12345...10...


Will Your Uploaded Mind Still Be You? – The Wall Street Journal

Imagine a future in which a machine can scan your brain and migrate the essentials of your mind to a computer. Its called mind uploadingpreserving a persons consciousness in a digital afterlife. As a neuroscientist, Im convinced that mind uploading will happen someday. There are no laws of physics that stand in the way. It depends, however, on technology that has not yet been invented, so nobody knows when mind uploading might become available.

The brain relies on an elegant, underlying principle: A simple working part,...

Go here to read the rest:

Will Your Uploaded Mind Still Be You? - The Wall Street Journal

Greta Kline of Frankie Cosmos on slowing down (to a certain point) – Metro US

The music that songwriter Greta Kline creates inhabits the small moments of life in an abundant way. For years, she has been recording her own brand of bedroom pop under numerous monikers and uploading them online at the same pace that many of us exercise. These days, the creating process has slowed down only a little as she has settled into her most notable persona Frankie Cosmos releasing her second studio album for Sub Pop earlier this month, Close it Quietly.

The album recorded with her longtime band mates, Lauren Martin (synth), Luke Pyenson (drums), and Alex Bailey (bass) finds Kline delivering one of her most focused and immediate selections of songs to date. And as with her past output, this is saying something, as the 21 songs that are included on Close it Quietly hover just around two minutes on average with some clocking in around thirty-to-forty seconds. When she reaches two and a half minutes on the albums closer, This Swirling, it feels like she is reaching prog territory in comparison. The record feels like the work of an artist who has spent years consistently putting in the work. A culmination of constant sharing and experimentation with song craft.

Greta Kline with her band, Frankie Cosmos. Photo: Jackie Lee Young

But with the bands ever-busy touring schedule, Klines output has slowed down to only one or two releases per year as opposed to, say, five with an emphasis on creating the right representation of her creative mind-set at that point in time.

Before we were a real band I was just putting out music every month, says Kline of the process of releasing music at this point in her life. Every time I made a demo I was putting it out. Now it seems like so much less to me. In the past it seemed like I was putting out everything I thought of. Now its like, Ill write ten songs and one of them will make it onto an album.

With someone as prolific as Kline is, the emphasis on chiseling time out to record amidst the recording and touring cycle has put things into perspective. I think my time at home has a different meaning to me now, she explains. Because we tour so much of most years. When Im at home, I really want to be working on something. For us, this past Winter was that. Just being able to record feels different than when youre touring. It just feels like precious time.

With so many ideas being brought to the table, she has found a real partnership with her band, whose contributions to the new album provide the right amounts of impact and pathos when required.

I feel like weve, over the years, developed a really good style of communication with each other. We have more of a streamlined way of communicating. Its always hard because its four people talking about what we should do with a song, Kline explains. Something that I really appreciate about my bandis they know when a song doesnt need to be added to. There are a couple of solo songs on the album where they were like, Yeah, I dont think we can add anything to this. Then when they do have something to add, theyre like, Yeah, maybe we could add this there. That makes me trust them. Theyre not greedy players (laughs).

In a way, being a fan of Klines music brings a sort of reliable constant to your life. As every five or six months or so, you are bound to hear a continuation of her story through a collection of short songs that will catch you up on how she is feeling at that given time. Its like a conversation is resuming after being interrupted. I ask Kline if she views each song cycle in this way.

I dont even think about the collections of songs as theyre going to be an album, Kline says. I think it does function in the way that youre saying where you get all of these snapshots and of course you have more of an understanding on a bigger thing because its a bunch of short things. But I think it could be any bunch of short songs, its just whatever I have. I think theyre connected because theyre from a similar time in my life. I write about the same stuff over and over, so that will also make them a little more similar or connected in some way. I dont necessarily think about the way the songs are working together to represent something, its more that each one is a small moment and if you want to you can piece them together in some deeper understanding of life, or my life, or whatever.

Make sure to catch Frankie Cosmos on tour this Fall.

Read the original post:

Greta Kline of Frankie Cosmos on slowing down (to a certain point) - Metro US

With a $70 Kit, This Startup Promises to Turn Anyone Into an Artist – Inc.

While on vacationfour years ago, Elad Katav decided to try to teach himself a new skill: painting. The software company COO had little artistic experience andthought it would be a good chance to clearhis mindand do something creative.He watched some tutorials on YouTube, picked up somesupplies at a local crafts store, andsat down with a photo of his 5-year-old son to try to paint a portrait.

A few days later, the canvas--half completed--sat at the bottom of a trash bin.An experience that Katavhad hoped would be therapeutic instead brought a lot of frustration.

Today, Katav is founder and CEOof Boston-based Cupixel, a startup that uses augmented reality to help people who aren't skilled artistssketch and paint. The company launched its first product, a $70 supply kit that's compatible with an app, on its website in January and quickly sold out of its inventory. In July, it launched on theHome Shopping Network's website, and Katav says the startup ison the verge of announcing partnerships with major brick-and-mortar retailers.

Katav previously served as COO of enterprise software company Correlsense. After his failed painting attempt, he believedthere was a business opportunity around the concept of helping non-artists create art--and, having a background in software, he decided the product should involve some advanced technology. He founded Cupixel in 2016 and soon raised$2 million in seed funding from private backers. After two years of developing the AR tech, he launched the product at CES this January. Katavdeclined to reveal the startup's revenue, but said the company sold out of its first batch of 1,000 kits within two months and hassince restocked with an additional 15,000 units.

For Katav, an Israeli immigrant with no artistic background, it's affirmation that there's a segment of the population who don'thave the natural ability to make artbut wantto. "Art creation has so many benefits," he says."It relaxes the body. It relaxes the mind. It gives you an opportunity to be creative. Yet it felt like this processwas closed off to people like me."

Cupixel's kit includes everything you need--canvas, pencils, paint, brushes, a frame--to producea hand-paintednine-by-nine-inch piece of artwork, aside from a smartphone or tablet. You start by choosing a workfrom Cupixel's online galleryor by uploading your own photo, whichthe software then converts into a sketchable image. On your device'sscreen, the image is divided into nine squares that correspond with the nine canvas tiles provided withthe kit. Youpoint your device's camera at the canvas, andon your screen, you see the image that you'll be tracing and painting. Using your pencil and brushes, you follow along with what's on the screen--an AR version ofpaint-by-numbers. When finished, you piece the nine squares together to form one larger one. Katav says the entire experiencetakes under two hours for most users.

Cupixel now has deals with more than 20 artists to include their work in its database. An artist receives a royalty each time his or her work is selected to be painted by a user.Katav says the startup is in the process of finalizing deals with two of the U.S.'s biggest arts and crafts retailers, though he declined to sharewhich ones. It's worth noting that one of Cupixel's board members is Lew Klessel, a managing director at private equity firmNew Mountain Capital and the former interim CEO of Michaels.

Cupixel's kit isn't the first AR product meant to help people create art. Lithuania-based SketchAR makes a$28 app that turns a phone into an AR device, overlaying a piece of paper or other canvas with a traceable sketch. Cupixel's product adds the painting aspect and includes the necessary supplies.

Katav'sgoal is to launchAR kits for other art forms likesculpting, woodcrafting, and paper crafting, though these three-dimensional processes clearly would be a bit more complex. Katav doesn't have a timeline yet, though he says the company has prototyped a paper-crafting AR product in its lab.

While the technology is exciting, Katav admits that some professional artists have pushed back about the ideaof using technology to turn just anyone into an artist. The founder objects to this sentiment. Instead, hecompares Cupixelto meal-in-a-box services that make cooking easier for those who lack the skills to do it all on their own.

"It doesn't make you a professional chef," he says. "But now you can participate in a beautiful process that you otherwise might not be able to."

Read more from the original source:

With a $70 Kit, This Startup Promises to Turn Anyone Into an Artist - Inc.

Scarlett Moffatt shares troll post and calls for people to be kinder – digitalspy.com

Former Gogglebox and I'm a Celebrity... Get Me Out of Here! star Scarlett Moffatt has hit out at online trolls by naming and shaming one of them.

The reality TV personality shared private Instagram messages from someone branding her a "fat bitch" and a "fat c**t", before uploading a series of videos to her Stories calling for people to be nicer online.

Scarlett said: "I just want to say... apologies that last post has swearing in. But I just think it's really important for people to see some of the daily messages that I get.

"I'm really pleased that Jesy Nelson done the show on bringing trolls to the forefront and making people understand the effect it can have on you, especially if you don't have a good support network around you, I can imagine it's really, really difficult."

Related: Love Island's Chris Hughes feuds with Katie Hopkins following Jesy Nelson's documentary

She continued: "People say because you're on the TV or if you're in the public eye then people are allowed an opinion.

"Yes, I would agree to that to an extent, but when people are using vile and bullying comments... at the end of the day, being a TV presenter is my job and if I was in any other job and I was getting emails like that from staff or from people, they would be getting warnings and sacked, something would be done about it.

"People need to remember it's okay having an opinion but when it's hurting people's feelings and when it's vile, abusive language, that's when it needs to stop!

"Educating children the majority of the time it's not children but if we start and drum this into kids young as they get older they'll understand that this is wrong. The majority of the comments I get are from around 25 to 50-year-old men, they seem to love calling me names, God knows why.

"People don't know what's happening in people's lives so you need to be a bit kinder."

Jesy Nelson: Odd One Out aired on BBC One, and is available to watch on BBC iPlayer now.

We would encourage anyone who identifies with the topics raised in this article to reach out. Organisations who can offer support include Samaritans on 116 123 (www.samaritans.org) or Mind on 0300 123 3393 (www.mind.org.uk).

Readers in the US are encouraged to visit mentalhealth.gov.

Want up-to-the-minute entertainment news and features? Just hit 'Like' on our Digital Spy Facebook page and 'Follow' on our @digitalspy Instagram and Twitter account.

See the original post here:

Scarlett Moffatt shares troll post and calls for people to be kinder - digitalspy.com

IGTV: What, Why and How You Should be Using it as a Marketing Tool – Business 2 Community

After a slow start for Instagram TV (IGTV), its now becoming an integral part of social media strategies. After announcing in February that Instagram would allow one minute previews of IGTV videos on the main Instagram feed, things started to change and views skyrocketed.

If you arent in on this yet, you should be. Heres what, why and how you should be using IGTV as a marketing tool!

Back in June of 2018, Instagram released IGTV as, a new app for watching long-form, vertical video from your favorite Instagram creators. In May 2019 they started allowing for landscape videos as well. So basically a platform to compete with Youtube.

Each creator has their own channel similar to TV. And just like a television, as soon as you access IGTV, videos start playing. Can you say hello increased engagement?!

Theres a stand alone IGTV app, but it can also be accessed straight from your Instagram app. Unlike regular Instagram videos, IGTV videos can be 10 minutes to an hour long.

IGTV can have major benefits for your clients business as well as your own. Its about creating value for your consumers. Here are some of the perks that come with IGTV:

Having another platform to share video content means another place to be seen. Which in turn means more engagement and more customers.

By 2020, the number of digital video viewers in the United States is projected to be more than 236 million. Thats a lot of potential people viewing your content.

