game theory.[263][264] E-sports such as StarCraft continue to provide additional public benchmarks.[265][266] There are many competitions and prizes, such as the Imagenet Challenge, to promote research in artificial intelligence. The most common areas of competition include general machine intelligence, conversational behavior, data-mining, robotic cars, and robot soccer as well as conventional games.[267]

The “imitation game” (an interpretation of the 1950 Turing test that assesses whether a computer can imitate a human) is nowadays considered too exploitable to be a meaningful benchmark.[268] A derivative of the Turing test is the Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA). As the name implies, this helps to determine that a user is an actual person and not a computer posing as a human. In contrast to the standard Turing test, CAPTCHA is administered by a machine and targeted to a human as opposed to being administered by a human and targeted to a machine. A computer asks a user to complete a simple test then generates a grade for that test. Computers are unable to solve the problem, so correct solutions are deemed to be the result of a person taking the test. A common type of CAPTCHA is the test that requires the typing of distorted letters, numbers or symbols that appear in an image undecipherable by a computer.

Proposed “universal intelligence” tests aim to compare how well machines, humans, and even non-human animals perform on problem sets that are generic as possible. At an extreme, the test suite can contain every possible problem, weighted by Kolmogorov complexity; unfortunately, these problem sets tend to be dominated by impoverished pattern-matching exercises where a tuned AI can easily exceed human performance levels.[270][271]

AI is relevant to any intellectual task. Modern artificial intelligence techniques are pervasive and are too numerous to list here. Frequently, when a technique reaches mainstream use, it is no longer considered artificial intelligence; this phenomenon is described as the AI effect.

High-profile examples of AI include autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art (such as poetry), proving mathematical theorems, playing games (such as Chess or Go), search engines (such as Google search), online assistants (such as Siri), image recognition in photographs, spam filtering, predicting flight delays,[274] prediction of judicial decisions[275] and targeting online advertisements.[276][277]

With social media sites overtaking TV as a source for news for young people and news organisations increasingly reliant on social media platforms for generating distribution,[278] major publishers now use artificial intelligence (AI) technology to post stories more effectively and generate higher volumes of traffic.[279]

AI is being applied to the high cost problem of dosage issueswhere findings suggested that AI could save $16 billion. In 2016, a ground breaking study in California found that a mathematical formula developed with the help of AI correctly determined the accurate dose of immunosuppressant drugs to give to organ patients.[280]

Artificial intelligence is breaking into the healthcare industry by assisting doctors. According to Bloomberg Technology, Microsoft has developed AI to help doctors find the right treatments for cancer.[281] There is a great amount of research and drugs developed relating to cancer. In detail, there are more than 800 medicines and vaccines to treat cancer. This negatively affects the doctors, because there are too many options to choose from, making it more difficult to choose the right drugs for the patients. Microsoft is working on a project to develop a machine called “Hanover”. Its goal is to memorize all the papers necessary to cancer and help predict which combinations of drugs will be most effective for each patient. One project that is being worked on at the moment is fighting myeloid leukemia, a fatal cancer where the treatment has not improved in decades. Another study was reported to have found that artificial intelligence was as good as trained doctors in identifying skin cancers.[282] Another study is using artificial intelligence to try and monitor multiple high-risk patients, and this is done by asking each patient numerous questions based on data acquired from live doctor to patient interactions.[283] One study was done with transfer learning, the machine performed a diagnosis similarly to a well-trained ophthalmologist, and could generate a decision within 30 seconds on whether or not the patient should be referred for treatment, with more than 95% percent accuracy.[284]

According to CNN, a recent study by surgeons at the Children’s National Medical Center in Washington successfully demonstrated surgery with an autonomous robot. The team supervised the robot while it performed soft-tissue surgery, stitching together a pig’s bowel during open surgery, and doing so better than a human surgeon, the team claimed.[285] IBM has created its own artificial intelligence computer, the IBM Watson, which has beaten human intelligence (at some levels). Watson not only won at the game show Jeopardy! against former champions,[286] but was declared a hero after successfully diagnosing a woman who was suffering from leukemia.[287]

Advancements in AI have contributed to the growth of the automotive industry through the creation and evolution of self-driving vehicles. As of 2016[update], there are over 30 companies utilizing AI into the creation of driverless cars. A few companies involved with AI include Tesla, Google, and Apple.[288]

Many components contribute to the functioning of self-driving cars. These vehicles incorporate systems such as braking, lane changing, collision prevention, navigation and mapping. Together, these systems, as well as high performance computers, are integrated into one complex vehicle.[289]

Recent developments in autonomous automobiles have made the innovation of self-driving trucks possible, though they are still in the testing phase. The UK government has passed legislation to begin testing of self-driving truck platoons in 2018.[290] Self-driving truck platoons are a fleet of self-driving trucks following the lead of one non-self-driving truck, so the truck platoons aren’t entirely autonomous yet. Meanwhile, the Daimler, a German automobile corporation, is testing the Freightliner Inspiration which is a semi-autonomous truck that will only be used on the highway.[291]

One main factor that influences the ability for a driver-less automobile to function is mapping. In general, the vehicle would be pre-programmed with a map of the area being driven. This map would include data on the approximations of street light and curb heights in order for the vehicle to be aware of its surroundings. However, Google has been working on an algorithm with the purpose of eliminating the need for pre-programmed maps and instead, creating a device that would be able to adjust to a variety of new surroundings.[292] Some self-driving cars are not equipped with steering wheels or brake pedals, so there has also been research focused on creating an algorithm that is capable of maintaining a safe environment for the passengers in the vehicle through awareness of speed and driving conditions.[293]

Another factor that is influencing the ability for a driver-less automobile is the safety of the passenger. To make a driver-less automobile, engineers must program it to handle high-risk situations. These situations could include a head-on collision with pedestrians. The car’s main goal should be to make a decision that would avoid hitting the pedestrians and saving the passengers in the car. But there is a possibility the car would need to make a decision that would put someone in danger. In other words, the car would need to decide to save the pedestrians or the passengers.[294] The programming of the car in these situations is crucial to a successful driver-less automobile.

Financial institutions have long used artificial neural network systems to detect charges or claims outside of the norm, flagging these for human investigation. The use of AI in banking can be traced back to 1987 when Security Pacific National Bank in US set-up a Fraud Prevention Task force to counter the unauthorised use of debit cards. Programs like Kasisto and Moneystream are using AI in financial services.

Banks use artificial intelligence systems today to organize operations, maintain book-keeping, invest in stocks, and manage properties. AI can react to changes overnight or when business is not taking place.[295] In August 2001, robots beat humans in a simulated financial trading competition.[296] AI has also reduced fraud and financial crimes by monitoring behavioral patterns of users for any abnormal changes or anomalies.[297]

The use of AI machines in the market in applications such as online trading and decision making has changed major economic theories.[298] For example, AI based buying and selling platforms have changed the law of supply and demand in that it is now possible to easily estimate individualized demand and supply curves and thus individualized pricing. Furthermore, AI machines reduce information asymmetry in the market and thus making markets more efficient while reducing the volume of trades. Furthermore, AI in the markets limits the consequences of behavior in the markets again making markets more efficient. Other theories where AI has had impact include in rational choice, rational expectations, game theory, Lewis turning point, portfolio optimization and counterfactual thinking.

In video games, artificial intelligence is routinely used to generate dynamic purposeful behavior in non-player characters (NPCs). In addition, well-understood AI techniques are routinely used for pathfinding. Some researchers consider NPC AI in games to be a “solved problem” for most production tasks. Games with more atypical AI include the AI director of Left 4 Dead (2008) and the neuroevolutionary training of platoons in Supreme Commander 2 (2010).[299][300]

Worldwide annual military spending on robotics rose from US$5.1 billion in 2010 to US$7.5 billion in 2015.[301][302] Military drones capable of autonomous action are widely considered a useful asset. In 2017, Vladimir Putin stated that “Whoever becomes the leader in (artificial intelligence) will become the ruler of the world”.[303][304] Many artificial intelligence researchers seek to distance themselves from military applications of AI.[305]

For financial statements audit, AI makes continuous audit possible. AI tools could analyze many sets of different information immediately. The potential benefit would be the overall audit risk will be reduced, the level of assurance will be increased and the time duration of audit will be reduced.[306]

It is possible to use AI to predict or generalize the behavior of customers from their digital footprints in order to target them with personalized promotions or build customer personas automatically.[307] A documented case reports that online gambling companies were using AI to improve customer targeting.[308]

Moreover, the application of Personality computing AI models can help reducing the cost of advertising campaigns by adding psychological targeting to more traditional sociodemographic or behavioral targeting.[309]

Follow this link:

Artificial intelligence – Wikipedia

Artificial Intelligence: The Robots Are Now Hiring – WSJ

Sept. 20, 2018 5:30 a.m. ET

Some Fortune 500 companies are using tools that deploy artificial intelligence to weed out job applicants. But is this practice fair? In this episode of Moving Upstream, WSJ’s Jason Bellini investigates.

