12345...10...


Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Original post:

Mind uploading – Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

Read the original here:

Mind Uploading

Mind uploading | Transhumanism Wiki | FANDOM powered by Wikia

In transhumanism and science fiction, mind uploading (also occasionally referred to by other terms such as mind transfer, whole brain emulation, or whole body emulation) refers to the hypothetical transfer of a human mind to a substrate different from a biological brain, such as a detailed computer simulation of an individual human brain.

The human brain contains a little more than 100 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The brain contains cell types other than neurons (such as glial cells), some of which are structurally similar to neurons, but the information processing of the brain is thought to be conducted by the network of neurons.

Current biomedical and neuropsychological thinking is that the human mind is a product of the information processing of this neural network. To use an analogy from computer science, if the neural network of the brain can be thought of as hardware, then the human mind is the software running on it.

Mind uploading, then, is the act of copying or transferring this “software” from the hardware of the human brain to another processing environment, typically an artificially created one.

The concept of mind uploading then is strongly mechanist, relying on several assumptions about the nature of human consciousness and the philosophy of artificial intelligence. It assumes that strong AI machine intelligence is not only possible, but is indistinguishable from human intelligence, and denies the vitalist view of human life and consciousness.

Mind uploading is completely speculative at this point in time; no technology exists which can accomplish this.

The relationship between the human mind and the neural circuitry of the brain is currently poorly understood. Thus, most theoretical approaches to mind uploading are based on the idea of recreating or simulating the underlying neural network. This approach would theoretically eliminate the need to understand how such a system works if the component neurons and their connections can be simulated with enough accuracy.

It is unknown how precise the simulation of such a neural network would have to be to produce a functional simulation of the brain. It is possible, however, that simulating the functions of a human brain at the cellular level might be much more difficult than creating a human level artificial intelligence, which relied on recreating the functions of the human mind, rather than trying to simulate the underlying biological systems.[citation needed]

Thinkers with a strongly mechanistic view of human intelligence (such as Marvin Minsky) or a strongly positive view of robot-human social integration (such as Hans Moravec and Ray Kurzweil) have openly speculated about the possibility and desirability of this.

In the case where the mind is transferred into a computer, the subject would become a form of artificial intelligence, sometimes called an infomorph or “nomorph.” In a case where it is transferred into an artificial body, to which its consciousness is confined, it would also become a robot. In either case it might claim ordinary human rights, certainly if the consciousness within was feeling (or was doing a good job of simulating) as if it were the donor.

Uploading consciousness into bodies created by robotic means is a goal of some in the artificial intelligence community. In the uploading scenario, the physical human brain does not move from its original body into a new robotic shell; rather, the consciousness is assumed to be recorded and/or transferred to a new robotic brain, which generates responses indistinguishable from the original organic brain.

The idea of uploading human consciousness in this manner raises many philosophical questions which people may find interesting or disturbing, such as matters of individuality and the soul. Vitalists would say that uploading was a priori impossible. Many people also wonder whether, if they were uploaded, it would be their sentience uploaded, or simply a copy.

Even if uploading is theoretically possible, there is currently no technology capable of recording or describing mind states in the way imagined, and no one knows how much computational power or storage would be needed to simulate the activity of the mind inside a computer. On the other hand, advocates of uploading have made various estimates of the amount of computing power that would be needed to simulate a human brain, and based on this a number have estimated that uploading may become possible within decades if trends such as Moore’s Law continue.[citation needed]

If it is possible for human minds to be modeled and treated as software objects which can be instanced multiple times, in multiple processing environments, many potentially desirable possibilities open up for the individual.

If the mental processes of the human mind can be disassociated from its original biological body, it is no longer tied to the limits and lifespan of that body. In theory, a mind could be voluntarily copied or transferred from body to body indefinitely and therefore become immortal, or at least exercise conscious control of its lifespan.

Alternatively, if cybernetic implants could be used to monitor and record the structure of the human mind in real time then, should the body of the individual be killed, such implants could be used to later instance another working copy of that mind. It is also possible that periodic backups of the mind could be taken and stored external to the body and a copy of the mind instanced from this backup, should the body (and possibly the implants) be lost or damaged beyond recovery. In the latter case, any changes and experiences since the time of the last backup would be lost.