Unlike videos uploaded straight to Instagram, your IGTV videos can be 10-60 minutes long. This makes it a great spot for how-tos, behind the scenes, story features and more!

While Instagram Stories and other platforms are better suited for posting things as they happen, IGTV needs to be well thought out and planned.

Think about your target audience. What do they want to see? What do they want from you? How can you help them?

Since Instagram announced in February that users could post one-minute previews of their IGTV videos straight to the news feed, viewership has increased. When theres a new video, your followers can tap straight from their feed to watch the full video.

Posting previews on Instagram and sending followers to your IGTV helps boost engagement.

Using IGTV can also unlock a form of the swipe up feature for your Instagram Stories (more about this later).

Side note: Videos posted on IGTV wont automatically upload to your Instagram. If you do want them to appear on your feed youll have to click Post a Preview under the title and description page when uploading your IGTV video.

You can access IGTV through the standalone app or through Instagram.

If you will be creating longer form videos, we suggest actually downloading the app. The set up and getting started is pretty straight forward with prompts. But heres a quick recap:

Webcast, October 15th: Your Baby is Ugly

There are a lot of different things you can take advantage of by using IGTV. Here are some of our favorites:

In a previous blog post, we discussed how Instagram Story swipe up features are only available to verified accounts or if you have over 10,000 followers. But theres a couple work arounds to add a link to your IG Story and IGTV is one of them.

This should be a video directing people to click somewhere on the screen that will essentially be taking them to a certain link. It could be a video of you pointing up somewhere or just a static video with arrows pointing to where you want them to tap.

One thing to keep in mind when making this is that IGTV videos need to be at least a minute long.

Your title can be whatever you want but we suggest using something like Click here for the link that reinforces your CTA. In the description, put the URL that you want to direct users. That is the most important part!

Once you upload your IGTV video, make your Story on Instagram and youll see the link icon in the options at the top. Dont get too excited, you cant directly link to the URL yet. But click the link and youll get the option to link to your IGTV video. Select your CTA video and post.

Now when people watch your story there will be an option to swipe up to watch on IGTV and from there the link will be directly clickable.

We talked about Sephora in a previous article, but honestly they are just the definition of using IGTV effectively as a marketing tool, so they are being highlighted again.

Makeup and hair tutorials, FAQs and how-tos deeply resonate with their 18.4 million followers. They take time to plan out each video and understand what their audience wants. While they are creating something helpful and entertaining, they are also driving sales. WIN-WIN!

You dont have to sell products or services to make use of IGTV and Lele Pons is a great example of this.

Pons is known for her comedic internet videos and has created somewhat of a tv show on her IGTV. She has episodes called Whats Cooking where she makes different food and brings on different guests. IGTV gave her the platform to open up a different part of her life.

So even if you arent selling anything, IGTV can still add value to your audience experience.

Heres all the details you need to know about sizing, timing and framing:

While getting started with IGTV might seem like a daunting task, the need for video in your social media strategy is too important to sit this out. So jump on the IGTV train and get to creating value for your customers!

See the original post here:

IGTV: What, Why and How You Should be Using it as a Marketing Tool - Business 2 Community

Steam’s wonderful Library Update beta is finally live: Here’s how to get it – PCWorld

As promised, Valve pushed the new Steam Library Update into open beta this morning. Quick access to your recently played games! More detailed Details pages! Better library search and filtering tools! Drag-and-drop! No bezels on the left and right edges! All the modern conveniences and quality of life upgrades that (if were honest) probably shouldve been in Steam already. But damn, theyre nice to have now.

You can read our detailed breakdown of the Library Update and all its featuresor you can simply install it for yourself. If youre keen on a refreshed Steam and dont mind the potential for a few bugs along the way, all it takes is an opt-in to get into the beta.

Its pretty easy. You can go click the big Join The Beta button if you want to feel official, but really all you need to do is open Steam, go to the Settings menu (under Steam), and look for a section on the Account page that says Beta Participation. Click Change, and then on the drop-down menu choose Steam Beta Update.

Restart Steam, and youre in. Youll know it worked immediately, because the familiar Store screen will now stretch all the way to the left and right edges of the window, no bezel. Most of the key features are over on the Library tab though. Thats where youll be greeted by the new Home page, the redesigned sidebar, and so forth.

Change is good, sometimes. Having lived through hundreds of interface changes across countless programs, I feared the worst. Valves PAX demo assuaged those fears somewhat, but you never really know what will annoy you until youve tested it yourself.

So far Im very impressed though. The new interface is clean and reactive, and Im finding the new organizational tools fun to mess around with. Im not going to spend a ton of time recapping because, as I said, you can read about everything at length in our longer (albeit hands-off) impressions.

But there are a few smaller features I hadnt noticed in Valves demo. I like for instance that you can quickly toggle Collections (which used to be Categories) on and off, flipping between your organized library and a simpler alphabetical list of games. Theres also a Ready to Play button in the top-left that will quickly omit any uninstalled games from the list. And even with more than 2,000 games in my library, these sorting changes are snappy.

I also like the Sort by Recent Activity button, which gives you a month-by-month breakdown of the games youve played this year, and then a yearly breakdown after that. It goes back ages, too. Curious what you were playing in 2014? Steam can now show you.

That said, there are a few weird issues. You cantor at least I cant find a wayto sort by size anymore, which is a problem in an era where game sizes are rapidly ballooning. I used to change to Steams old list view and sort by install size every year or so to do some housecleaning, uninstall that 100GB game I was never going to finish. The loss of that functionality is pretty painful.

[UPDATE: I found the "Size on Disk" sorting feature. It's hidden on the Home page, if you scroll down to the list of all your games, there's a drop-down "Sort By" menu. "Size on Disk" is under that. However, it's still a bit less useful than the old method as there's no way to separate games out by the drive they're installed on. For those of you with Steam libraries that span multiple drives, you'll now need to right-click your largest games, go to "Properties," and see where each is installed individually. Bit of a pain, though at least some of the sorting functionality is intact.]

And its a beta. Ive definitely seen some behind-the-scenes code today as Ive clicked around, with trading card messages especially susceptible to breaking. Valves also transitioning to new box art for every game in your library, but old games? Ones that will probably never be updated? They get that Vaseline-smear above and below, the same frosted window look people use when uploading vertical video to a horizontal aspect ratio site like YouTube. It looks kind-of ugly.

Still, I cant see any reason not to update. Steams been stagnant for ages now. Its refreshing to see large-scale library changes, especially since thats one of the areas where Valve has a clear lead over the competing Epic Games Store. As someone whos amassed thousands of games on Steam, its a relief to finally have some control over my backlogor at least the illusion of control.

See the original post here:

Steam's wonderful Library Update beta is finally live: Here's how to get it - PCWorld

Augmented Reality: Eight AR Marketing Applications For Brands In 2019 – Forbes

With a growing number of companies like Facebook developing augmented reality (AR) glasses, there's a good chance AR marketing will be one of 2019's hottest trends. When a global marketing leader like Facebook goes all-in on augmented reality, you know brand builders are likely to follow their lead.

Personally and through my work in this space, I've seen some amazing use cases for AR in terms of training applications that have been developed on the Microsoft Hololens to help aid frontline workers with design and manufacturing.

But how do you use augmented reality to market your business, when you're likely unfamiliar with this new technology? What do you need to know about AR marketing to make it work for your company?

If you're a brand builder who wants to put the power of augmented reality glasses and AR technology to work for your business, bear the following crucial tips in mind.

1. AR-Enabled Video

Augmented reality marketing can significantly increase your company's dwell time at live events and on your website. Consider uploading AR-enabled videos to your website and watching in real-time as potential customers interact with your creations. Forget video marketing -- as AR-enabled videos take hold, standard videos are likely to look pass compared to augmented reality videos.

When developing AR videos for web content, look for platforms that offer a fully integrated web API to allow you to take any 3D model and put it on the web, such as Vuforia or Turbosquid.

2. Wearable Technology

Wearable technology is likely to be a hot tool for those interested in using augmented reality marketing to grow their brands. Combine tools like smartwatches and voice-enabled wearables to take your AR marketing to the next level. Imagine a marketing thought leader like Gary Vaynerchuk giving a keynote speech while wearing a voice-activated wearable and augmented reality glasses to broadcast his speech in real-time. Brands may be able to tap into this content through web APIs, as mentioned above.

3. Experiential Marketing

Experiential marketing will flourish thanks to augmented reality glasses and AR technology. If you want to develop a solid relationship with your target customers, understand that offering a superior brand experience is the key to creating long-term relationships with your audience.

For example, my company recently worked with a whiskey brand to develop an AR experience. We prompted users to point their cameras on the whiskey bottle's label, which in turn showcased a history of the whiskey brand and the various types of quality available for consumers.

4. Mixed-Media Marketing

Big-name brands such as Starbucks, Volvo and Walmart have already begun experimenting with augmented reality marketing. Industry thought leaders are realizing mixed reality marketing, virtual reality marketing and AR-enabled customer outreach is where the advertising and marketing industry is heading. Thanks to tools like Apple's ARKit, even small business owners can follow the lead of industry thought leaders and put augmented reality marketing to work for their brands.

Brands looking to experiment with immersive technology can download ARKit and convert their marketing assets to 3D models, then import them into XCode in order to showcase 3D assets in real-time.

5. AR Interfaces

Augmented reality can be used in a variety of ways to increase brand awareness and drive sales. For example, include an AR interface next to your point of sale terminal, or AR interfaces that allow customers to try products prior to purchasing. Brands are using AR technology for everything from AR-enabled online content to AR-enabled interfaces at their trade shows and conferences.

Simply having a tablet in retail locations loaded up with 3D assets of your brand's products can allow you to showcase digital assets even when they aren't physically available.

6. AR Thought Leadership

The AR sector is expected to explode as more companies realize the possible uses for this technology. Sectors like manufacturing are already using augmented reality technology to design, build and test products. The sooner brand marketers realize the numerous ways they can use augmented reality technology to connect with their audiences, the sooner they can build reputations as marketing thought leaders.

Some of the best ways brands can get the word out about their immersive technology initiatives are to showcase them live in person at trade shows. This gives your prospective customers a first-hand perspective and engages them in a unique and meaningful way. This works especially well for products that are large and cumbersome and would be too expensive to travel with in order to showcase.

7. AR-Enabled Ads

Augmented reality technology can be used for everything from product testing to advertising. Expect to see a growing number of advertising networks and social media platforms begin to offer AR-enabled ads. When you consider potential customers being able to interact with your AR-enabled ads on social networks like Facebook, you begin to see the potential of augmented reality as a customer acquisition tool.

Including a call to action and a touchpoint or hyperlink within your AR application will give customers a direct link to sales channels for those engagements.

8. A Growing Trend Across Industries

A growing number of industries are expected to capitalize on augmented reality marketing. From the fashion and beauty sector to automotive and travel industries, augmented reality marketing is likely to be a hot trend across numerous verticals in the coming years. Understanding how marketing and advertising are changing will allow savvy brand builders to maximize their customer outreach efforts; this is especially true in the technology sector where brands are constantly looking to innovate.