Some Fortune 500 companies are using tools that deploy artificial intelligence to weed out job applicants. But is this practice fair? In this episode of Moving Upstream, WSJ’s Jason Bellini investigates.

Hiring is undergoing a profound revolution.

Nearly all Fortune 500 companies now use some form of automation — from robot avatars interviewing job candidates to computers weeding out potential employees by scanning keywords in resumes. And more and more companies are using artificial intelligence and machine learning tools to assess possible employees.

DeepSense, based in San Francisco and India, helps hiring managers scan peoples social media accounts to surface underlying personality traits. The company says it uses a scientifically based personality test, and it can be done with or without a potential candidates knowledge.

The practice is part of a general trend of some hiring companies to move away from assessing candidates based on their resumes and skills, towards making hiring decisions based on peoples personalities.

The Robot Revolution: An inside look at how humanoid robots are evolving.

WSJS Jason Bellini explores breakthrough technologies that are reshaping our world and beginning to impact human happiness, health and productivity. Catch the latest episode by signing up here.

Cornell sociology and law professor Ifeoma Ajunwa said shes concerned about these tools potential for bias. Given the large scale of these automatic assessments, she believes potentially faulty algorithms could do more damage than one biased human manager. And she wants scientists to test if the algorithms are fair, transparent and accurate.

In the episode of Moving Upstream above, correspondent Jason Bellini visits South Jordan, Utah-based HireVue, which is delivering AI-based assessments of digital interviews to over 50 companies. HireVue says its algorithm compares candidates tone of voice, word clusters and micro facial expressionsCC with people who have previously been identified as high performers on the job.

Write to Jason Bellini at jason.bellini@wsj.com and Hilke Schellmann at hilke.schellmann@wsj.com

See the original post here:

Artificial Intelligence: The Robots Are Now Hiring – WSJ

What is AI (artificial intelligence)? – Definition from …

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions) and self-correction. Particular applications of AI include expert systems, speech recognition and machine vision.

AI can be categorized as either weak or strong. Weak AI, also known as narrow AI, is an AI system that is designed and trained for a particular task. Virtual personal assistants, such as Apple’s Siri, are a form of weak AI. Strong AI, also known as artificial general intelligence, is an AI system with generalized human cognitive abilities. When presented with an unfamiliar task, a strong AI system is able to find a solution without human intervention.

Because hardware, software and staffing costs for AI can be expensive, many vendors are including AI components in their standard offerings, as well as access to Artificial Intelligence as a Service (AIaaS) platforms. AI as a Service allows individuals and companies to experiment with AI for various business purposes and sample multiple platforms before making a commitment. Popular AI cloud offerings include Amazon AI services, IBM Watson Assistant, Microsoft Cognitive Services and Google AI services.

While AI tools present a range of new functionality for businesses,the use of artificial intelligence raises ethical questions. This is because deep learning algorithms, which underpin many of the most advanced AI tools, are only as smart as the data they are given in training. Because a human selects what data should be used for training an AI program, the potential for human bias is inherent and must be monitored closely.

Some industry experts believe that the term artificial intelligence is too closely linked to popular culture, causing the general public to have unrealistic fears about artificial intelligence and improbable expectations about how it will change the workplace and life in general. Researchers and marketers hope the label augmented intelligence, which has a more neutral connotation, will help people understand that AI will simply improve products and services, not replace the humans that use them.

Arend Hintze, an assistant professor of integrative biology and computer science and engineering at Michigan State University, categorizes AI into four types, from the kind of AI systems that exist today to sentient systems, which do not yet exist. His categories are as follows:

AI is incorporated into a variety of different types of technology. Here are seven examples.

Artificial intelligence has made its way into a number of areas. Here are six examples.

The application of AI in the realm of self-driving cars raises security as well as ethical concerns. Cars can be hacked, and when an autonomous vehicle is involved in an accident, liability is unclear. Autonomous vehicles may also be put in a position where an accident is unavoidable, forcing the programming to make an ethical decision about how to minimize damage.

Another major concern is the potential for abuse of AI tools. Hackers are starting to use sophisticated machine learning tools to gain access to sensitive systems, complicating the issue of security beyond its current state.

Deep learning-based video and audio generation tools also present bad actors with the tools necessary to create so-called deepfakes, convincingly fabricated videos of public figures saying or doing things that never took place.

Despite these potential risks, there are few regulations governing the use AI tools, and where laws do exist, the typically pertain to AI only indirectly. For example, federal Fair Lending regulations require financial institutions to explain credit decisions to potential customers, which limit the extent to which lenders can use deep learning algorithms, which by their nature are typically opaque. Europe’s GDPR puts strict limits on how enterprises can use consumer data, which impedes the training and functionality of many consumer-facing AI applications.

In 2016, the National Science and Technology Council issued a report examining the potential role governmental regulation might play in AI development, but it did not recommend specific legislation be considered. Since that time the issue has received little attention from lawmakers.

Read this article:

What is AI (artificial intelligence)? – Definition from …

Artificial Intelligence – Journal – Elsevier

This journal has partnered with Heliyon, an open access journal from Elsevier publishing quality peer reviewed research across all disciplines. Heliyons team of experts provides editorial excellence, fast publication, and high visibility for your paper. Authors can quickly and easily transfer their research from a Partner Journal to Heliyon without the need to edit, reformat or resubmit.>Learn more at Heliyon.com

View original post here:

Artificial Intelligence – Journal – Elsevier

Benefits & Risks of Artificial Intelligence – Future of Life …

Many AI researchers roll their eyes when seeing this headline:Stephen Hawking warns that rise of robots may be disastrous for mankind. And as many havelost count of how many similar articles theyveseen.Typically, these articles are accompanied by an evil-looking robot carrying a weapon, and they suggest we should worry about robots rising up and killing us because theyve become conscious and/or evil.On a lighter note, such articles are actually rather impressive, because they succinctly summarize the scenario that AI researchers dontworry about. That scenario combines as many as three separate misconceptions: concern about consciousness, evil, androbots.

If you drive down the road, you have a subjective experience of colors, sounds, etc. But does a self-driving car have a subjective experience? Does it feel like anything at all to be a self-driving car?Although this mystery of consciousness is interesting in its own right, its irrelevant to AI risk. If you get struck by a driverless car, it makes no difference to you whether it subjectively feels conscious. In the same way, what will affect us humans is what superintelligent AIdoes, not how it subjectively feels.

The fear of machines turning evil is another red herring. The real worry isnt malevolence, but competence. A superintelligent AI is by definition very good at attaining its goals, whatever they may be, so we need to ensure that its goals are aligned with ours. Humans dont generally hate ants, but were more intelligent than they are so if we want to build a hydroelectric dam and theres an anthill there, too bad for the ants. The beneficial-AI movement wants to avoid placing humanity in the position of those ants.

The consciousness misconception is related to the myth that machines cant have goals.Machines can obviously have goals in the narrow sense of exhibiting goal-oriented behavior: the behavior of a heat-seeking missile is most economically explained as a goal to hit a target.If you feel threatened by a machine whose goals are misaligned with yours, then it is precisely its goals in this narrow sense that troubles you, not whether the machine is conscious and experiences a sense of purpose.If that heat-seeking missile were chasing you, you probably wouldnt exclaim: Im not worried, because machines cant have goals!

I sympathize with Rodney Brooks and other robotics pioneers who feel unfairly demonized by scaremongering tabloids,because some journalists seem obsessively fixated on robots and adorn many of their articles with evil-looking metal monsters with red shiny eyes. In fact, the main concern of the beneficial-AI movement isnt with robots but with intelligence itself: specifically, intelligence whose goals are misaligned with ours. To cause us trouble, such misaligned superhuman intelligence needs no robotic body, merely an internet connection this may enable outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Even if building robots were physically impossible, a super-intelligent and super-wealthy AI could easily pay or manipulate many humans to unwittingly do its bidding.