Such possibilities have been explored extensively in fiction: This Number Speaks, Nancy Farmer’s The House of the Scorpion, Newton’s Gate, John Varley’s Eight Worlds series, Greg Egan’s Permutation City, Diaspora, Schild’s Ladder and Incandescence, the Revelation Space series, Peter Hamilton’s Pandora’s Star duology, Bart Kosko’s Fuzzy Time, Armitage III series, the Takeshi Kovacs universe, Iain M. Banks Culture novels, Cory Doctorow’s Down and Out in the Magic Kingdom, and the works of Charles Stross. And in television sci-fi shows: Battlestar Galactica, Stargate SG-1, among others.

Another concept explored in science fiction is the idea of more than one running “copy” of a human mind existing at once. Such copies could either be full copies, or limited subsets of the complete mentality designed for a particular limited functions. Such copies would allow an “individual” to experience many things at once, and later integrate the experiences of all copies into a central mentality at some point in the future, effectively allowing a single sentient being to “be many places at once” and “do many things at once”.

The implications of such entities have been explored in science fiction. In his book Eon, Greg Bear uses the terms “partials” and “ghosts”, while Charles Stross’s novels Accelerando and Glasshouse deal with the concepts of “forked instances” of conscious beings as well as “backups”.

In Charles Sheffield’s Tomorrow and Tomorrow, the protagonist’s consciousness is duplicated thousands of times electronically and sent out on probe ships and uploaded into bodies adapted to native environments of different planets. The copies are eventually reintegrated back into the “master” copy of the consciousness in order to consolidate their findings.

Such partial and complete copies of a sentient being again raise issues of identity and personhood: is a partial copy of sentient being itself sentient? What rights might such a being have? Since copies of a personality are having different experiences, are they not slowly diverging and becoming different entities? At what point do they become different entities?

If the body and the mind of the individual can be disassociated, then the individual is theoretically free to choose their own incarnation. They could reside within a completely human body, within a modified physical form, or within simulated realities. Individuals might change their incarnations many times during their existence, depending on their needs and desires.

Choices of the individuals in this matter could be restricted by the society they exist within, however. In the novel Eon by Greg Bear, individuals could incarnate physically (within “natural” biological humans, or within modified bodies) a limited number of times before being legally forced to reside with the “city memory” as infomorphic “ghosts”.

Once an individual is moved to virtual simulation, the only input needed would be energy, which would be provided by large computing device hosting those minds. All the food, drink, moving, travel or any imaginable thing would just need energy to provide those computations.

Almost all scientists, thinkers and intelligent people would be moved to this virtual environment once they die. In this virtual environment, their brain capacity would be expanded by speed and storage of quantum computers. In virtual environment idea and final product are not different. This way more and more innovations will be sent to real world and it will speed up our technological development.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands of such venture are likely to be immense.

Henry Markram, lead researcher of the “Blue Brain Project”, has stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have[1].

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power may become available within a few decades, though it would probably require advances beyond the integrated circuit technology which has dominated since the 1970s. Several new technologies have been proposed, and prototypes of some have been demonstrated, such as the optical neural network based on the silicon-photonic chip (harnessing special physical properties of Indium Phosphide) which Intel showed the world for the first time on September 18, 2006.[3] Other proposals include three-dimensional integrated circuits based on carbon nanotubes (researchers have already demonstrated individual logic gates built from carbon nanotubes[4]) and also perhaps the quantum computer, currently being worked on internationally as well as most famously by computer scientists and physicists at the IBM Almaden Research Center, which promises to be useful in simulating the behavior of quantum systems; such ability would enable protein structure prediction which could be critical to correct emulation of intracellular neural processes.

Present methods require use of massive computational power (as the BBP does with IBM’s Blue Gene Supercomputer) to use the essentially classical computing architecture for serial deduction of the quantum mechanical processes involved in ab initio protein structure prediction. If necessary, should the quantum computer become a reality, its capacity for exactly such rapid calculations of quantum mechanical physics may well help the effort by reducing the required computational power per physical size and energy needs, as Markram warns would be needed (and thus why he thinks it would be difficult, besides unattractive) should an entire brain’s simulation, let alone emulation (at both cellular and molecular levels) be feasibly attempted. Reiteration may also be useful for distributed simulation of a common, repeated function (e.g., proteins).