If you are a business builder intrigued by the move toward augmented reality, it is imperative you start developing an augmented reality marketing strategy now. Creating a detailed plan of action to capitalize on AR technology can help you develop a sizable lead over your competitors while building your reputation as an industry thought leader at the same time.

Will your company be integrating augmented reality into your overall marketing strategy in 2019?

Read the original here:

Augmented Reality: Eight AR Marketing Applications For Brands In 2019 - Forbes

Love Islands Arabella Chi says I love you to new boyfriend Wes Nelson after just two months of dating – The Sun

LOVE Island's Arabella Chi has taken her relationship with boyfriend Wes Nelson to the next level by admitting she loves him online.

The model, 28, was caught declaring her love for the 21-year-old on Instagram despite only going official with the former Islander two months ago.

6

Commenting on a snap of the pair posted to Wes' account, she wrote: "I love you".

And while some fans thought the gushing was "cute", others weren't as convinced.

One commented: "A bit soon for that surely".

Another wrote: "So soon?"

6

6

6

The Sun exclusively revealed thatArabella and Wes were growing closeback in June, with an insider dishing that there is was "natural connection" between them.

They were then spottedstepping out to the shops after spending the night together, and then enjoyed aromantic break to Ibiza where they packed on the PDA.

But it wasn't long before the pair made things Instagram official by uploading a loved-up snap online.

Wes previously datedMegan Barton-Hansonafter meeting on last year's Love Island, however they split up earlier this year.

6

6

She has since enjoyed a brief romance with her Celebs Go Dating co-star, Demi Sims, and is currently dating singer Chelsee Grimes.

Meanwhile, Arabella was linked to co-star Danny Williams during her time in the villa, as well as former show star Charlie Frederick.

Charlie, who starred in the 2018 series, took to Instagram shortly after Arabella's Love Island debut to reveal that their romance was "getting back on track".

Exclusive

5, 6, 7, SKATE Dancing On Ice in talks with H from Steps for new series

VITAMIN D Ex On The Beach star Sean leaves fans gobsmacked as he shows off HUGE bulge

Exclusive

LOVEHANDLES ISLAND Curtis Pritchard to shift Love Island lard as face of Weight Watchers

martha-chef About Martha Reeves - Celebrity MasterChef 2019 contestant and Motown star

bolton's brainiac Who is The Chase star Jenny Ryan, when is she on Celebrity MasterChef?

in the mix Who is Judge Jules, when is he on Celebrity MasterChef and is he married?

He said: "Let me set the record straight, me andArabellawere never boyfriend and girlfriend, we were seeing each other, we were getting together.

"We were working out what was going on, what we both wanted etc, we were never girlfriend and boyfriend.

"But I don't know what's worse really, telling someone you want them in your life and then disappearing into the villa... mind blown."

Got a story? email digishowbiz@the-sun.co.uk or call us direct on 02077824220.

We pay for videos too. Click here to upload yours.

Original post:

Love Islands Arabella Chi says I love you to new boyfriend Wes Nelson after just two months of dating - The Sun

Looking To Sell Smartphone? Here’s What You Need to Know – Updato

Selling a smartphone sounds easy until you actually reach a point when it must be done. It's only then when we truly realize how much needs to be done.

If this is the first time that you're doing this, then the whole process can definitely feel overwhelming. That's why we decided to do create a small guide. Not only for beginners, but also for intermediates who wanna learn a thing or two.

With all that being said, let's get right into it!

Selling a phone requires you to list as much information as you can about it. What specs does it have? How large is its screen? What resolution? How much storage? How about its overall condition?

Sure, the buyer can easily find most of that information with a Google search. But, so can you. And if that puts you one step ahead compared to other people who are trying to sell the same phone at the same price, then why not take it?

This is a somewhat good example where the seller mentions not only the specs but also the overall condition of the device. If you're trying to sell smartphone on eBay or another similar website, then mentioning that kind of information will make it more likely for you to sell your device.

If you don't remember or know your phone's specifications, then you should be able to easily find them online with a quick Google search. Also, don't forget to mention if your phone is unlocked or not.

As for describing the overall condition of the device, well, that's mostly your decision to make.

Smartphones have become a huge part of our lives. Each and every device holds a ton of personal information in it.

Photos, videos, documents, contacts, and so much more. We obviously can't trust a stranger with all that information.

So, once you know the specifications of your phone, you must start preparing it so that it can be delivered in a brand-new like condition. That process involves:

There are tons of ways to backup important data. Be it contacts, pictures, or whatever.

Two of the most popular ones is either keeping everything on your computer's drive (Locally) or uploading it to something like Google Drive (Cloud). The choice is yours to make, really.

Just do keep in mind that cloud backups can get extremely slow; depending on your internet connection. However, they are also more reliable than local backups. So, weigh your options.

To make a local backup:

This is what you should see on the computer. After that, all you need to do is copy whatever you want by using the PC and keep it in a safe place. The best option is probably a separate folder for backups.

As for using Google Drive:

This is how our drive looks. But, you can manage your stuff in any way you see fit.

Do keep in mind that the free plan of Google Drive only delivers 15 gigabytes of storage. If you want more, then the only option is looking into paid subscriptions or going back to local backups.

Now that all the data is safe and ready to be moved to your new phone, it's time to erase everything from the device that's about to be sold. This will allow you to sell smartphone in a brand-new like condition.

There are primarily two ways of doing that:

Though, do keep in mind that you must log out from your Google account first. If you don't, the phone will be locked and the buyer will be forced to ask for your Google password.

If that happens, you'll be forced to reset your password after that and nobody wants that. So, to remove your Google account, go to:

Now that this is out of the way, we can proceed with the factory reset. To do it through the phone's settings, go to:

That being said, if you want the buyer to feel as if he is powering up the phone for the first time ever, then your best bet is using the recovery mode:

This is for TWRP recovery. But, it's more or less the same thing for stock recoveries as well.

Now you're almost ready to sell smartphone.

Sure. We're all expecting to find some signs of use on a used phone. But, if you keep it as clean as possible, then that increases your odds of being able to sell it. After all, you'll likely have to post some pictures anyway.

There's not much to teach you here. Using something like a simple microfiber cloth should be more than enough to get rid of fingerprints and stuff like that.

You can drop a tiny bit of water on it to clean while using the dry part to remove wet marks.

If you want to sell smartphone, sure, you could just drop it into a cardboard box, ship it, and be done with it.

But, the reality of the situation is that if you do that, then chances are that the device is going to get damaged on the way and your buyer isn't going to be happy with that.

In cases like that, they'll either ask for a refund, they'll leave negative feedback, or both. No matter how you look at it, skimping on safety isn't worth it.

So, make sure to add a bit of antistatic bubble wrap around the phone to protect it. Not sure if it needs to be antistatic, but, hey, better safe than sorry, right?

It'll be for the best if you can also find its original box and accessories.

Now that you're ready to sell smartphone, it's time to select a good platform. And there are plenty of them to choose from.

Some of the most popular ones include:

If you're living in the US, then do definitely consider Swappa as they are focused on that field of work.

Otherwise, eBay is probably your next best option since it's extremely popular. Other than that, do definitely consider checking out some local platforms that are focused specifically in your region. That makes it easier for a potential buyer to spot your offer.

Now that everything is said and done, all you have to do is post your offer, wait for someone to see it, then head over to your local office post or courier and send it over to the buyer. Simple as that.

That's all for now. Hopefully, that helped you out. If there are any questions or something that we can help with, then let us know about it in the comments.

Feel like we forgot to mention something important? Got anything wrong? Then let us and everyone else know about it in the comments section down below!

Like what you see? Then don't forget to follow us on Facebook and Twitter for the latest news, reviews, listicles, apps, games, devices, how-to guides, and more!

Read the original post:

Looking To Sell Smartphone? Here's What You Need to Know - Updato

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called "mind copying" or "mind transfer") is the hypothetical futuristic process of scanning the mental state (including long-term memory and "self") of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain's information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The biological brain may not survive the copying process. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity's current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our "mind-file", to enable interstellar space travels, and a means for human culture to survive a global disaster by making a functional copy of a human society in a Matrioshka brain, i.e. a computing device that consumes all energy from a star. Whole brain emulation is discussed by some futurists as a "logical endpoint"[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed[clarification needed] computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llins.[10]

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or "nomorph".[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore's law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating "mortality risk" of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut could be used instead of a "live" astronaut in human spaceflight, avoiding the perils of zero gravity, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[14] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore's law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the "Blue Brain Project", stated that "it is not [their] goal to build an intelligent neural network", based solely on the computational demands such a project would have.[16]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[17]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[18]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain's neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[19]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse "weight" for each of the brains' 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[20] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[21] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[21] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron's cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of 'mind' is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[23]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of "mind uploading" (more accurately "mind transferring") is the broad philosophy that consciousness lies within the brain's information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the "self" and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or "soul" can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a "computer file" from the brain and re-implemented into a different physical form.[24] This is not to deny that minds are richly adapted to their substrates.[25] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[26] I would be glad to know... whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their "biological shell". However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person's mind.[27] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, "uploading" would probably result in the death of the original person's brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one's consciousness would leave one's brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and elsewhere. At best, a copy of the original mind is created.[27] Neural correlates of consciousness, a sub-branch of neuroscience, states that consciousness may be thought of as a state-dependent property of some undefined complex, adaptive, and highly interconnected biological system.[28]

Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31] Some have also asserted that consciousness is a part of an extra-biological system that is yet to be discovered and cannot be fully understood under the present constraints of neurobiology. Without the transference of consciousness, true mind-upload or perpetual immortality cannot be practically achieved.[32]

Another potential consequence of mind uploading is that the decision to "upload" may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[33][34] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[35] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[36] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[37][38][39]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[40]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one's mind did exist, it would be impossible for one to verify this.[41] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[40] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[40]

In addition, the resulting animal emulations themselves might suffer, depending on one's views about consciousness.[40] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the "fading qualia" thought experiment of David Chalmers. He then concludes:[42] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[40] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[42]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[43]

Many questions arise regarding the legal personhood of emulations.[44] Would they be given the rights of biological humans? If a person makes an emulated copy of themselves and then dies, does the emulation inherit their property and official positions? Could the emulation ask to "pull the plug" when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of "rehabilitation"? Could an upload have marriage and child-care rights?[44]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of "digital human rights". For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to "die" among emulations, and triggers for racist, xenophobic, and religious prejudice.[43] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[43]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[43]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[49]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to "upload" their entire brains to computers and become "digitally immortal" by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[50] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore's law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled "How to Teleport", mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle's Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the "artificial life phenotype". Doyle's vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single "frozen" state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the "absolute" duplication of an individual mind is insurmountable for the nearest hundreds of years.[51]

The rest is here:

Mind uploading - Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

Here is the original post:

Mind Uploading

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation, or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term "mind transfer" also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science-fiction novels and films since the 1950s.