The robot misconception is related to the myth that machines cant control humans. Intelligence enables control: humans control tigers not because we are stronger, but because we are smarter. This means that if we cede our position as smartest on our planet, its possible that we might also cede control.

View original post here:

Benefits & Risks of Artificial Intelligence – Future of Life …

Online Artificial Intelligence Courses | Microsoft …

The Microsoft Professional Program (MPP) is a collection of courses that teach skills in several core technology tracks that help you excel in the industry’s newest job roles.

These courses are created and taught by experts and feature quizzes, hands-on labs, and engaging communities. For each track you complete, you earn a certificate of completion from Microsoft proving that you mastered those skills.

See more here:

Online Artificial Intelligence Courses | Microsoft …

What is Artificial Intelligence (AI)? – Definition from …

Artificial intelligence is a branch of computer science that aims to create intelligent machines. It has become an essential part of the technology industry.

Research associated with artificial intelligence is highly technical and specialized. The core problems of artificial intelligence include programming computers for certain traits such as:

Knowledge engineering is a core part of AI research. Machines can often act and react like humans only if they have abundant information relating to the world. Artificial intelligence must have access to objects, categories, properties and relations between all of them to implement knowledge engineering. Initiating common sense, reasoning and problem-solving power in machines is a difficult and tedious task.

Machine learning is also a core part of AI. Learning without any kind of supervision requires an ability to identify patterns in streams of inputs, whereas learning with adequate supervision involves classification and numerical regressions. Classification determines the category an object belongs to and regression deals with obtaining a set of numerical input or output examples, thereby discovering functions enabling the generation of suitable outputs from respective inputs. Mathematical analysis of machine learning algorithms and their performance is a well-defined branch of theoretical computer science often referred to as computational learning theory.

Machine perception deals with the capability to use sensory inputs to deduce the different aspects of the world, while computer vision is the power to analyze visual inputs with a few sub-problems such as facial, object and gesture recognition.

Robotics is also a major field related to AI. Robots require intelligence to handle tasks such as object manipulation and navigation, along with sub-problems of localization, motion planning and mapping.

Go here to read the rest:

What is Artificial Intelligence (AI)? – Definition from …

A.I. Artificial Intelligence – Wikipedia

A.I. Artificial Intelligence, also known as A.I., is a 2001 American science fiction drama film directed by Steven Spielberg. The screenplay by Spielberg and screen story by Ian Watson were based on the 1969 short story “Supertoys Last All Summer Long” by Brian Aldiss. The film was produced by Kathleen Kennedy, Spielberg and Bonnie Curtis. It stars Haley Joel Osment, Jude Law, Frances O’Connor, Brendan Gleeson and William Hurt. Set in a futuristic post-climate change society, A.I. tells the story of David (Osment), a childlike android uniquely programmed with the ability to love.

Development of A.I. originally began with producer-director Stanley Kubrick, after he acquired the rights to Aldiss’ story in the early 1970s. Kubrick hired a series of writers until the mid-1990s, including Brian Aldiss, Bob Shaw, Ian Watson, and Sara Maitland. The film languished in protracted development for years, partly because Kubrick felt computer-generated imagery was not advanced enough to create the David character, who he believed no child actor would convincingly portray. In 1995, Kubrick handed A.I. to Spielberg, but the film did not gain momentum until Kubrick’s death in 1999. Spielberg remained close to Watson’s film treatment for the screenplay.

The film divided critics, with the overall balance being positive, and grossed approximately $235 million. The film was nominated for two Academy Awards at the 74th Academy Awards, for Best Visual Effects and Best Original Score (by John Williams).

In a 2016 BBC poll of 177 critics around the world, Steven Spielberg’s A.I. Artificial Intelligence was voted the eighty-third greatest film since 2000.[3] A.I. is dedicated to Stanley Kubrick.

In the late 22nd century, rising sea levels from global warming have wiped out coastal cities such as Amsterdam, Venice, and New York and drastically reduced the world’s population. A new type of robots called Mecha, advanced humanoids capable of thought and emotion, have been created.

David, a Mecha that resembles a human child and is programmed to display love for his owners, is given to Henry Swinton and his wife Monica, whose son Martin, after contracting a rare disease, has been placed in suspended animation and not expected to recover. Monica feels uneasy with David, but eventually warms to him and activates his imprinting protocol, causing him to have an enduring childlike love for her. David is befriended by Teddy, a robotic teddy bear that belonged to Martin.

Martin is cured of his disease and brought home. As he recovers, he grows jealous of David. He tricks David into entering the parents’s bedroom at night and cutting off a lock of Monica’s hair. This upsets the parents, particularly Henry, who fears David intended to injure them. At a pool party, one of Martin’s friends pokes David with a knife, activating David’s self-protection programming. David grabs Martin and they fall into the pool. Martin is saved from drowning, but Henry persuades Monica to return David to his creators for destruction. Instead, she abandons David and Teddy in the forest. She warns David to avoid all humans, and tells him to find other unregistered Mecha who can protect him.

David is captured for an anti-Mecha “Flesh Fair”, where obsolete, unlicensed Mecha are destroyed before cheering crowds. David is placed on a platform with Gigolo Joe, a male prostitute Mecha who is on the run after being framed for murder. Before the pair can be destroyed with acid, the crowd, thinking David is a real boy, begins booing and throwing things at the show’s emcee. In the chaos, David and Joe escape. Since Joe survived thanks to David, he agrees to help him find Blue Fairy, whom David remembers from The Adventures of Pinocchio, and believes can turn him into a real boy, allowing Monica to love him and take him home.

Joe and David make their way to the decadent resort town of Rouge City, where “Dr. Know”, a holographic answer engine, directs them to the top of Rockefeller Center in the flooded ruins of Manhattan. There, David meets a copy of himself and destroys it. He then meets Professor Hobby, his creator, who tells David he was built in the image of the professor’s dead son David. The engineers are thrilled by his ability to have a will without being programmed. He reveals they have been monitoring him to see how he progresses and altered Dr. Know to guide him to Manhattan, back to the lab he was created in. David finds more copies of him, as well as female versions called Darlene, that have been made there.

Disheartened, David lets himself fall from a ledge of the building. He is rescued by Joe, flying an amphibicopter he has stolen from the police who were pursuing him. David tells Joe he saw the Blue Fairy underwater, and wants to go down to meet her. Joe is captured by the authorities, who snare him with an electromagnet. Before he is pulled up, he activates the amphibicopter’s dive function for David, telling him to remember him for he declares “I am, I was.” David and Teddy dive to see the Fairy, which turns out to be a statue at the now-sunken Coney Island. The two become trapped when the Wonder Wheel falls on their vehicle. David repeatedly asks the Fairy to turn him into a real boy. Eventually the ocean freezes and David’s power source is depleted.

Two thousand years later, humans are extinct, and Manhattan is buried under glacial ice. The Mecha have evolved into an advanced silicon-based form called Specialists. They find David and Teddy, and discover they are original Mecha who knew living humans, making them special. The Specialists revive David and Teddy. David walks to the frozen Fairy statue, which collapses when he touches it. The Mecha use David’s memories to reconstruct the Swinton home. David asks the Specialists if they can make him human, but they cannot. However, he insists they recreate Monica from DNA from the lock of her hair, which Teddy has kept. The Mecha warn David that the clone can live for only a day, and that the process cannot be repeated. David spends the next day with Monica and Teddy. Before she drifts off to sleep, Monica tells David she has always loved him. Teddy climbs onto the bed and watches the two lie peacefully together.