Ultimately, nano-computing is projected by some[citation needed] to hold the requisite capacity for computations per second estimated necessary, in surplus. If Kurzweil’s Law of Accelerating Returns (a variation on Moore’s Law) shows itself to be true, the rate of technological development should accelerate exponentially towards the technological singularity, heralded by the advent of viable though relatively primitive mind uploading and/or “strong” (human-level) AI technologies, his prediction being that the Singularity may occur around the year 2045.[5]

The structure of a neural network is also different from classical computing designs. Memory in a classical computer is generally stored in a two state design, or bit, although one of the two components is modified in dynamic RAM and some forms of flash memory can use more than two states under some circumstances. Gates inside central processing units will often also use this two state or digital type of design as well. In some ways a neural network or brain could be thought of like a memory unit in a computer, but with an extremely vast number of states, corresponding with the total number of neurons. Beyond that, whether the action potential of a neuron will form, based upon the summation of the inputs of different dendrites, might be something that is more analog in nature than that which happens in a computer. One great advantage that a modern computer has over a biological brain, however, is that the speed of each electronic operation in a computer is many orders of magnitude faster than the time scales involved for the firing and transmission of individual nerve impulses. A brain, however, uses far more parallel processing than exists in most classical computing designs, and so each of the slower neurons can make up for it by operating at the same time.

There are many ethical issues concerning mind uploading. Viable mind uploading technology might challenge the ideas of human immortality, property rights, capitalism, human intelligence, an afterlife, and the Abrahamic view of man as created in God’s image. These challenges often cannot be distinguished from those raised by all technologies that extend human technological control over human bodies, e.g. organ transplant. Perhaps the best way to explore such issues is to discover principles applicable to current bioethics problems, and question what would be permissible if they were applied consistently to a future technology. This points back to the role of science fiction in exploring such problems, as powerfully demonstrated in the 20th century by such works as Brave New World and Nineteen Eighty-Four, each of which frame current ethical problems in a future environment where those have come to dominate the society.

Another issue with mind uploading is whether an uploaded mind is really the “same” sentience, or simply an exact copy with the same memories and personality. Although this difference would be undetectable to an external observer (and the upload itself would probably be unable to tell), it could mean that uploading a mind would actually kill it and replace it with a clone. Some people would be unwilling to upload themselves for this reason. If their sentience is deactivated even for a nanosecond, they assert, it is permanently wiped out. Some more gradual methods may avoid this problem by keeping the uploaded sentience functioning throughout the procedure.

True mind uploading remains speculative. The technology to perform such a feat is not currently available, however a number of possible mechanisms, and research approaches, have been proposed for developing mind uploading technology.

Since the function of the human mind, and how it might arise from the working of the brain’s neural network, are poorly understood issues, many theoretical approaches to mind uploading rely on the idea of emulation. Rather than having to understand the functioning of the human mind, the structure of underlying neural network is captured and simulated with a computer system. The human mind then, theoretically, is generated by the simulated neural network in an identical fashion to it being generated by the biological neural network.

These approaches require only that we understand the nature of neurons and how their connections function, that we can simulate them well enough, that we have the computational power to run such large simulations, and that the state of the brain’s neural network can be captured with enough fidelity to create an accurate simulation.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, thus capturing the structure of the neurons and their interconnections[6]. The exposed surface of frozen nerve tissue would be scanned (possibly with some variant of an electron microscope) and recorded, and then the surface layer of tissue removed (possibly with a conventional cryo-ultramicrotome if scanning along an axis, or possibly through laser ablation if scans are done radially “from the outside inwards”). While this would be a very slow and labor intensive process, research is currently underway to automate the collection and microscopy of serial sections[7]. The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique[7]. However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods which could then be read via confocal laser scanning microscopy[citation needed].

A more advanced hypothetical technique that would require nanotechnology might involve infiltrating the intact brain with a network of nanoscale machines to “read” the structure and activity of the brain in situ, much like the electrode meshes used in current brain-computer interface research, but on a much finer and more sophisticated scale. The data collected from these probes could then be used to build up a simulation of the neural network they were probing, and even check the behavior of the model against the behavior of the biological system in real time.