An early story featuring technological transfer of memories and personality from one brain to another is "Intelligence Undying" by Edmond Hamilton, first published in the April 1936 issue of Amazing Stories. In this story, an elderly scientist named John Hanley explains that when humans are first born, "our minds are a blank sheet except for certain reflexes which we all inherit. But from our birth onward, our minds are affected by all about us, our reflexes are conditioned, as the behaviorists say. All we experience is printed on the sheet of our minds. ... Everything a human being learns, therefore, simply establishes new connections between the nerve cells of the brain. ... As I said, a newborn child has no such knowledge connections in his cortex at allhe has not yet formed any. Now if I take that child immediately after birth and establish in his brain exactly the same web of intricate neurone connections I have built up in my own brain, he will have exactly the same mind, memories, knowledge, as I have ... his mind will be exactly identical with my mind!" He then explains he has developed a technique to do just this, saying "I've devised a way to scan my brain's intricate web of neurone connections by electrical impulses, and by means of those impulses to build up an exactly identical web of neurone connections in the infant's brain. Just as a television scanning-disk can break down a complicated picture into impulses that reproduce the picture elsewhere." He adds that the impulses scanning his brain will kill him, but the "counter-impulses" imprinting the same pattern on the baby's brain will not harm him. The story shows the successful transfer of John Hanley's mind to the baby, whom he describes as "John Hanley 2nd", and then skips forward to the year 3144 to depict "John Hanley, 21st" using his advanced technology to become the ruler of the Earth in order to end a war between the two great political powers of the time, and then further ahead to "John Hanley, 416th" helping to evacuate humanity to the planet Mercury in response to the Sun shrinking into a white dwarf. He chooses to remain on Earth awaiting death, so that people would "learn once more to do for themselves, would become again a strong a self-reliant race", with Hanley concluding that he "had been wrong in living as a single super-mind down through the ages. He saw that now, and now he was undoing that wrong."

A story featuring human minds replicated in a computer is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says "answer indeterminate" and then asks "can human individual's self-awareness transor be mechanically duplicated?" MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying "A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual."[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual's brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate "mathematical region". In Izzard's words, "to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits."[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard's memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person's mind can be "recorded" and used to create a "restoration" in the event of their death. In a restoration, the person's biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a 'brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind which are stored in an artificial medium. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or "dupe" which is stored in the "restoration bank",[6] and at one point a lecturer says that "The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution."[7] During restoration, they take the dupe and "infuse it into an empty brain",[7] and the plot turns on the fact that it is possible to install one person's dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl's story "The Tunnel Under the World" from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, "each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being ... It was only a matter, he said, of transferring a man's habit patterns from brain cells to vacuum-tube cells." Later in the story, Pohl gives some additional description of the procedure: "Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all." After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, 'It's as easy to transfer a pattern from a dead brain as a living one'), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov's 1956 short story The Last Question: "One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain." A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov's story) can be found in ArthurC. Clarke's novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke's earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city's Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the "firsts" is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are "alive", but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best "multiverse" ideas of science fiction.

In Robert Silverberg's To Live Again (1969), an entire worldwide economy is built up around the buying and selling of "souls" (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a "personality recording" unless the possessor first had died; similarly, two or more buyers were not allowed to own a "share" of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson's award-winning Neuromancer (1984), which popularized the concept of "cyberspace", a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining "copies." In Egan's Permutation City (1994), Diaspora (1997) and Zendegi (2010), "copies" are made by computer simulation of scanned brain physiology. See also Egan's "jewelhead" stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo's physical brain still is required for his mind to reside in. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo's physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron's 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero's mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero's mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

See the original post:

Mind uploading in fiction - Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring technological transfer of memories and personality from one brain to another is "Intelligence Undying" by Edmond Hamilton, first published in the April 1936 issue of Amazing Stories. In this story, an elderly scientist named John Hanley explains that when humans are first born, "our minds are a blank sheet except for certain reflexes which we all inherit. But from our birth onward, our minds are affected by all about us, our reflexes are conditioned, as the behaviorists say. All we experience is printed on the sheet of our minds. ... Everything a human being learns, therefore, simply establishes new connections between the nerve-cells of the brain. ... As I said, a newborn child has no such knowledge-connections in his cortex at allhe has not yet formed any. Now if I take that child immediately after birth and establish in his brain exactly the same web of intricate neurone-connections I have built up in my own brain, he will have exactly the same mind, memories, knowledge, as I have ... his mind will be exactly identical with my mind!" He then explains he has developed a technique to do just this, saying "I've devised a way to scan my brain's intricate web of neurone connections by electrical impulses, and by means of those impulses to build up an exactly identical web of neurone connections in the infant's brain. Just as a television scanning-disk can break down a complicated picture into impulses that reproduce the picture elsewhere." He adds that the impulses scanning his brain will kill him, but the "counter-impulses" imprinting the same pattern on the baby's brain will not harm him. The story shows the successful transfer of John Hanley's mind to the baby, who he describes as "John Hanley 2nd", and then skips forward to the year 3144 to depict "John Hanley, 21st" using his advanced technology to become the ruler of the Earth in order to end a war between the two great political powers of the time, and then further ahead to "John Hanley, 416th" helping to evacuate humanity to the planet Mercury in response to the Sun shrinking into a white dwarf. He chooses to remain on Earth awaiting death, so that people would "learn once more to do for themselves, would become again a strong a self-reliant race", with Hanley concluding that he "had been wrong in living as a single super-mind down through the ages. He saw that now, and now he was undoing that wrong."

A story featuring human minds replicated in a computer is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says "answer indeterminate" and then asks "can human individual's self-awareness transor be mechanically duplicated?" MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying "A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual."[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual's brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate "mathematical region". In Izzard's words, "to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits."[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard's memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person's mind can be "recorded" and used to create a "restoration" in the event of their death. In a restoration, the person's biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a 'brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind which are stored in an artificial medium. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or "dupe" which is stored in the "restoration bank",[6] and at one point a lecturer says that "The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution."[7] During restoration, they take the dupe and "infuse it into an empty brain",[7] and the plot turns on the fact that it is possible to install one person's dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl's story "The Tunnel Under the World" from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, "each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being ... It was only a matter, he said, of transferring a man's habit patterns from brain cells to vacuum-tube cells." Later in the story, Pohl gives some additional description of the procedure: "Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all." After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, 'It's as easy to transfer a pattern from a dead brain as a living one'), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov's 1956 short story The Last Question: "One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain." A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov's story) can be found in ArthurC. Clarke's novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke's earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city's Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the "firsts" is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are "alive", but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best "multiverse" ideas of science fiction.

In Robert Silverberg's To Live Again (1969), an entire worldwide economy is built up around the buying and selling of "souls" (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a "personality recording" unless the possessor first had died; similarly, two or more buyers were not allowed to own a "share" of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson's award-winning Neuromancer (1984), which popularized the concept of "cyberspace", a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining "copies." In Egan's Permutation City (1994), Diaspora (1997) and Zendegi (2010), "copies" are made by computer simulation of scanned brain physiology. See also Egan's "jewelhead" stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo's physical brain still is required for his mind to reside in. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo's physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron's 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero's mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero's mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Go here to see the original:

Mind uploading in fiction - Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Visit link:

The virtual afterlife will transform humanity | Aeon Essays

Your mind will not be uploaded Soft Machines

The recent movie Transcendence will not be troubling the sci-fi canon of classics, if the reviews are anything to go by. But its central plot device uploading a human consciousness to a computer remains both a central aspiration of transhumanists, and a source of queasy fascination to the rest of us. The idea is that someones mind is simply a computer programme, that in the future could be run on a much more powerful computer than a brain, just as one might run an old arcade game on a modern PC in emulation mode. Mind uploading has a clear appeal for people who wish to escape the constraints of our flesh and blood existence, notably the constraint of our inevitable mortality.

In this post I want to consider two questions about mind uploading, from my perspective as a scientist. Im going to use as an operational definition of uploading a mind the requirement that we can carry out a computer simulation of the activity of the brain in question that is indistinguishable in its outputs from the brain itself. For this, we would need to be able to determine the state of an individuals brain to sufficient accuracy that it would be possible to run a simulation that accurately predicted the future behaviour of that individual and would convince an external observer that it faithfully captured the individuals identity. Im entirely aware that this operational definition already glosses over some deep conceptual questions, but its a good concrete starting point. My first question is whether it will be possible to upload the mind of anyone reading this now. My answer to this is no, with a high degree of probability, given what we know now about how the brain works, what we can do now technologically, and what technological advances are likely in our lifetimes. My second question is whether it will ever be possible to upload a mind, or whether there is some point of principle that will always make this impossible. Im obviously much less certain about this, but I remain sceptical.

This will be a long post, going into some technical detail. To summarise my argument, I start by asking whether or when it will be possible to map out the wiring diagram of an individuals brain the map of all the connections between its 100 billion or so neurons. Well probably be able to achieve this mapping in the coming decades, but only for a dead and sectioned brain; the challenges for mapping out a living brain at sub-micron scales look very hard. Then well ask some fundamental questions about what it means to simulate a brain. Simulating brains at the levels of neurons and synapses requires the input of phenomenological equations, whose parameters vary across the components of the brain and change with time, and are inaccessible to in-vivo experiment. Unlike artificial computers, there is no clean digital abstraction layer in the brain; given the biological history of nervous systems as evolved, rather than designed, systems, theres no reason to expect one. The fundamental unit of biological information processing is the molecule, rather than any higher level structure like a neuron or a synapse; molecular level information processing evolved very early in the history of life. Living organisms sense their environment, they react to what they are sensing by changing the way they behave, and if they are able to, by changing the environment too. This kind of information processing, unsurprisingly, remains central to all organisms, humans included, and this means that a true simulation of the brain would need to be carried out at the molecular scale, rather than the cellular scale. The scale of the necessary simulation is out of reach of any currently foreseeable advance in computing power. Finally I will conclude with some much more speculative thoughts about the central role of randomness in biological information processing. Ill ask where this randomness comes from, finding an ultimate origin in quantum mechanical fluctuations, and speculate about what in-principle implications that might have on the simulation of consciousness.

Why would people think mind uploading will be possible in our lifetimes, given the scientific implausibility of this suggestion? I ascribe this to a combination of over-literal interpretation of some prevalent metaphors about the brain, over-optimistic projections of the speed of technological advance, a lack of clear thinking about the difference between evolved and designed systems, and above all wishful thinking arising from peoples obvious aversion to death and oblivion.

On science and metaphors

I need to make a couple of preliminary comments to begin with. First, while Im sure theres a great deal more biology to learn about how the brain works, I dont see yet that theres any cause to suppose we need fundamentally new physics to understand it. Of course, new discoveries may change everything, but it seems to me that the physics weve got is quite complicated enough, and this discussion will be couched entirely in currently known, fundamentally physicalist, principles.