Kubrick began development on an adaptation of “Super-Toys Last All Summer Long” in the late 1970s, hiring the story’s author, Brian Aldiss, to write a film treatment. In 1985, Kubrick asked Steven Spielberg to direct the film, with Kubrick producing.[6] Warner Bros. agreed to co-finance A.I. and cover distribution duties.[7] The film labored in development hell, and Aldiss was fired by Kubrick over creative differences in 1989.[8] Bob Shaw briefly served as writer, leaving after six weeks due to Kubrick’s demanding work schedule, and Ian Watson was hired as the new writer in March 1990. Aldiss later remarked, “Not only did the bastard fire me, he hired my enemy [Watson] instead.” Kubrick handed Watson The Adventures of Pinocchio for inspiration, calling A.I. “a picaresque robot version of Pinocchio”.[7][9]

Three weeks later, Watson gave Kubrick his first story treatment, and concluded his work on A.I. in May 1991 with another treatment of 90 pages. Gigolo Joe was originally conceived as a G.I. Mecha, but Watson suggested changing him to a male prostitute. Kubrick joked, “I guess we lost the kiddie market.”[7] Meanwhile, Kubrick dropped A.I. to work on a film adaptation of Wartime Lies, feeling computer animation was not advanced enough to create the David character. However, after the release of Spielberg’s Jurassic Park, with its innovative computer-generated imagery, it was announced in November 1993 that production of A.I. would begin in 1994.[10] Dennis Muren and Ned Gorman, who worked on Jurassic Park, became visual effects supervisors,[8] but Kubrick was displeased with their previsualization, and with the expense of hiring Industrial Light & Magic.[11]

“Stanley [Kubrick] showed Steven [Spielberg] 650 drawings which he had, and the script and the story, everything. Stanley said, ‘Look, why don’t you direct it and I’ll produce it.’ Steven was almost in shock.”

Producer Jan Harlan, on Spielberg’s first meeting with Kubrick about A.I.[12]

In early 1994, the film was in pre-production with Christopher “Fangorn” Baker as concept artist, and Sara Maitland assisting on the story, which gave it “a feminist fairy-tale focus”.[7] Maitland said that Kubrick never referred to the film as A.I., but as Pinocchio.[11] Chris Cunningham became the new visual effects supervisor. Some of his unproduced work for A.I. can be seen on the DVD, The Work of Director Chris Cunningham.[13] Aside from considering computer animation, Kubrick also had Joseph Mazzello do a screen test for the lead role.[11] Cunningham helped assemble a series of “little robot-type humans” for the David character. “We tried to construct a little boy with a movable rubber face to see whether we could make it look appealing,” producer Jan Harlan reflected. “But it was a total failure, it looked awful.” Hans Moravec was brought in as a technical consultant.[11]Meanwhile, Kubrick and Harlan thought A.I. would be closer to Steven Spielberg’s sensibilities as director.[14][15] Kubrick handed the position to Spielberg in 1995, but Spielberg chose to direct other projects, and convinced Kubrick to remain as director.[12][16] The film was put on hold due to Kubrick’s commitment to Eyes Wide Shut (1999).[17] After the filmmaker’s death in March 1999, Harlan and Christiane Kubrick approached Spielberg to take over the director’s position.[18][19] By November 1999, Spielberg was writing the screenplay based on Watson’s 90-page story treatment. It was his first solo screenplay credit since Close Encounters of the Third Kind (1977).[20] Spielberg remained close to Watson’s treatment, but removed various sex scenes with Gigolo Joe. Pre-production was briefly halted during February 2000, because Spielberg pondered directing other projects, which were Harry Potter and the Philosopher’s Stone, Minority Report and Memoirs of a Geisha.[17][21] The following month Spielberg announced that A.I. would be his next project, with Minority Report as a follow-up.[22] When he decided to fast track A.I., Spielberg brought Chris Baker back as concept artist.[16]

The original start date was July 10, 2000,[15] but filming was delayed until August.[23] Aside from a couple of weeks shooting on location in Oxbow Regional Park in Oregon, A.I. was shot entirely using sound stages at Warner Bros. Studios and the Spruce Goose Dome in Long Beach, California.[24]The Swinton house was constructed on Stage 16, while Stage 20 was used for Rouge City and other sets.[25][26] Spielberg copied Kubrick’s obsessively secretive approach to filmmaking by refusing to give the complete script to cast and crew, banning press from the set, and making actors sign confidentiality agreements. Social robotics expert Cynthia Breazeal served as technical consultant during production.[15][27] Haley Joel Osment and Jude Law applied prosthetic makeup daily in an attempt to look shinier and robotic.[4] Costume designer Bob Ringwood (Batman, Troy) studied pedestrians on the Las Vegas Strip for his influence on the Rouge City extras.[28] Spielberg found post-production on A.I. difficult because he was simultaneously preparing to shoot Minority Report.[29]

The film’s soundtrack was released by Warner Sunset Records in 2001. The original score was composed and conducted by John Williams and featured singers Lara Fabian on two songs and Josh Groban on one. The film’s score also had a limited release as an official “For your consideration Academy Promo”, as well as a complete score issue by La-La Land Records in 2015.[30] The band Ministry appears in the film playing the song “What About Us?” (but the song does not appear on the official soundtrack album).

Warner Bros. used an alternate reality game titled The Beast to promote the film. Over forty websites were created by Atomic Pictures in New York City (kept online at Cloudmakers.org) including the website for Cybertronics Corp. There were to be a series of video games for the Xbox video game console that followed the storyline of The Beast, but they went undeveloped. To avoid audiences mistaking A.I. for a family film, no action figures were created, although Hasbro released a talking Teddy following the film’s release in June 2001.[15]

A.I. had its premiere at the Venice Film Festival in 2001.[31]

A.I. Artificial Intelligence was released on VHS and DVD by Warner Home Video on March 5, 2002 in both a standard full-screen release with no bonus features, and as a 2-Disc Special Edition featuring the film in its original 1.85:1 anamorphic widescreen format as well as an eight-part documentary detailing the film’s development, production, music and visual effects. The bonus features also included interviews with Haley Joel Osment, Jude Law, Frances O’Connor, Steven Spielberg and John Williams, two teaser trailers for the film’s original theatrical release and an extensive photo gallery featuring production sills and Stanley Kubrick’s original storyboards.[32]

The film was released on Blu-ray Disc on April 5, 2011 by Paramount Home Media Distribution for the U.S. and by Warner Home Video for international markets. This release featured the film a newly restored high-definition print and incorporated all the bonus features previously included on the 2-Disc Special Edition DVD.[33]

The film opened in 3,242 theaters in the United States on June 29, 2001, earning $29,352,630 during its opening weekend. A.I went on to gross $78.62 million in US totals as well as $157.31 million in foreign countries, coming to a worldwide total of $235.93 million.[34]

Based on 192 reviews collected by Rotten Tomatoes, 73% of critics gave the film positive notices with a score of 6.6/10. The website’s critical consensus reads, “A curious, not always seamless, amalgamation of Kubrick’s chilly bleakness and Spielberg’s warm-hearted optimism. A.I. is, in a word, fascinating.”[35] By comparison, Metacritic collected an average score of 65, based on 32 reviews, which is considered favorable.[36]

Producer Jan Harlan stated that Kubrick “would have applauded” the final film, while Kubrick’s widow Christiane also enjoyed A.I.[37] Brian Aldiss admired the film as well: “I thought what an inventive, intriguing, ingenious, involving film this was. There are flaws in it and I suppose I might have a personal quibble but it’s so long since I wrote it.” Of the film’s ending, he wondered how it might have been had Kubrick directed the film: “That is one of the ‘ifs’ of film historyat least the ending indicates Spielberg adding some sugar to Kubrick’s wine. The actual ending is overly sympathetic and moreover rather overtly engineered by a plot device that does not really bear credence. But it’s a brilliant piece of film and of course it’s a phenomenon because it contains the energies and talents of two brilliant filmmakers.”[38] Richard Corliss heavily praised Spielberg’s direction, as well as the cast and visual effects.[39] Roger Ebert gave the film three stars, saying that it was “wonderful and maddening.”[40] Leonard Maltin, on the other hand, gives the film two stars out of four in his Movie Guide, writing: “[The] intriguing story draws us in, thanks in part to Osment’s exceptional performance, but takes several wrong turns; ultimately, it just doesn’t work. Spielberg rewrote the adaptation Stanley Kubrick commissioned of the Brian Aldiss short story ‘Super Toys Last All Summer Long’; [the] result is a curious and uncomfortable hybrid of Kubrick and Spielberg sensibilities.” However, he calls John Williams’ music score “striking”. Jonathan Rosenbaum compared A.I. to Solaris (1972), and praised both “Kubrick for proposing that Spielberg direct the project and Spielberg for doing his utmost to respect Kubrick’s intentions while making it a profoundly personal work.”[41] Film critic Armond White, of the New York Press, praised the film noting that “each part of David’s journey through carnal and sexual universes into the final eschatological devastation becomes as profoundly philosophical and contemplative as anything by cinema’s most thoughtful, speculative artists Borzage, Ozu, Demy, Tarkovsky.”[42] Filmmaker Billy Wilder hailed A.I. as “the most underrated film of the past few years.”[43] When British filmmaker Ken Russell saw the film, he wept during the ending.[44]