In his 1998 book, Mind children, Hans Moravec describes a variation of this process. In it, nanomachines are placed in the synapses of the outer layer of cells in the brain of a conscious living subject. The system then models the outer layer of cells and recreates the neural net processes in whatever simulation space is being used to house the uploaded consciousness of the subject. The nanomachines can then block the natural signals sent by the biological neurons, but send and receive signals to and from the simulated versions of the neurons. Which system is doing the processing biological or simulated can be toggled back and forth, both automatically by the scanning system and manually by the subject, until it has been established that the simulation’s behavior matches that of the biological neurons and that the subjective mental experience of the subject is unchanged. Once this is the case, the outer layer of neurons can be removed and their function turned solely over to the simulated neurons. This process is then repeated, layer by layer, until the entire biological brain of the subject has been scanned, modeled, checked, and disassembled. When the process is completed, the nanomachines can be removed from the spinal column of the subject, and the mind of the subject exists solely within the simulated neural network.

Alternatively, such a process might allow for the replacement of living neurons with artificial neurons one by one while the subject is still conscious, providing a smooth transition from an organic to synthetic brain – potentially significant for those who worry about the loss of personal continuity that other uploading processes may entail. This method has been likened to upgrading the whole internet by replacing, one by one, each computer connected to it with similar computers using newer hardware.

While many people are more comfortable with the idea of the gradual replacement of their natural selves than they are with some of the more radical and discontinuous mental transfer, it still raises questions of identity. Is the individual preserved in this process, and if not, at what point does the individual cease to exist? If the original entity ceases to exist, what is the nature and identity of the individual created within the simulated neural network, or can any individual be said to exist there at all? This gradual replacement leads to a much more complicated and sophisticated version of the Ship of Theseus paradox.

It may also be possible to use advanced neuroimaging technology (such as Magnetoencephalography) to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. However, current imaging technology lacks the resolution needed to gather the information needed for such a scan.

Such a process would leave the original entity intact, but the existence, nature, and identity of the resulting being in the simulated network are still open philosophical questions.

Another recently conceived possibility[citation needed] is the use of genetically engineered viruses to attach to synaptic junctions, and then release energy-emitting molecular compounds, which could be detected externally, and used to generate a functional model of the synapses in question, and, given enough time, the whole brain and nervous system.

An alternate set of possible theoretical approaches to mind uploading would require that we first understand the functions of the human mind sufficiently well to create abstract models of parts, or the totality, of human mental processes. It would require that strong AI be not only a possibility, but that the techniques used to create a strong AI system could also be used to recreate a human type mentality.

Such approaches might be more desirable if the abstract models required less computational power to execute than the neural network simulation of the emulation techniques described above.

Another theoretically possible method of mind uploading from organic to inorganic medium, related to the idea described above of replacing neurons one at a time while consciousness remained intact, would be a much less precise but much more feasible (in terms of technology currently known to be physically possible) process of “cyborging”. Once a given person’s brain is mapped, it is replaced piece-by-piece with computer devices which perform the exact same function as the regions preceding them, after which the patient is allowed to regain consciousness and validate that there has not been some radical upheaval within his own subjective experience of reality. At this point, the patient’s brain is immediately “re-mapped” and another piece is replaced, and so on in this fashion until, the patient exists on a purely hardware medium and can be safely extricated from the remaining organic body.

However, critics contend[citation needed] that, given the significant level of synergy involved throughout the neural plexus, alteration of any given cell that is functionally correspondent with (a) neighboring cell(s) may well result in an alteration of its electrical and chemical properties that would not have existed without interference, and so the true individual’s signature is lost. Revokability of that disturbance may be possible with damage anticipation and correction (seeing the original by the particular damage rendered unto it, in reverse chronological fashion), although this would be easier in a stable system, meaning a brain subjected to cryosleep (which would imbue its own damage and alterations).[citation needed]

It has also been suggested (for example, in Greg Egan’s “jewelhead” stories[8]) that a detailed examination of the brain itself may not be required, that the brain could be treated as a black box instead and effectively duplicated “for all practical purposes” by merely duplicating how it responds to specific external stimuli. This leads into even deeper philosophical questions of what the “self” is.