The second point is that, to get anywhere in this discussion, were going to need to immunise ourselves against the way in which almost all popular discussion of neuroscience is carried out in metaphorical language. Metaphors used clearly and well are powerful aids to understanding, but when we take them too literally they can be badly misleading. Its an interesting historical reflection that when computers were new and unfamiliar, the metaphorical traffic led from biological brains to electronic computers. Since computers were popularly described as electronic brains, its not surprising that biological metaphors like memory were quickly naturalised in the way computers were described. But now the metaphors go the other way, and we think about the brain as if it were a computer (I think the brain is a computer, by the way, but its a computer thats so different to man-made ones, so plastic and mutable, so much immersed in and responsive to its environment, that comparisons with the computers we know about are bound to be misleading). So if what we are discussing is how easy or possible it will be to emulate the brain with a man-made computer, the fact that we are so accustomed to metaphorical descriptions of brains in terms of man-made computers will naturally bias us to positive answers. Its too easy to move from saying a neuron is analogous to a simple combination of logic gates in a computer, say, to thinking that it can be replaced by one. A further problem is that many of these metaphors are now so stale and worn out that they have lost all force, and the substance of the original comparison has been forgotten. We often hear, for example, the assertion that some characteristic or other is hard-wired in the brain, but if one stops to think what an animals brain looks and feels like theres nothing much hard about it. Its a soft machine.

Mapping the brains wiring diagram

One metaphor that is important is the idea that the brain has a wiring diagram. The human brain has about 100 billion neurons, each of which is connected to many others by thin fibres the axons and dendrites along which electrical signals pass. Theres about 100,000 miles of axon in a brain, connecting at between a hundred to a thousand trillion synaptic connections. Its this pattern of connectivity between the neurons through the axons and dendrites that constitutes the wiring diagram of the brain. Ill argue below that knowing this wiring diagram is not yet a sufficient condition for simulating the operation of a brain it must surely, however, be a necessary one.

So far, scientists have successfully mapped out the wiring diagram of one organisms nervous system the microscopic worm C. elegans, which has a total of 300 neurons. This achievement was itself a technical tour-de-force, which illustrates what would need to be done to determine the immeasurably more complex wiring diagram of the human brain. The issue is that these fibres are thin (hundreds of nanometers, for the thinnest of them), very densely packed, and the fibres from a single neuron can pervade a very large volume (this review in Science The Big and the Small: Challenges of Imaging the Brains Circuits ($) is an excellent up-to-date overview of whats possible now and what the challenges are). Currently electron microscopy is required to resolve the finest connections, and this can only be done on thin sections. Although new high resolution imaging techniques may well be developed, its difficult to see how this requirement to image section by section will go away. Magnetic resonance imaging, on the other hand, can image an intact brain, but at much lower resolution more like millimetres than nanometers. The resolution of MRI derives from the strength of the magnetic field gradient you can sustain. You can have a large gradient over a small volume but if youre constrained to keep the brain intact that provides quite a hard limit.

Proponents of mind uploading who recognise these difficulties at this point resort to the idea of nanobots crawling through the brain, reading it from the inside. Ive discussed at length why I think it will be very much more difficult than people think to create such nanobots, for example in my article Rupturing the Nanotech Rapture, and in Nanobots, nanomedicine, Kurzweil, Freitas and Merkle I discuss why I dont think the counter-arguments of their proponents are convincing.

Mapping out all the neural connections of a human brain, then, will be difficult. It probably will be done, on a timescale perhaps of decades. The big but, though, is that this mapping will be destructive, and the brain it is done on will be definitively dead before the process starts. And massive job though it will be to map out this micro-scale connectome, theres something very important it doesnt tell you the difference between a live brain and a dead lump of meat that is what the initial electrical state of the brain is, where the ion gradients are, what the molecules are doing. But more on molecules later

Modelling, simulation, emulation: why mind uploading might make sense if you believed in intelligent design

If you did have a map of all the neural connections of a human brain, dead or alive, is that enough to simulate it? You could combine the map with known equations for the propagation of electrical signals along axons (the Hodgkin-Huxley equations), models of neurons and models for the behaviour of synapses. This is the level of simulation, for example, carried out in the Blue Brain project (see this review (PDF) for a semi-technical overview). This is a very interesting thing to do from the point of neuroscience, but it is not a simulation of a human brain, and certainly not of any individuals brain. Its a model, which aggregates phenomenological descriptions of the collective behaviours and interactions of components like the many varieties of voltage gated ion channels and the synaptic vesicles. The equations youd use to model an individual synapse, for example, would have different parameters for different synapses, and these parameters change with time (and in response to the information being processed). Without an understanding of whats going on in the neuron at the molecular level, these are parameters you would need to measure experimentally for each synapse.

An analogy might make this clearer. Let me ask this question: is it possible to simulate the CPU in your mobile phone? At first sight this seems a stupid question of course one can predict with a very high degree of certainty what the outputs of the CPU would be for any given set of inputs. After all, the engineers at ARM will have done just such simulations before any of the designs had even been manufactured, using well-understood and reliable design software. But a sceptical physicist might point out that every CPU is different at the atomic level, due to the inherent finite tolerances of manufacturing, and in any case the scale of the system is much too large to be able to simulate at the quantum mechanical level that would be needed to capture the electronic characteristics of the device.

In this case, of course, the engineers are right, for all practical purposes. This is because the phenomenology that predicts the behaviour of individual circuit elements is well-understood in terms of the physics, and the way these elements behave is simple, reliable and robust robust in the sense that quite a lot of variation in the atomic configuration produces the same outcomes. We can think of the system as having three distinct levels of description. There is the detailed level of what the electrons and ions are doing, which would account for the basic electrical properties of the component semiconductors and insulators, and the junctions and interfaces between them. Then there is the behaviour of the circuit elements that are built from these materials the current-voltage characteristics of the field effect transistors, and the way these components are built up into circuits. And finally, there is a description at a digital level, in which logical operations are implemented. Once one has designed circuit elements with clear thresholds and strongly non-linear behaviour, one can rely on there being a clean separation between the digital and physical levels. Its this clean separation between the physical and the digital that makes the job of emulating the behaviour of one type of CPU on another one relatively uncomplicated.

But this separation between the physical and the digital in an integrated circuit isnt an accident or something pre-ordained it happens because weve designed it to be that way. For those of us who dont accept the idea of intelligent design in biology, thats not true for brains. There is no clean digital abstraction layer in a brain why should there be, unless someone designed it that way? In a brain, for example, the digital is continually remodelling the physical we see changes in connectivity and changes in synaptic strength as a consequence of the information being processed, changes, that as we see, are the manifestation of substantial physical changes, at the molecular level, in the neurons and synapses.

The unit of biological information processing is the molecule

Is there any general principle that underlies biological information processing, in the brain and elsewhere, that would help us understand what ionic conduction, synaptic response, learning and so on have in common? I believe there is underlying all these phenomena are processes of macromolecular shape change in response to a changing local environment. Ion channel proteins change shape in response to the electric field across the membrane, opening or closing pores; at the synapse shape-changing proteins respond to electrical changes to trigger the bursting open of synaptic vesicles to release the neurotransmitters, which themselves bind to protein receptors to transmit their signal, and complicated sequences of protein shape changes underlie the signalling networks that strengthen and weaken synaptic responses to make memory, remodelling the connections between neurons.

This emphasises that the fundamental unit of biological information processing is not the neuron or the synapse, its the molecule. Dennis Bray, in an important 1995 paper Protein molecules as computational elements in living cells, pointed out that a protein molecule can act as a logic gate through the process of allostery its catalytic activity is modified by the presence or absence of bound chemicals. In this chemical version of logic, the inputs are the presence or absence of certain small molecules, and the outputs are the molecules that the protein produces, in the presence of the right input chemicals, by catalysis. As these output chemicals can themselves be the inputs to other protein logic gates, complex computational networks linking the inputs and outputs of many different logic gates can be built up. The ultimate inputs of these circuits will be environmental cues the presence or absence of chemicals or other environmental triggers detected by molecular sensors at the surface of the cells. The ultimate outputs can be short-term to activate a molecular motor so that a cell swims towards a food source or away from a toxin. Or they can be long term, in activating and deactivating different genes so that the cell builds different structures for itself, or even changes the entire direction of its development.

This is how a single celled organism like an amoeba can exhibit behaviour that is in effect purposeful, that is adaptive to the clues it detects from the environment around it. All living cells process information this way. In the collective alliance of cells that makes up a multi-cellular organism like a human, all our cells have the ability to process information. The particular cells that specialise in doing information processing and long-ranged communication the neurons start out with the general capability for computation that all cells have, but through evolution have developed this capability to a higher degree and added to it some new tricks. The most important of these new tricks is an ability to control the flow of ions across a membrane in a way that modifies the membrane potential, allowing information to be carried over long distances by the passage of shock waves of membrane potential, and communications to be made between neurons in response to these rapid changes in membrane potential through the release of chemicals at synapses. But, as always happens in evolved systems, these are new tricks built on the old hardware and old design principles molecules whose shape changes in response to changes in their environment, this shape change producing functional effects (such as the opening of an ion channel in response to a change in membrane potential).

The molecular basis of biological information processing emphasises the limitations of the wiring metaphor. Determining the location and connectivity of individual neurons, or the connectome as its begun to be called in neuroscience is necessary, but far from sufficient condition for specifying the informational state of the brain; to do that completely requires us to know where the relevant molecules are, how many of them are present, and what state theyre in.

The brain, randomness, and quantum mechanics

The molecular basis of biological computation means that it isnt deterministic, its stochastic, its random. This randomness isnt an accidental add-on, its intrinsic to the way molecular information processing works. Any molecule in a warm, wet watery environment like the cell is constantly bombarded by its neighbouring water molecules, and this bombardment leads to the constant jiggling we call Brownian motion. But its exactly the same bombardment that drives the molecule to change shape when its environment changes. So if we simulate, at the molecular level, the key parts of the information processing system of the brain, like the ion channels or the synaptic vesicles, or the broader cell signalling mechanisms by which the neurons remodel themselves in response to the information they carry, we need to explicitly include that randomness.

I want to speculate here about what the implications are of this inherently random character of biological information processing. A great deal has been written about randomness, determinism and the possibility of free will, and Im largely going to avoid these tricky issues. I will make one important point, though. It seems to me that all the agonising about whether the idea of free will is compatible with a brain that operates through deterministic physics is completely misplaced, because the brain just doesnt operate through deterministic physics.

In a computer simulation, wed build in the randomness by calls to a pseudo-random number generator, as we compute the noise term in the Langevin equation that would describe, for example, the internal motions of an receptor protein docking with a neurotransmitter molecule. In the real world, the question we have to answer is whether this randomness is simply a reflection of our lack of knowledge? Does it simply arise from a decision we make not to keep track of every detail of each molecular motion in a very complex systems? Or is it real randomness, that is intrinsic to the fundamental physics, and in particular from the quantum mechanical character of reality? I think it is real randomness, whose origins can be traced back to quantum fluctuations.

To be clear, Im not claiming here that the brain is a quantum computer, in the sense that it exploits quantum coherence in the way suggested by Roger Penrose. It seems to me difficult to understand how sufficient coherence could be maintained in the warm and wet environment of the cell. Instead, I want to focus on the origin of the forces between atoms and molecules. Attractions between uncharged molecules arise from the van der Waals force, which is most fundamentally understood as a fluctuation force, a force that arises from the way randomly fluctuating fields are are modified by atoms and molecules. The fluctuating fields in question are the zero-point and thermal fluctuations of the electromagnetic field of the vacuum. Because the van der Waals force arises from quantum fluctuations, the force itself is fluctuating, and (see my earlier post Where the randomness comes from) these random fluctuations, of quantum origin, are sufficient to account for the randomness of the warm, wet nanoscale world.