Mick LaSalle gave a largely negative review. “A.I. exhibits all its creators’ bad traits and none of the good. So we end up with the structureless, meandering, slow-motion endlessness of Kubrick combined with the fuzzy, cuddly mindlessness of Spielberg.” Dubbing it Spielberg’s “first boring movie”, LaSalle also believed the robots at the end of the film were aliens, and compared Gigolo Joe to the “useless” Jar Jar Binks, yet praised Robin Williams for his portrayal of a futuristic Albert Einstein.[45][not in citation given] Peter Travers gave a mixed review, concluding “Spielberg cannot live up to Kubrick’s darker side of the future.” But he still put the film on his top ten list that year for best movies.[46] David Denby in The New Yorker criticized A.I. for not adhering closely to his concept of the Pinocchio character. Spielberg responded to some of the criticisms of the film, stating that many of the “so called sentimental” elements of A.I., including the ending, were in fact Kubrick’s and the darker elements were his own.[47] However, Sara Maitland, who worked on the project with Kubrick in the 1990s, claimed that one of the reasons Kubrick never started production on A.I. was because he had a hard time making the ending work.[48] James Berardinelli found the film “consistently involving, with moments of near-brilliance, but far from a masterpiece. In fact, as the long-awaited ‘collaboration’ of Kubrick and Spielberg, it ranks as something of a disappointment.” Of the film’s highly debated finale, he claimed, “There is no doubt that the concluding 30 minutes are all Spielberg; the outstanding question is where Kubrick’s vision left off and Spielberg’s began.”[49]

Screenwriter Ian Watson has speculated, “Worldwide, A.I. was very successful (and the 4th highest earner of the year) but it didn’t do quite so well in America, because the film, so I’m told, was too poetical and intellectual in general for American tastes. Plus, quite a few critics in America misunderstood the film, thinking for instance that the Giacometti-style beings in the final 20 minutes were aliens (whereas they were robots of the future who had evolved themselves from the robots in the earlier part of the film) and also thinking that the final 20 minutes were a sentimental addition by Spielberg, whereas those scenes were exactly what I wrote for Stanley and exactly what he wanted, filmed faithfully by Spielberg.”[50]

In 2002, Spielberg told film critic Joe Leydon that “People pretend to think they know Stanley Kubrick, and think they know me, when most of them don’t know either of us”. “And what’s really funny about that is, all the parts of A.I. that people assume were Stanley’s were mine. And all the parts of A.I. that people accuse me of sweetening and softening and sentimentalizing were all Stanley’s. The teddy bear was Stanley’s. The whole last 20 minutes of the movie was completely Stanley’s. The whole first 35, 40 minutes of the film all the stuff in the house was word for word, from Stanley’s screenplay. This was Stanley’s vision.” “Eighty percent of the critics got it all mixed up. But I could see why. Because, obviously, I’ve done a lot of movies where people have cried and have been sentimental. And I’ve been accused of sentimentalizing hard-core material. But in fact it was Stanley who did the sweetest parts of A.I., not me. I’m the guy who did the dark center of the movie, with the Flesh Fair and everything else. That’s why he wanted me to make the movie in the first place. He said, ‘This is much closer to your sensibilities than my own.'”[51]

Upon rewatching the film many years after its release, BBC film critic Mark Kermode apologized to Spielberg in an interview in January 2013 for “getting it wrong” on the film when he first viewed it in 2001. He now believes the film to be Spielberg’s “enduring masterpiece”.[52]

Visual effects supervisors Dennis Muren, Stan Winston, Michael Lantieri and Scott Farrar were nominated for the Academy Award for Best Visual Effects, while John Williams was nominated for Best Original Music Score.[53] Steven Spielberg, Jude Law and Williams received nominations at the 59th Golden Globe Awards.[54] A.I. was successful at the Saturn Awards, winning five awards, including Best Science Fiction Film along with Best Writing for Spielberg and Best Performance by a Younger Actor for Osment.[55]

See original here:

A.I. Artificial Intelligence – Wikipedia

Artificial Intelligence: The Pros, Cons, and What to Really Fear

For the last several years, Russia has been steadily improving its ground combat robots. Just last year,Kalashnikov, the maker of the famous AK-47 rifle,announced it would builda range of products based on neural networks, including a fully automated combat module that promises to identify and shoot at targets.

According to Bendett,Russia delivered a white paperto the UN saying that from Moscow’s perspective,it would be inadmissible to leave UASwithout anyhuman oversight. In other words, Russia always wants a human in the loop and to be the one to push the final button to fire that weapon.

Worth noting: “A lot of these are still kind of far-out applications,” Bendett said.

The same can be said for China’s more military-focused applications of AI, largely in surveillance and UAV operations for the PLA,said Elsa Kania, Technology Fellow at the Center for a New American Security. Speaking beside Bendett at the Genius Machines event in March, Kania said China’s military applications appear to beat a a fairly nascent stage in its development.

That is to say: There’snothing to fear about lethal AI applications yet unless you’re an alleged terrorist in the Middle East. For the rest of us, we have our Siris, Alexas, Cortanas and more, helping us shop, search, listen to music,and tag friends in images on social media.

Until the robot uprising comes, let us hope there will always be clips ofthe swearing Atlas Robot from Boston Dynamics available online whenever we need a laugh. It may be better to laugh before these robots start helping each other through doorwaysentirely independent of humans. (Too late.)

See the original post here:

Artificial Intelligence: The Pros, Cons, and What to Really Fear

A.I. Artificial Intelligence (2001) – IMDb

Nominated for 2 Oscars. Another 17 wins & 68 nominations. See more awards Learn more More Like This

Comedy | Drama | Sci-Fi

An android endeavors to become human as he gradually acquires emotions.

Director:Chris Columbus

Stars:Robin Williams,Embeth Davidtz,Sam Neill

Adventure | Sci-Fi | Thriller

As Earth is invaded by alien tripod fighting machines, one family fights for survival.

Director:Steven Spielberg

Stars:Tom Cruise,Dakota Fanning,Tim Robbins

Action | Crime | Mystery

In a future where a special police unit is able to arrest murderers before they commit their crimes, an officer from that unit is himself accused of a future murder.

Director:Steven Spielberg

Stars:Tom Cruise,Colin Farrell,Samantha Morton

Drama | History

In 1839, the revolt of Mende captives aboard a Spanish owned ship causes a major controversy in the United States when the ship is captured off the coast of Long Island. The courts must decide whether the Mende are slaves or legally free.

Director:Steven Spielberg

Stars:Djimon Hounsou,Matthew McConaughey,Anthony Hopkins

Drama | History | War

Young Albert enlists to serve in World War I after his beloved horse is sold to the cavalry. Albert’s hopeful journey takes him out of England and to the front lines as the war rages on.

Director:Steven Spielberg

Stars:Jeremy Irvine,Emily Watson,David Thewlis

Drama | Sci-Fi

Roy Neary, an electric lineman, watches how his quiet and ordinary daily life turns upside down after a close encounter with a UFO.

Director:Steven Spielberg

Stars:Richard Dreyfuss,Franois Truffaut,Teri Garr

Drama | History | War

A young English boy struggles to survive under Japanese occupation during World War II.

Director:Steven Spielberg

Stars:Christian Bale,John Malkovich,Miranda Richardson

Drama | History | Thriller

Based on the true story of the Black September aftermath, about the five men chosen to eliminate the ones responsible for that fateful day.

Director:Steven Spielberg

Stars:Eric Bana,Daniel Craig,Marie-Jose Croze

In the not-so-far future the polar ice caps have melted and the resulting rise of the ocean waters has drowned all the coastal cities of the world. Withdrawn to the interior of the continents, the human race keeps advancing, reaching the point of creating realistic robots (called mechas) to serve them. One of the mecha-producing companies builds David, an artificial kid which is the first to have real feelings, especially a never-ending love for his “mother”, Monica. Monica is the woman who adopted him as a substitute for her real son, who remains in cryo-stasis, stricken by an incurable disease. David is living happily with Monica and her husband, but when their real son returns home after a cure is discovered, his life changes dramatically. Written byChris Makrozahopoulos

Budget:$100,000,000 (estimated)

Opening Weekend USA: $29,352,630,1 July 2001, Wide Release

Gross USA: $78,616,689, 23 September 2001

Cumulative Worldwide Gross: $235,927,000

Runtime: 146 min

Aspect Ratio: 1.85 : 1

Here is the original post:

A.I. Artificial Intelligence (2001) – IMDb

Stem Cell Therapy for Arthritis and Injuries – Regenexx

Regenexx uses your body’s natural healing ability to repair damage to bones, muscles, cartilage, tendons, and ligaments non-surgically. Our proprietary, research-driven techniquesallow us to concentrate your cells and to place them inthe precise area of your injury to promote healing and to achieve optimal outcomes.