The complexity theorist Scott Aaronson has recently written an interesting, but highly speculative essay that touches on these issues The Ghost in the Quantum Turing Machine (PDF). Aaronson argues that there is a type of unpredictability about the universe today that arises from the quantum unknowability of the initial conditions of the universe. He evokes the quantum no-cloning principle to argue that quantum state functions that have evolved unitarily, without decoherence, from the beginning of the universe he calls these freebits have a different character of uncertainty to the normal types of randomness we deal with using probability distributions. The question then is whether the fundamental unpredictability of freebits could be connected to some fundamental unpredictability of the decisions made by a human mind. Aaronson suggests it could, if there were a way in which the randomness inherent in the molecular processes underlying the operation of the brain such as the opening and closing of ion channels could be traced back to quantum uncertainty. My own suggestion is that the origin of van der Waals forces, as a fluctuation force, in the quantum fluctuations of the vacuum electromagnetic field, offers the connection that Aaronson is looking for.

If Aaronson is correct that his freebit picture shows how the fundamental unknowability of the quantum initial conditions of the universe translate into a fundamental unpredictability of certain physical processes now, and I am correct in my suggestion that the origins of the van der Waals force in the quantum fluctuations of fields provide a route through which such unpredictability translates into the outcomes of physical processes in the brain, then this provides an argument for mind uploading being impossible in principle. This is a conclusion I suggest only very tentatively.

Your mind will not be uploaded: dealing with it

But theres nothing tentative about my conclusion that if you are alive now, your mind will not be uploaded. What comforts does this leave for those fearing oblivion and the void, but reluctant to engage with the traditional consolations of religion and philosophy? Transhumanists have two cards left to play.

Cryonics offers the promise of putting your brain in a deep freeze to wait for technology to catch up with the challenges of uploading. Its clear that a piece of biological tissue that has formed a glass at -192 C will, if kept at that temperature, remain in that state indefinitely without significant molecular rearrangements. The question is how much information is lost in the interval between clinical death and achieving that uniform low temperature, as a consequence both of the inevitable return to equilibrium once living systems fail, and of the physical effects of rapid cooling. Physiological structures may survive, but as weve seen, its at the molecular level that the fundamentals of biological information processing take place, and current procedures will undoubtedly be highly perturbing at this level. All this leaves aside, of course, the sociological questions about why a future society, even if it has succeeded in overcoming the massive technical obstacles to characterising the brain at the molecular level, would wish to expend resources in reanimating the consciousnesses of the particular individuals who now choose this method of corporeal preservation.

The second possibility that appeals to transhumanists is that we are on the verge of a revolution in radical life extension. Its unquestionably true, of course, that improvements in public health, typical lifestyles and medical techniques have led to year-on-year increases in life expectancy, but this is driven mostly by reducing premature death. The increasingly prevalent diseases of old age particularly neurodegenerative diseases like Alzheimers seem as intractable as ever; we dont even have a firm understanding of their causes, let alone working therapies. While substantial fractions of our older people are suffering from cruel and incurable dementias, the idea of radical life extension seems to me to be a hollow joke.

Why should I worry about what transhumanists, or any else, believes in? As I began to discuss at the end of my last post, Transhumanism has never been modern, I dont think the consequences of transhumanist thinking are entirely benign, and Ill expand on that in a later post. But there is a very specific concern about science policy that I would like to conclude with. Radical ideas like mind uploading are not part of the scientific mainstream, but there is a danger that they can still end up distorting scientific priorities. Popular science books, TED talks and the like flirt around such ideas and give them currency, if not credibility, adding fuel to the Economy of Promises that influences and distorts the way resources are allocated between different scientific fields. Scientists doing computational neuroscience dont themselves have to claim that their work will lead to mind uploading to benefit from an environment in which such claims are entertained by people like Ray Kurzweil, with a wide readership and some technical credibility. I think computational neuroscience will lead to some fascinating new science, but you could certainly question the proportionality of the resource it will receive compared to, say, more experimental work to understand the causes of neurodegenerative diseases.

Here is the original post:

Your mind will not be uploaded Soft Machines

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring technological transfer of memories and personality from one brain to another is "Intelligence Undying" by Edmond Hamilton, first published in the April 1936 issue of Amazing Stories. In this story, an elderly scientist named John Hanley explains that when humans are first born, "our minds are a blank sheet except for certain reflexes which we all inherit. But from our birth onward, our minds are affected by all about us, our reflexes are conditioned, as the behaviorists say. All we experience is printed on the sheet of our minds. ... Everything a human being learns, therefore, simply establishes new connections between the nerve-cells of the brain. ... As I said, a newborn child has no such knowledge-connections in his cortex at allhe has not yet formed any. Now if I take that child immediately after birth and establish in his brain exactly the same web of intricate neurone-connections I have built up in my own brain, he will have exactly the same mind, memories, knowledge, as I have ... his mind will be exactly identical with my mind!" He then explains he has developed a technique to do just this, saying "I've devised a way to scan my brain's intricate web of neurone connections by electrical impulses, and by means of those impulses to build up an exactly identical web of neurone connections in the infant's brain. Just as a television scanning-disk can break down a complicated picture into impulses that reproduce the picture elsewhere." He adds that the impulses scanning his brain will kill him, but the "counter-impulses" imprinting the same pattern on the baby's brain will not harm him. The story shows the successful transfer of John Hanley's mind to the baby, who he describes as "John Hanley 2nd", and then skips forward to the year 3144 to depict "John Hanley, 21st" using his advanced technology to become the ruler of the Earth in order to end a war between the two great political powers of the time, and then further ahead to "John Hanley, 416th" helping to evacuate humanity to the planet Mercury in response to the Sun shrinking into a white dwarf. He chooses to remain on Earth awaiting death, so that people would "learn once more to do for themselves, would become again a strong a self-reliant race", with Hanley concluding that he "had been wrong in living as a single super-mind down through the ages. He saw that now, and now he was undoing that wrong."

A story featuring human minds replicated in a computer is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says "answer indeterminate" and then asks "can human individual's self-awareness transor be mechanically duplicated?" MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying "A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual."[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual's brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate "mathematical region". In Izzard's words, "to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits."[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard's memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person's mind can be "recorded" and used to create a "restoration" in the event of their death. In a restoration, the person's biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a 'brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind which are stored in an artificial medium. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or "dupe" which is stored in the "restoration bank",[6] and at one point a lecturer says that "The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution."[7] During restoration, they take the dupe and "infuse it into an empty brain",[7] and the plot turns on the fact that it is possible to install one person's dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl's story "The Tunnel Under the World" from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, "each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being ... It was only a matter, he said, of transferring a man's habit patterns from brain cells to vacuum-tube cells." Later in the story, Pohl gives some additional description of the procedure: "Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all." After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, 'It's as easy to transfer a pattern from a dead brain as a living one'), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov's 1956 short story The Last Question: "One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain." A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov's story) can be found in ArthurC. Clarke's novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke's earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city's Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the "firsts" is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are "alive", but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best "multiverse" ideas of science fiction.

In Robert Silverberg's To Live Again (1969), an entire worldwide economy is built up around the buying and selling of "souls" (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a "personality recording" unless the possessor first had died; similarly, two or more buyers were not allowed to own a "share" of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson's award-winning Neuromancer (1984), which popularized the concept of "cyberspace", a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining "copies." In Egan's Permutation City (1994), Diaspora (1997) and Zendegi (2010), "copies" are made by computer simulation of scanned brain physiology. See also Egan's "jewelhead" stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo's physical brain still is required for his mind to reside in. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo's physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron's 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero's mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero's mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Read more:

Mind uploading in fiction - Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Read the original post:

The virtual afterlife will transform humanity | Aeon Essays

Your mind will not be uploaded Soft Machines

The recent movie Transcendence will not be troubling the sci-fi canon of classics, if the reviews are anything to go by. But its central plot device uploading a human consciousness to a computer remains both a central aspiration of transhumanists, and a source of queasy fascination to the rest of us. The idea is that someones mind is simply a computer programme, that in the future could be run on a much more powerful computer than a brain, just as one might run an old arcade game on a modern PC in emulation mode. Mind uploading has a clear appeal for people who wish to escape the constraints of our flesh and blood existence, notably the constraint of our inevitable mortality.

In this post I want to consider two questions about mind uploading, from my perspective as a scientist. Im going to use as an operational definition of uploading a mind the requirement that we can carry out a computer simulation of the activity of the brain in question that is indistinguishable in its outputs from the brain itself. For this, we would need to be able to determine the state of an individuals brain to sufficient accuracy that it would be possible to run a simulation that accurately predicted the future behaviour of that individual and would convince an external observer that it faithfully captured the individuals identity. Im entirely aware that this operational definition already glosses over some deep conceptual questions, but its a good concrete starting point. My first question is whether it will be possible to upload the mind of anyone reading this now. My answer to this is no, with a high degree of probability, given what we know now about how the brain works, what we can do now technologically, and what technological advances are likely in our lifetimes. My second question is whether it will ever be possible to upload a mind, or whether there is some point of principle that will always make this impossible. Im obviously much less certain about this, but I remain sceptical.

This will be a long post, going into some technical detail. To summarise my argument, I start by asking whether or when it will be possible to map out the wiring diagram of an individuals brain the map of all the connections between its 100 billion or so neurons. Well probably be able to achieve this mapping in the coming decades, but only for a dead and sectioned brain; the challenges for mapping out a living brain at sub-micron scales look very hard. Then well ask some fundamental questions about what it means to simulate a brain. Simulating brains at the levels of neurons and synapses requires the input of phenomenological equations, whose parameters vary across the components of the brain and change with time, and are inaccessible to in-vivo experiment. Unlike artificial computers, there is no clean digital abstraction layer in the brain; given the biological history of nervous systems as evolved, rather than designed, systems, theres no reason to expect one. The fundamental unit of biological information processing is the molecule, rather than any higher level structure like a neuron or a synapse; molecular level information processing evolved very early in the history of life. Living organisms sense their environment, they react to what they are sensing by changing the way they behave, and if they are able to, by changing the environment too. This kind of information processing, unsurprisingly, remains central to all organisms, humans included, and this means that a true simulation of the brain would need to be carried out at the molecular scale, rather than the cellular scale. The scale of the necessary simulation is out of reach of any currently foreseeable advance in computing power. Finally I will conclude with some much more speculative thoughts about the central role of randomness in biological information processing. Ill ask where this randomness comes from, finding an ultimate origin in quantum mechanical fluctuations, and speculate about what in-principle implications that might have on the simulation of consciousness.

Why would people think mind uploading will be possible in our lifetimes, given the scientific implausibility of this suggestion? I ascribe this to a combination of over-literal interpretation of some prevalent metaphors about the brain, over-optimistic projections of the speed of technological advance, a lack of clear thinking about the difference between evolved and designed systems, and above all wishful thinking arising from peoples obvious aversion to death and oblivion.