Conditions TreatedOur Approach

Read more from the original source:

Stem Cell Therapy for Arthritis and Injuries – Regenexx

Is Stem Cell Therapy for Arthritis Safe and Effective?

People considering stem cell treatment for arthritis want to know Is it safe? and Is it effective?

Most stem cell therapy using adult stem cells is considered safe because the stem cells are collected from the patient, minimizing the risk of an unwanted reaction. The most common side effects are temporary swelling and pain.3

While most stem cell therapy for arthritis is considered safe, it does carry the same risks as any other medical procedure, such as a small risk of infection. Risk may be increased if:

See What Are Stem Cells?

Some research suggests stem cell therapy engaging in these kinds of practices may elevate the risk of tumors.4

As with most regenerative medicine treatments, research is ongoing, and FDA regulations are relatively new and subject to change.

Article continues below

Whether or not stem cells therapy is effective in treating osteoarthritis is a controversial subject among medical professionals, and research in the area is ongoing.

See Osteoarthritis Treatment

How researchers think stem cell therapy worksResearchers theorize5 that when applied to an arthritic joint, stem cells might:

See Osteoarthritis Symptoms and Signs

It may be none, one, two, or all three processes at are work.

Proponents vs criticsLike many relatively new treatments, stem cell therapy has proponents and critics.

Critics emphasize that there have been no large-scale, prospective, double-blind research studiesthe kind of clinical studies that medical professionals consider the gold standardto support stem cell therapy for arthritis.

Factors that affect stem cell therapy researchAnother challenge associated with current stem cell research is that there is no standard stem cell therapy for arthritis treatment. So the stem cell therapy in one study is not necessarily the same as the stem cell therapy in another study.

Differences can include:

These differences are further complicated by more unknowns. For example, how many stem cells are needed for a particular treatment? And how do we determine if a patients own stem cells are competent enough to aid in healing?

Many physicians combine the use of stem cells with platelet rich plasma, or PRP.

See Platelet-Rich Plasma (PRP) Therapy for Arthritis

PRP is derived from a sample of the patients blood. In the body, platelets secrete substances called growth factors and other proteins that regulate cell division, stimulate tissue regeneration, and promote healing. Like stem cell therapy, PRP therapy is sometimes used alone with the hopes of healing an arthritic joint.

See PRP Injection Preparation and Composition

Physicians who use PRP and stem cells together think that the PRP can help maximize the healing effects of stem cells.7,8 Research in this area is ongoing.

See Platelet-Rich Plasma Injection Procedure

Stem cell therapy can vary depending on the doctor performing it. People considering stem cell therapy for an arthritic knee or other joint are advised to ask their doctors questions, including:

Both doctors and patients can benefit from having a frank conversation and setting reasonable expectations.

See Arthritis Treatment Specialists

Complete Listing of References

Visit link:

Is Stem Cell Therapy for Arthritis Safe and Effective?

The Power of Stem Cells | California’s Stem Cell Agency

En Espaol

Stem cells have the potential to treat a wide range of diseases. Here, discover why these cells are such a powerful tool for treating diseaseand what hurdles experts face before new therapies reach patients.

How can stem cells treat disease?What diseases could be treated by stem cell research?How can I learn more about CIRM-funded research in a particular disease?What cell therapies are available right now?When will therapies based on embryonic stem cells become available?What about the therapies that are available overseas?Why does it take so long to create new therapies?How do scientists get stem cells to specialize into different cell types? How do scientists test stem cell therapies?Can’t stem cell therapies increase the chances of a tumor?Is there a risk of immune rejection with stem cells?How do scientists grow stem cells in the right conditions?

When most people think about about stem cells treating disease they think of a stem cell transplant.

In a stem cell transplant, embryonic stem cells are first specialized into the necessary adult cell type. Then, those mature cells replace tissue that is damaged by disease or injury. This type of treatment could be used to:

But embryonic stem cell-based therapies can do much more.

Any of these would have a significant impact on human health without transplanting a single cell.

In theory, theres no limit to the types of diseases that could be treated with stem cell research. Given that researchers may be able to study all cell types via embryonic stem cells, they have the potential to make breakthroughs in any disease.

CIRM has created disease pages for many of the major diseases being targeted by stem cell scientists. You can find those disease pages here.

You can also sort our complete list of CIRM awards to see what we’ve funded in different disease areas.

Many clinical trials for embryonic stem cell-based therapies have begun in recent years. Results from those won’t be available until the trials reveal that the therapies are safe and effectivewhich could take a few years.

While ten cell therapies have been approved around the world as of January 2016, the only widely used stem cell-based therapy is bone marrow transplantation. Blood-forming stem cells in the bone marrow were the first stem cells to be identified and were the first to be used in the clinic. This life-saving technique has helped thousands people worldwide who had been suffering from blood cancers, such as leukemia.

In addition to their current use in cancer treatments, research suggests that bone marrow transplants will be useful in treating autoimmune diseases and in helping people tolerate transplanted organs.

Other therapies based on adult stem cells are currently in clinical trials. Until those trials are complete we won’t know which type of stem cell is most effective in treating different diseases.

There is no way to predict when the first human embryonic stem cell therapies will become widely available. Several applications with the FDA to begin human trials of embryonic stem cell-based therapies have been approved. In general, the path from the first human trial to widespread use is on the order of a decade. That long time frame is a result of the many steps a therapy must go through in order to show that it is both safe and effective. Only once those steps are complete will the FDA approve the therapy for general use.

If embryonic stem cells follow a normal path it could still be many years before therapies based on embryonic stem cells are widely available. However, if researchers gave up on therapies simply because the path towards FDA approval is long, we would not have any of the lifesaving technologies that are now commonplace: recombinant insulin, bone marrow transplantation or chemotherapy drugs.

Find Out More:Read the top ten things to know about stem cell treatments (from ISSCR) Alan Lewis talks about getting an embryonic stem cell-based therapy to patients (3:46)

Many overseas clinics advertise miraculous stem cell therapies for a wide range of incurable diseases. This phenomenon is called stem cell tourism and is currently a source of concern for reputable stem cell scientists. International (and even domestic) clinics are offering up therapies that have not been tested for safety or even for effectiveness. In the past few years, some patients who visited those clinics have died as a result of receiving unproven, untested stem cells.

Find Out More:Learn more about the issue on our StemCell Tourism page. Jeanne Loring discusses concerns about stem cell tourism (3:38) CIRM/ISSCR panel on stem cell tourism

Embryonic stem cells hold the potential to treat a wide range of diseases. However, the path from the lab to the clinic is a long one. Before testing those cells in a human disease, researchers must grow the right cell type, find a way to test those cells, and make sure the cells are safe in animals before moving to human trials.

Find Out More:Hans Keirstead talks about hurdles in developing a new therapy (5:07)

One of the biggest hurdles in any embryonic stem cell-based therapy is coaxing stem cell to become a single the cell type. The vital process of maturing stem cells from a pluripotent state to an adult tissue type is called differentiation.

Guiding embryonic stem cells to become a particular cell type has been fraught with difficulty. Normally, stem cells growing in a developing embryo receive a carefully choreographed series of signals from the surrounding tissue. In a lab dish, researchers have to mimic those signals. Add the signals in the wrong order or the wrong dose and the developing cells may choose to remain immatureor become the wrong cell type

Many decades of research has uncovered many of the signals needed to properly differentiate cells. Other signals are still unknown. Many CIRM-funded researchers are attempting to differentiate very pure populations of mature cell types that can accelerate therapies.

Find Out More:Mark Mercola talks about differentiating cells into adult tissues (3:37)

Once a researcher has a mature cell type in a lab dish, the next step is to find out whether those cells can function in the body. For example, embryonic stem cells that have matured into insulin-producing cells in the lab are only useful if they continue producing insulin once transplanted inside a body. Likewise, researchers need to know that the cells can integrate into the surrounding tissue.

Scientists test cells by first developing an animal model that mimics the human disease, and then implanting the cells to see if they help treat the disease. These types of experiments can be painstakingbecause even if the cells dont completely cure the disease, they may restore some functions that would still be of enormous benefit to people. Researchers have to examine each of these possible outcomes.