On science and metaphors

I need to make a couple of preliminary comments to begin with. First, while Im sure theres a great deal more biology to learn about how the brain works, I dont see yet that theres any cause to suppose we need fundamentally new physics to understand it. Of course, new discoveries may change everything, but it seems to me that the physics weve got is quite complicated enough, and this discussion will be couched entirely in currently known, fundamentally physicalist, principles.

The second point is that, to get anywhere in this discussion, were going to need to immunise ourselves against the way in which almost all popular discussion of neuroscience is carried out in metaphorical language. Metaphors used clearly and well are powerful aids to understanding, but when we take them too literally they can be badly misleading. Its an interesting historical reflection that when computers were new and unfamiliar, the metaphorical traffic led from biological brains to electronic computers. Since computers were popularly described as electronic brains, its not surprising that biological metaphors like memory were quickly naturalised in the way computers were described. But now the metaphors go the other way, and we think about the brain as if it were a computer (I think the brain is a computer, by the way, but its a computer thats so different to man-made ones, so plastic and mutable, so much immersed in and responsive to its environment, that comparisons with the computers we know about are bound to be misleading). So if what we are discussing is how easy or possible it will be to emulate the brain with a man-made computer, the fact that we are so accustomed to metaphorical descriptions of brains in terms of man-made computers will naturally bias us to positive answers. Its too easy to move from saying a neuron is analogous to a simple combination of logic gates in a computer, say, to thinking that it can be replaced by one. A further problem is that many of these metaphors are now so stale and worn out that they have lost all force, and the substance of the original comparison has been forgotten. We often hear, for example, the assertion that some characteristic or other is hard-wired in the brain, but if one stops to think what an animals brain looks and feels like theres nothing much hard about it. Its a soft machine.

Mapping the brains wiring diagram

One metaphor that is important is the idea that the brain has a wiring diagram. The human brain has about 100 billion neurons, each of which is connected to many others by thin fibres the axons and dendrites along which electrical signals pass. Theres about 100,000 miles of axon in a brain, connecting at between a hundred to a thousand trillion synaptic connections. Its this pattern of connectivity between the neurons through the axons and dendrites that constitutes the wiring diagram of the brain. Ill argue below that knowing this wiring diagram is not yet a sufficient condition for simulating the operation of a brain it must surely, however, be a necessary one.

So far, scientists have successfully mapped out the wiring diagram of one organisms nervous system the microscopic worm C. elegans, which has a total of 300 neurons. This achievement was itself a technical tour-de-force, which illustrates what would need to be done to determine the immeasurably more complex wiring diagram of the human brain. The issue is that these fibres are thin (hundreds of nanometers, for the thinnest of them), very densely packed, and the fibres from a single neuron can pervade a very large volume (this review in Science The Big and the Small: Challenges of Imaging the Brains Circuits ($) is an excellent up-to-date overview of whats possible now and what the challenges are). Currently electron microscopy is required to resolve the finest connections, and this can only be done on thin sections. Although new high resolution imaging techniques may well be developed, its difficult to see how this requirement to image section by section will go away. Magnetic resonance imaging, on the other hand, can image an intact brain, but at much lower resolution more like millimetres than nanometers. The resolution of MRI derives from the strength of the magnetic field gradient you can sustain. You can have a large gradient over a small volume but if youre constrained to keep the brain intact that provides quite a hard limit.

Proponents of mind uploading who recognise these difficulties at this point resort to the idea of nanobots crawling through the brain, reading it from the inside. Ive discussed at length why I think it will be very much more difficult than people think to create such nanobots, for example in my article Rupturing the Nanotech Rapture, and in Nanobots, nanomedicine, Kurzweil, Freitas and Merkle I discuss why I dont think the counter-arguments of their proponents are convincing.

Mapping out all the neural connections of a human brain, then, will be difficult. It probably will be done, on a timescale perhaps of decades. The big but, though, is that this mapping will be destructive, and the brain it is done on will be definitively dead before the process starts. And massive job though it will be to map out this micro-scale connectome, theres something very important it doesnt tell you the difference between a live brain and a dead lump of meat that is what the initial electrical state of the brain is, where the ion gradients are, what the molecules are doing. But more on molecules later

Modelling, simulation, emulation: why mind uploading might make sense if you believed in intelligent design

If you did have a map of all the neural connections of a human brain, dead or alive, is that enough to simulate it? You could combine the map with known equations for the propagation of electrical signals along axons (the Hodgkin-Huxley equations), models of neurons and models for the behaviour of synapses. This is the level of simulation, for example, carried out in the Blue Brain project (see this review (PDF) for a semi-technical overview). This is a very interesting thing to do from the point of neuroscience, but it is not a simulation of a human brain, and certainly not of any individuals brain. Its a model, which aggregates phenomenological descriptions of the collective behaviours and interactions of components like the many varieties of voltage gated ion channels and the synaptic vesicles. The equations youd use to model an individual synapse, for example, would have different parameters for different synapses, and these parameters change with time (and in response to the information being processed). Without an understanding of whats going on in the neuron at the molecular level, these are parameters you would need to measure experimentally for each synapse.

An analogy might make this clearer. Let me ask this question: is it possible to simulate the CPU in your mobile phone? At first sight this seems a stupid question of course one can predict with a very high degree of certainty what the outputs of the CPU would be for any given set of inputs. After all, the engineers at ARM will have done just such simulations before any of the designs had even been manufactured, using well-understood and reliable design software. But a sceptical physicist might point out that every CPU is different at the atomic level, due to the inherent finite tolerances of manufacturing, and in any case the scale of the system is much too large to be able to simulate at the quantum mechanical level that would be needed to capture the electronic characteristics of the device.

In this case, of course, the engineers are right, for all practical purposes. This is because the phenomenology that predicts the behaviour of individual circuit elements is well-understood in terms of the physics, and the way these elements behave is simple, reliable and robust robust in the sense that quite a lot of variation in the atomic configuration produces the same outcomes. We can think of the system as having three distinct levels of description. There is the detailed level of what the electrons and ions are doing, which would account for the basic electrical properties of the component semiconductors and insulators, and the junctions and interfaces between them. Then there is the behaviour of the circuit elements that are built from these materials the current-voltage characteristics of the field effect transistors, and the way these components are built up into circuits. And finally, there is a description at a digital level, in which logical operations are implemented. Once one has designed circuit elements with clear thresholds and strongly non-linear behaviour, one can rely on there being a clean separation between the digital and physical levels. Its this clean separation between the physical and the digital that makes the job of emulating the behaviour of one type of CPU on another one relatively uncomplicated.

But this separation between the physical and the digital in an integrated circuit isnt an accident or something pre-ordained it happens because weve designed it to be that way. For those of us who dont accept the idea of intelligent design in biology, thats not true for brains. There is no clean digital abstraction layer in a brain why should there be, unless someone designed it that way? In a brain, for example, the digital is continually remodelling the physical we see changes in connectivity and changes in synaptic strength as a consequence of the information being processed, changes, that as we see, are the manifestation of substantial physical changes, at the molecular level, in the neurons and synapses.

The unit of biological information processing is the molecule

Is there any general principle that underlies biological information processing, in the brain and elsewhere, that would help us understand what ionic conduction, synaptic response, learning and so on have in common? I believe there is underlying all these phenomena are processes of macromolecular shape change in response to a changing local environment. Ion channel proteins change shape in response to the electric field across the membrane, opening or closing pores; at the synapse shape-changing proteins respond to electrical changes to trigger the bursting open of synaptic vesicles to release the neurotransmitters, which themselves bind to protein receptors to transmit their signal, and complicated sequences of protein shape changes underlie the signalling networks that strengthen and weaken synaptic responses to make memory, remodelling the connections between neurons.

This emphasises that the fundamental unit of biological information processing is not the neuron or the synapse, its the molecule. Dennis Bray, in an important 1995 paper Protein molecules as computational elements in living cells, pointed out that a protein molecule can act as a logic gate through the process of allostery its catalytic activity is modified by the presence or absence of bound chemicals. In this chemical version of logic, the inputs are the presence or absence of certain small molecules, and the outputs are the molecules that the protein produces, in the presence of the right input chemicals, by catalysis. As these output chemicals can themselves be the inputs to other protein logic gates, complex computational networks linking the inputs and outputs of many different logic gates can be built up. The ultimate inputs of these circuits will be environmental cues the presence or absence of chemicals or other environmental triggers detected by molecular sensors at the surface of the cells. The ultimate outputs can be short-term to activate a molecular motor so that a cell swims towards a food source or away from a toxin. Or they can be long term, in activating and deactivating different genes so that the cell builds different structures for itself, or even changes the entire direction of its development.

This is how a single celled organism like an amoeba can exhibit behaviour that is in effect purposeful, that is adaptive to the clues it detects from the environment around it. All living cells process information this way. In the collective alliance of cells that makes up a multi-cellular organism like a human, all our cells have the ability to process information. The particular cells that specialise in doing information processing and long-ranged communication the neurons start out with the general capability for computation that all cells have, but through evolution have developed this capability to a higher degree and added to it some new tricks. The most important of these new tricks is an ability to control the flow of ions across a membrane in a way that modifies the membrane potential, allowing information to be carried over long distances by the passage of shock waves of membrane potential, and communications to be made between neurons in response to these rapid changes in membrane potential through the release of chemicals at synapses. But, as always happens in evolved systems, these are new tricks built on the old hardware and old design principles molecules whose shape changes in response to changes in their environment, this shape change producing functional effects (such as the opening of an ion channel in response to a change in membrane potential).

The molecular basis of biological information processing emphasises the limitations of the wiring metaphor. Determining the location and connectivity of individual neurons, or the connectome as its begun to be called in neuroscience is necessary, but far from sufficient condition for specifying the informational state of the brain; to do that completely requires us to know where the relevant molecules are, how many of them are present, and what state theyre in.

The brain, randomness, and quantum mechanics

The molecular basis of biological computation means that it isnt deterministic, its stochastic, its random. This randomness isnt an accidental add-on, its intrinsic to the way molecular information processing works. Any molecule in a warm, wet watery environment like the cell is constantly bombarded by its neighbouring water molecules, and this bombardment leads to the constant jiggling we call Brownian motion. But its exactly the same bombardment that drives the molecule to change shape when its environment changes. So if we simulate, at the molecular level, the key parts of the information processing system of the brain, like the ion channels or the synaptic vesicles, or the broader cell signalling mechanisms by which the neurons remodel themselves in response to the information they carry, we need to explicitly include that randomness.

I want to speculate here about what the implications are of this inherently random character of biological information processing. A great deal has been written about randomness, determinism and the possibility of free will, and Im largely going to avoid these tricky issues. I will make one important point, though. It seems to me that all the agonising about whether the idea of free will is compatible with a brain that operates through deterministic physics is completely misplaced, because the brain just doesnt operate through deterministic physics.

In a computer simulation, wed build in the randomness by calls to a pseudo-random number generator, as we compute the noise term in the Langevin equation that would describe, for example, the internal motions of an receptor protein docking with a neurotransmitter molecule. In the real world, the question we have to answer is whether this randomness is simply a reflection of our lack of knowledge? Does it simply arise from a decision we make not to keep track of every detail of each molecular motion in a very complex systems? Or is it real randomness, that is intrinsic to the fundamental physics, and in particular from the quantum mechanical character of reality? I think it is real randomness, whose origins can be traced back to quantum fluctuations.

To be clear, Im not claiming here that the brain is a quantum computer, in the sense that it exploits quantum coherence in the way suggested by Roger Penrose. It seems to me difficult to understand how sufficient coherence could be maintained in the warm and wet environment of the cell. Instead, I want to focus on the origin of the forces between atoms and molecules. Attractions between uncharged molecules arise from the van der Waals force, which is most fundamentally understood as a fluctuation force, a force that arises from the way randomly fluctuating fields are are modified by atoms and molecules. The fluctuating fields in question are the zero-point and thermal fluctuations of the electromagnetic field of the vacuum. Because the van der Waals force arises from quantum fluctuations, the force itself is fluctuating, and (see my earlier post Where the randomness comes from) these random fluctuations, of quantum origin, are sufficient to account for the randomness of the warm, wet nanoscale world.

The complexity theorist Scott Aaronson has recently written an interesting, but highly speculative essay that touches on these issues The Ghost in the Quantum Turing Machine (PDF). Aaronson argues that there is a type of unpredictability about the universe today that arises from the quantum unknowability of the initial conditions of the universe. He evokes the quantum no-cloning principle to argue that quantum state functions that have evolved unitarily, without decoherence, from the beginning of the universe he calls these freebits have a different character of uncertainty to the normal types of randomness we deal with using probability distributions. The question then is whether the fundamental unpredictability of freebits could be connected to some fundamental unpredictability of the decisions made by a human mind. Aaronson suggests it could, if there were a way in which the randomness inherent in the molecular processes underlying the operation of the brain such as the opening and closing of ion channels could be traced back to quantum uncertainty. My own suggestion is that the origin of van der Waals forces, as a fluctuation force, in the quantum fluctuations of the vacuum electromagnetic field, offers the connection that Aaronson is looking for.

If Aaronson is correct that his freebit picture shows how the fundamental unknowability of the quantum initial conditions of the universe translate into a fundamental unpredictability of certain physical processes now, and I am correct in my suggestion that the origins of the van der Waals force in the quantum fluctuations of fields provide a route through which such unpredictability translates into the outcomes of physical processes in the brain, then this provides an argument for mind uploading being impossible in principle. This is a conclusion I suggest only very tentatively.

Your mind will not be uploaded: dealing with it

But theres nothing tentative about my conclusion that if you are alive now, your mind will not be uploaded. What comforts does this leave for those fearing oblivion and the void, but reluctant to engage with the traditional consolations of religion and philosophy? Transhumanists have two cards left to play.

Cryonics offers the promise of putting your brain in a deep freeze to wait for technology to catch up with the challenges of uploading. Its clear that a piece of biological tissue that has formed a glass at -192 C will, if kept at that temperature, remain in that state indefinitely without significant molecular rearrangements. The question is how much information is lost in the interval between clinical death and achieving that uniform low temperature, as a consequence both of the inevitable return to equilibrium once living systems fail, and of the physical effects of rapid cooling. Physiological structures may survive, but as weve seen, its at the molecular level that the fundamentals of biological information processing take place, and current procedures will undoubtedly be highly perturbing at this level. All this leaves aside, of course, the sociological questions about why a future society, even if it has succeeded in overcoming the massive technical obstacles to characterising the brain at the molecular level, would wish to expend resources in reanimating the consciousnesses of the particular individuals who now choose this method of corporeal preservation.

The second possibility that appeals to transhumanists is that we are on the verge of a revolution in radical life extension. Its unquestionably true, of course, that improvements in public health, typical lifestyles and medical techniques have led to year-on-year increases in life expectancy, but this is driven mostly by reducing premature death. The increasingly prevalent diseases of old age particularly neurodegenerative diseases like Alzheimers seem as intractable as ever; we dont even have a firm understanding of their causes, let alone working therapies. While substantial fractions of our older people are suffering from cruel and incurable dementias, the idea of radical life extension seems to me to be a hollow joke.

Why should I worry about what transhumanists, or any else, believes in? As I began to discuss at the end of my last post, Transhumanism has never been modern, I dont think the consequences of transhumanist thinking are entirely benign, and Ill expand on that in a later post. But there is a very specific concern about science policy that I would like to conclude with. Radical ideas like mind uploading are not part of the scientific mainstream, but there is a danger that they can still end up distorting scientific priorities. Popular science books, TED talks and the like flirt around such ideas and give them currency, if not credibility, adding fuel to the Economy of Promises that influences and distorts the way resources are allocated between different scientific fields. Scientists doing computational neuroscience dont themselves have to claim that their work will lead to mind uploading to benefit from an environment in which such claims are entertained by people like Ray Kurzweil, with a wide readership and some technical credibility. I think computational neuroscience will lead to some fascinating new science, but you could certainly question the proportionality of the resource it will receive compared to, say, more experimental work to understand the causes of neurodegenerative diseases.

View original post here:

Your mind will not be uploaded Soft Machines

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called "mind copying" or "mind transfer") is the hypothetical futuristic process of scanning the mental state (including long-term memory and "self") of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain's information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The biological brain may not survive the copying process. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity's current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our "mind-file", to enable interstellar space travels, and a means for human culture to survive a global disaster by making a functional copy of a human society in a Matrioshka brain, i.e. a computing device that consumes all energy from a star. Whole brain emulation is discussed by some futurists as a "logical endpoint"[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed[clarification needed] computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llins.[10]

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or "nomorph".[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore's law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating "mortality risk" of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut could be used instead of a "live" astronaut in human spaceflight, avoiding the perils of zero gravity, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[14] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore's law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the "Blue Brain Project", stated that "it is not [their] goal to build an intelligent neural network", based solely on the computational demands such a project would have.[16]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[17]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[18]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain's neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[19]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse "weight" for each of the brains' 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[20] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[21] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[21] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron's cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of 'mind' is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[23]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of "mind uploading" (more accurately "mind transferring") is the broad philosophy that consciousness lies within the brain's information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the "self" and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or "soul" can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a "computer file" from the brain and re-implemented into a different physical form.[24] This is not to deny that minds are richly adapted to their substrates.[25] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[26] I would be glad to know... whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their "biological shell". However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person's mind.[27] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, "uploading" would probably result in the death of the original person's brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one's consciousness would leave one's brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and elsewhere. At best, a copy of the original mind is created.[27] Neural correlates of consciousness, a sub-branch of neuroscience, states that consciousness may be thought of as a state-dependent property of some undefined complex, adaptive, and highly interconnected biological system.[28]

Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31] Some have also asserted that consciousness is a part of an extra-biological system that is yet to be discovered and cannot be fully understood under the present constraints of neurobiology. Without the transference of consciousness, true mind-upload or perpetual immortality cannot be practically achieved.[32]

Another potential consequence of mind uploading is that the decision to "upload" may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[33][34] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[35] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[36] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[37][38][39]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[40]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one's mind did exist, it would be impossible for one to verify this.[41] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[40] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[40]

In addition, the resulting animal emulations themselves might suffer, depending on one's views about consciousness.[40] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the "fading qualia" thought experiment of David Chalmers. He then concludes:[42] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[40] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[42]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[43]

Many questions arise regarding the legal personhood of emulations.[44] Would they be given the rights of biological humans? If a person makes an emulated copy of themselves and then dies, does the emulation inherit their property and official positions? Could the emulation ask to "pull the plug" when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of "rehabilitation"? Could an upload have marriage and child-care rights?[44]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of "digital human rights". For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to "die" among emulations, and triggers for racist, xenophobic, and religious prejudice.[43] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[43]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[43]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[49]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to "upload" their entire brains to computers and become "digitally immortal" by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[50] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore's law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled "How to Teleport", mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle's Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the "artificial life phenotype". Doyle's vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single "frozen" state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the "absolute" duplication of an individual mind is insurmountable for the nearest hundreds of years.[51]

Go here to read the rest:

Mind uploading - Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called "mind copying" or "mind transfer") is the hypothetical futuristic process of scanning the mental state (including long-term memory and "self") of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain's information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The biological brain may not survive the copying process. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity's current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our "mind-file", to enable interstellar space travels, and a means for human culture to survive a global disaster by making a functional copy of a human society in a Matrioshka brain, i.e. a computing device that consumes all energy from a star. Whole brain emulation is discussed by some futurists as a "logical endpoint"[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed[clarification needed] computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llins.[10]

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or "nomorph".[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore's law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating "mortality risk" of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut could be used instead of a "live" astronaut in human spaceflight, avoiding the perils of zero gravity, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[14] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore's law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the "Blue Brain Project", stated that "it is not [their] goal to build an intelligent neural network", based solely on the computational demands such a project would have.[16]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[17]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[18]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain's neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[19]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse "weight" for each of the brains' 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[20] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[21] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[21] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron's cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of 'mind' is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[23]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of "mind uploading" (more accurately "mind transferring") is the broad philosophy that consciousness lies within the brain's information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the "self" and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or "soul" can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a "computer file" from the brain and re-implemented into a different physical form.[24] This is not to deny that minds are richly adapted to their substrates.[25] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[26] I would be glad to know... whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their "biological shell". However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person's mind.[27] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, "uploading" would probably result in the death of the original person's brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one's consciousness would leave one's brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and elsewhere. At best, a copy of the original mind is created.[27] Neural correlates of consciousness, a sub-branch of neuroscience, states that consciousness may be thought of as a state-dependent property of some undefined complex, adaptive, and highly interconnected biological system.[28]

Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31] Some have also asserted that consciousness is a part of an extra-biological system that is yet to be discovered and cannot be fully understood under the present constraints of neurobiology. Without the transference of consciousness, true mind-upload or perpetual immortality cannot be practically achieved.[32]

Another potential consequence of mind uploading is that the decision to "upload" may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[33][34] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[35] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[36] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[37][38][39]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[40]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one's mind did exist, it would be impossible for one to verify this.[41] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[40] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[40]

In addition, the resulting animal emulations themselves might suffer, depending on one's views about consciousness.[40] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the "fading qualia" thought experiment of David Chalmers. He then concludes:[42] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[40] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[42]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[43]

Many questions arise regarding the legal personhood of emulations.[44] Would they be given the rights of biological humans? If a person makes an emulated copy of themselves and then dies, does the emulation inherit their property and official positions? Could the emulation ask to "pull the plug" when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of "rehabilitation"? Could an upload have marriage and child-care rights?[44]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of "digital human rights". For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to "die" among emulations, and triggers for racist, xenophobic, and religious prejudice.[43] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[43]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[43]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[49]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to "upload" their entire brains to computers and become "digitally immortal" by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[50] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore's law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled "How to Teleport", mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle's Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the "artificial life phenotype". Doyle's vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single "frozen" state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the "absolute" duplication of an individual mind is insurmountable for the nearest hundreds of years.[51]

See original here:

Mind uploading - Wikipedia


12345...10...