In many cases testing the cells in a single animal model doesnt provide enough information. Most animal models of disease dont perfectly mimic the human disease. For example, a mouse carrying the same mutation that causes cystic fibrosis in humans doesnt show the same signs as a person with the disease. So, a stem cell therapy that treats this mouse model of cystic fibrosis may not work in humans. Thats why researchers often need to test the cells in more than oneanimal model.

The promise of embryonic stem cells is that they can form any type of cell in the body. The trouble is that when implanted into an animal they do just that, in the form of tumors called teratomas. These tumors consist of a mass of many cells types and can include hair cells and many other tissues.

These teratomas are one reason why it is necessary to mature the embryonic stem cells into highly purified adult cell types before implanting into humans. Virtually all evidence has shown that the mature cells are restricted to their one identity and dont appear to revert to a teratoma-forming cell.

Find Out More:UC Davis researcher focuses on stem cell safety (from UC Davis)Paul Knoepfler talks about the tendency of embryonic stem cells to form tumors (4:10)

Transplanted stem cells, like any transplanted organ, can be recognized by the immune system as foreign and then rejected. In organ transplants such as liver, kidney, or heart, people must be on immune suppressive drugs for the rest of their lives to prevent the immune system from recognizing that organ as foreign and destroying it.

The likelihood of the immune system rejecting a transplant of embryonic stem cell-based tissue depends on the origin of that tissue. Stem cells isolated from IVF embryos will have a genetic makeup that will not match that of the person who receives the transplant. That persons immune system will recognize those cells as foreign and reject the tissue unless a person is on powerful immune suppressive drugs.

Stem cells generated through SCNT or iPS cell technology, on the other hand, are a perfect genetic match. The immune system would likely overlook that transplanted cells, seeing it as a normal part of the body. Still, some suggest that even if the cells are perfectly matched, they may not entirely escape the notice of the immune system. Cancer cells, for example, have the same genetic make up as surrounding tissue and yet the immune system will often identify and destroy early tumors. Until more information is available from animal studies it will be hard to know whether transplanted patient-specific cells are likely to call the attention of the immune system.

Find Out More: Jeffrey Bluestone talks about immune rejection of stem cell-based therapies (4:05)

In order to be approved by the FDA for use in human trials, stem cells must be grown in good manufacturing practice (GMP) conditions. Under GMP standards, a cell line has to be manufactured so that each group of cells is grown in an identical, repeatable, sterile environment. This ensures that each batch of cells has the same properties, and each person getting a stem cell therapy gets an equivalent treatment. Although the FDA hasnt yet issued guidelines for how pluripotent stem cells need to meet GMP standards, achieving this level of consistency could mean knowing the exact identity and quantity of every component involved in growing the cells.

Updated 2/16

Read more:

The Power of Stem Cells | California’s Stem Cell Agency

Cell Therapy | Infusio.org

Stem cell therapy is a type of regenerative medicine which is described as the use of tissues that have the ability to repair, replace or restore biological structures and functions that may be lacking due to aging, disease or destruction. Stem cells have recently taken center stage in current international biological and medical research. During the last five years, the use of stem cells has been expanded from laboratory research and animal experiments, to their application in humans. Their use is documented in extensive national and international academic literature. Many research centers have reported successful stem cell therapies for various illnesses as well as regenerative procedures.

Continued here:

Cell Therapy | Infusio.org

What Are Stem Cells? Research, Transplant, Therapy, Definition

Stem cell facts

What are stem cells?

Stem cells are cells that have the potential to develop into many different or specialized cell types. Stem cells can be thought of as primitive, “unspecialized” cells that are able to divide and become specialized cells of the body such as liver cells, muscle cells, blood cells, and other cells with specific functions. Stem cells are referred to as “undifferentiated” cells because they have not yet committed to a developmental path that will form a specific tissue or organ. The process of changing into a specific cell type is known as differentiation. In some areas of the body, stem cells divide regularly to renew and repair the existing tissue. The bone marrow and gastrointestinal tract are examples of areas in which stem cells function to renew and repair tissue.

The best and most readily understood example of a stem cell in humans is that of the fertilized egg, or zygote. A zygote is a single cell that is formed by the union of a sperm and ovum. The sperm and the ovum each carry half of the genetic material required to form a new individual. Once that single cell or zygote starts dividing, it is known as an embryo. One cell becomes two, two become four, four become eight, eight become sixteen, and so on, doubling rapidly until it ultimately grows into an entire sophisticated organism composed of many different kinds of specialized cells. That organism, a person, is an immensely complicated structure consisting of many, many, billions of cells with functions as diverse as those of your eyes, your heart, your immune system, the color of your skin, your brain, etc. All of the specialized cells that make up these body systems are descendants of the original zygote, a stem cell with the potential to ultimately develop into all kinds of body cells. The cells of a zygote are totipotent, meaning that they have the capacity to develop into any type of cell in the body.

The process by which stem cells commit to become differentiated, or specialized, cells is complex and involves the regulation of gene expression. Research is ongoing to further understand the molecular events and controls necessary for stem cells to become specialized cell types.

Stem Cells:One of the human body’s master cells, with the ability to grow into any one of the body’s more than 200 cell types.

All stem cells are unspecialized (undifferentiated) cells that are characteristically of the same family type (lineage). They retain the ability to divide throughout life and give rise to cells that can become highly specialized and take the place of cells that die or are lost.

Stem cells contribute to the body’s ability to renew and repair its tissues. Unlike mature cells, which are permanently committed to their fate, stem cells can both renew themselves as well as create new cells of whatever tissue they belong to (and other tissues).

Why are stem cells important?

Stem cells represent an exciting area in medicine because of their potential to regenerate and repair damaged tissue. Some current therapies, such as bone marrow transplantation, already make use of stem cells and their potential for regeneration of damaged tissues. Other therapies that are under investigation involve transplanting stem cells into a damaged body part and directing them to grow and differentiate into healthy tissue.

Embryonic stem cells

During the early stages of embryonic development the cells remain relatively undifferentiated (immature) and appear to possess the ability to become, or differentiate, into almost any tissue within the body. For example, cells taken from one section of an embryo that might have become part of the eye can be transferred into another section of the embryo and could develop into blood, muscle, nerve, or liver cells.

Cells in the early embryonic stage are totipotent (see above) and can differentiate to become any type of body cell. After about seven days, the zygote forms a structure known as a blastocyst, which contains a mass of cells that eventually become the fetus, as well as trophoblastic tissue that eventually becomes the placenta. If cells are taken from the blastocyst at this stage, they are known as pluripotent, meaning that they have the capacity to become many different types of human cells. Cells at this stage are often referred to as blastocyst embryonic stem cells. When any type of embryonic stem cells is grown in culture in the laboratory, they can divide and grow indefinitely. These cells are then known as embryonic stem cell lines.

Fetal stem cells

The embryo is referred to as a fetus after the eighth week of development. The fetus contains stem cells that are pluripotent and eventually develop into the different body tissues in the fetus.

Adult stem cells

Adult stem cells are present in all humans in small numbers. The adult stem cell is one of the class of cells that we have been able to manipulate quite effectively in the bone marrow transplant arena over the past 30 years. These are stem cells that are largely tissue-specific in their location. Rather than typically giving rise to all of the cells of the body, these cells are capable of giving rise only to a few types of cells that develop into a specific tissue or organ. They are therefore known as multipotent stem cells. Adult stem cells are sometimes referred to as somatic stem cells.

The best characterized example of an adult stem cell is the blood stem cell (the hematopoietic stem cell). When we refer to a bone marrow transplant, a stem cell transplant, or a blood transplant, the cell being transplanted is the hematopoietic stem cell, or blood stem cell. This cell is a very rare cell that is found primarily within the bone marrow of the adult.

One of the exciting discoveries of the last years has been the overturning of a long-held scientific belief that an adult stem cell was a completely committed stem cell. It was previously believed that a hematopoietic, or blood-forming stem cell, could only create other blood cells and could never become another type of stem cell. There is now evidence that some of these apparently committed adult stem cells are able to change direction to become a stem cell in a different organ. For example, there are some models of bone marrow transplantation in rats with damaged livers in which the liver partially re-grows with cells that are derived from transplanted bone marrow. Similar studies can be done showing that many different cell types can be derived from each other. It appears that heart cells can be grown from bone marrow stem cells, that bone marrow cells can be grown from stem cells derived from muscle, and that brain stem cells can turn into many types of cells.

Peripheral blood stem cells

Most blood stem cells are present in the bone marrow, but a few are present in the bloodstream. This means that these so-called peripheral blood stem cells (PBSCs) can be isolated from a drawn blood sample. The blood stem cell is capable of giving rise to a very large number of very different cells that make up the blood and immune system, including red blood cells, platelets, granulocytes, and lymphocytes.

All of these very different cells with very different functions are derived from a common, ancestral, committed blood-forming (hematopoietic), stem cell.

Umbilical cord stem cells

Blood from the umbilical cord contains some stem cells that are genetically identical to the newborn. Like adult stem cells, these are multipotent stem cells that are able to differentiate into certain, but not all, cell types. For this reason, umbilical cord blood is often banked, or stored, for possible future use should the individual require stem cell therapy.

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) were first created from human cells in 2007. These are adult cells that have been genetically converted to an embryonic stem celllike state. In animal studies, iPSCs have been shown to possess characteristics of pluripotent stem cells. Human iPSCs can differentiate and become multiple different fetal cell types. iPSCs are valuable aids in the study of disease development and drug treatment, and they may have future uses in transplantation medicine. Further research is needed regarding the development and use of these cells.

Why is there controversy surrounding the use of stem cells?

Embryonic stem cells and embryonic stem cell lines have received much public attention concerning the ethics of their use or non-use. Clearly, there is hope that a large number of treatment advances could occur as a result of growing and differentiating these embryonic stem cells in the laboratory. It is equally clear that each embryonic stem cell line has been derived from a human embryo created through in-vitro fertilization (IVF) or through cloning technologies, with all the attendant ethical, religious, and philosophical problems, depending upon one’s perspective.

What are some stem cell therapies that are currently available?

Routine use of stem cells in therapy has been limited to blood-forming stem cells (hematopoietic stem cells) derived from bone marrow, peripheral blood, or umbilical cord blood. Bone marrow transplantation is the most familiar form of stem cell therapy and the only instance of stem cell therapy in common use. It is used to treat cancers of the blood cells (leukemias) and other disorders of the blood and bone marrow.

In bone marrow transplantation, the patient’s existing white blood cells and bone marrow are destroyed using chemotherapy and radiation therapy. Then, a sample of bone marrow (containing stem cells) from a healthy, immunologically matched donor is injected into the patient. The transplanted stem cells populate the recipient’s bone marrow and begin producing new, healthy blood cells.

Umbilical cord blood stem cells and peripheral blood stem cells can also be used instead of bone marrow samples to repopulate the bone marrow in the process of bone marrow transplantation.

In 2009, the California-based company Geron received clearance from the U. S. Food and Drug Administration (FDA) to begin the first human clinical trial of cells derived from human embryonic stem cells in the treatment of patients with acute spinal cord injury.

What are experimental treatments using stem cells and possible future directions for stem cell therapy?

Stem cell therapy is an exciting and active field of biomedical research. Scientists and physicians are investigating the use of stem cells in therapies to treat a wide variety of diseases and injuries. For a stem cell therapy to be successful, a number of factors must be considered. The appropriate type of stem cell must be chosen, and the stem cells must be matched to the recipient so that they are not destroyed by the recipient’s immune system. It is also critical to develop a system for effective delivery of the stem cells to the desired location in the body. Finally, devising methods to “switch on” and control the differentiation of stem cells and ensure that they develop into the desired tissue type is critical for the success of any stem cell therapy.

Researchers are currently examining the use of stem cells to regenerate damaged or diseased tissue in many conditions, including those listed below.

References

REFERENCE:

“Stem Cell Information.” National Institutes of Health.

Continue reading here:

What Are Stem Cells? Research, Transplant, Therapy, Definition

Stem Cell Institute Panama – Stem Cell Therapy – Stem Cell …

Stem Cell Institute is one of the worlds leading adult stem cell therapy and research centers. In close collaboration with universities and physicians world-wide, our comprehensive stem cell treatment protocols employ well-targeted combinations of allogeneic human umbilical cord stem cells and autologous bone marrow stem cells to treat diseases and conditions listed below.

The rest is here:

Stem Cell Institute Panama – Stem Cell Therapy – Stem Cell …

StemGenex

StemGenex is committed to helping people achieve optimum health and better quality of life through the healing benefits of their own stem cells. StemGenex provides access to stem cell therapy options for individuals suffering with inflammatory and degenerative illnesses. Contact StemGenex to find out if you are a candidate for stem cell treatment.

Read the original post:

StemGenex

Stem Cell Therapy – Top Rated Local Stem Cell Treatment In …

What are stem cells?

Stem cells are the basic building blocks of human tissue and have the ability to repair, rebuild, and rejuvenate tissues in the body. When a disease or injury strikes, stem cells respond to specific signals and set about to facilitate the healing process by stimulating your own body to repair itself.

Stem cells that come from perinatal tissue(healthy post-natal C-sections) have distinct functional properties including immunomodulation and anti-inflammation which support the repair and regeneration of damaged tissue associated with disease and injury.

There are four known types of stem cells which include:

We provide allogeneic regenerative cytokines and mesenchymal stem cells from health post-natal C-sections.

We tap into our bodys stem cell reserve daily to repair and replace damaged or diseased tissue. When the bodys reserve is limited and as it becomes depleted, the regenerative power of our body decreases and we succumb to disease and injury.

Three sources of stem cells from a patients body are used clinically which include adipose tissue (fat), bone marrow and umbilical cord matrix(Whartons Jelly).

We provide stem cell therapy for a wide variety of musculoskeletal conditions for which traditional treatment offers less than optimal options. Some conditions include Osteoarthritis, Bursitis, Plantar Fasciitis and Degenerative Disc Disease

Since each condition and patient are unique, there is no guarantee of what results will be achieved or how quickly they may be observed. According to patient feedback, many patients report results in one to three months, however, it may take as long as six to nine months. Individuals interested in stem cell therapy are urged to consult with their physician before choosing investigational allogeneic umbilical cord derived regenerative medicine allografts as a treatment option.

In order to determine if you are a good candidate for a regenerative medicine treatment, you will need to complete a medical history form which will be provided by our patient advocate team. Once you complete and submit your medical history form, our medical team will review your records and determine if you are a qualified candidate for a regenerative medicine therapy.

The side effects of intra-articular injection of a regenerative medicine allograft are minimal and may include but are not limited to: infection, minor bleeding at the treatment sites and localized pain. However, these side effects typically last no longer than 24 hours.

We provide regenerative medicine allografts from healthy post-natal C-section births that provide regenerative factors and mesenchymal stem cells. Embryonic stem cells are typically associated with ethical concerns. We do not offer embryonic stem cells.

Our regenerative medicine allografts are regulated as human cell and tissue transplants, similar to skin and bone. As structural human cell and tissue products regulated under FDA CFR 1271 Part 361, our allografts do not require FDA approval, rather we are strictly regulated to prevent the spread of communicable diseases and to maintain the structural integrity of the allografts as theyre harvested from umbilical cords and transferred for musculoskeletal cushioning, protection and supplementation. These regenerative allografts are FDA regulated rather than FDA approved. The FDA is a regulatory oversight body and doesnt exercise legal authority. If an FDA regulated tissue transplant or therapy is noted as non-compliant and not corrected according to FDA guidelines, the FDA may refer a significant public health risk to the Department of Justice or a state attorney general.

Stem cell treatment is not covered by health insurance at this time.

Although stem cells are found throughout our bodies, mesenchymal stem cells can only be harvested for native (non-cultured) use from adipose, bone marrow and umbilical cord matrix. The term amniotic stem cells is an oxymoron in that amniotic fluid and matrix products dont contain stem cells. They do however contain unique cytokines and other growth factors.

Read more here:

Stem Cell Therapy – Top Rated Local Stem Cell Treatment In …

Stem cell

STEM CELL SUPPLEMENTS

Stem cells are cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells.

Stem Cell Supplements are developed based on the merits of stem cells and they are applied for degenerative diseases treatments and to stimulate the formation of all the different tissues of the body: muscle, cartilage, tendon, ligament, bone, blood,nerve, organs, etc. Stem Cell Supplements bring essential health & antiaging benefits by providing necessary elements to the body to improve cellular rejuvenation, organ regeneration and tissue healing.

Originally posted here:

Stem cell


12345...10...