On June 6, 2005 IBM and the Swiss Federal Institute of Technology in Lausanne announced the launch of a project to build a complete simulation of the human brain, entitled the “Blue Brain Project”.[9] The project will use a supercomputer based on IBM’s Blue Gene design to map the entire electrical circuitry of the brain. The project seeks to research aspects of human cognition, and various psychiatric disorders caused by malfunctioning neurons, such as autism. Initial efforts are to focus on experimentally accurate, programmed characterization of a single neocortical column in the brain of a rat, as it is very similar to that of a human but at a smaller scale, then to expand to an entire neocortex (the alleged seat of higher intelligence) and eventually the human brain as a whole.

It is interesting to note that the Blue Brain project seems to use a combination of emulation and simulation techniques. The first stage of their program was to simulate a neocortical column at the molecular level. Now the program seems to be trying to create a simplified functional simulation of the neocortical column in order to simulate many of them, and to model their interactions.

With most projected mind uploading technology it is implicit that “copying” a consciousness could be as feasible as “moving” it, since these technologies generally involve simulating the human brain in a computer of some sort, and digital files such as computer programs can be copied precisely. It is also possible that the simulation could be created without the need to destroy the original brain, so that the computer-based consciousness would be a copy of the still-living biological person, although some proposed methods such as serial sectioning of the brain would necessarily be destructive. In both cases it is usually assumed that once the two versions are exposed to different sensory inputs, their experiences would begin to diverge, but all their memories up until the moment of the copying would remain the same.

By many definitions, both copies could be considered the “same person” as the single original consciousness before it was copied. At the same time, they can be considered distinct individuals once they begin to diverge, so the issue of which copy “inherits” what could be complicated. This problem is similar to that found when considering the possibility of teleportation, where in some proposed methods it is possible to copy (rather than only move) a mind or person. This is the classic philosophical issue of personal identity. The problem is made even more serious by the possibility of creating a potentially infinite number of initially identical copies of the original person, which would of course all exist simultaneously as distinct beings.

Philosopher John Locke published “An Essay Concerning Human Understanding” in 1689, in which he proposed the following criterion for personal identity: if you remember thinking something in the past, then you are the same person as he or she who did the thinking. Later philosophers raised various logical snarls, most of them caused by applying Boolean logic, the prevalent logic system at the time. It has been proposed that modern fuzzy logic can solve those problems,[10] showing that Locke’s basic idea is sound if one treats personal identity as a continuous rather than discrete value.

In that case, when a mind is copied — whether during mind uploading, or afterwards, or by some other means — the two copies are initially two instances of the very same person, but over time, they will gradually become different people to an increasing degree.

The issue of copying vs moving is sometimes cited as a reason to think that destructive methods of mind uploading such as serial sectioning of the brain would actually destroy the consciousness of the original and the upload would itself be a mere “copy” of that consciousness. Whether one believes that the original consciousness of the brain would transfer to the upload, that the original consciousness would be destroyed, or that this is simply a matter of definition and the question has no single “objectively true” answer, is ultimately a philosophical question that depends on one’s views of philosophy of mind.

Because of these philosophical questions about the survival of consciousness, there are some who would feel more comfortable about a method of uploading where the transfer is gradual, replacing the original brain with a new substrate over an extended period of time, during which the subject appears to be fully conscious (this can be seen as analogous to the natural biological replacement of molecules in our brains with new ones taken in from eating and breathing, which may lead to almost all the matter in our brains being replaced in as little as a few months[11]). As mentioned above, this would likely take place as a result of gradual cyborging, either nanoscopically or macroscopically, wherein the brain (the original copy) would slowly be replaced bit by bit with artificial parts that function in a near-identical manner, and assuming this was possible at all, the person would not necessarily notice any difference as more and more of their brain became artificial. A gradual transfer also brings up questions of identity similar to the classical Ship of Theseus paradox, although the above-mentioned natural replacement of molecules in the brain through eating and breathing brings up these questions as well.

A computer capable of simulating a person may require microelectromechanical systems (MEMS), or else perhaps optical or nano computing for comparable speed and reduced size and sophisticated telecommunication between the brain and body (whether it exists in virtual reality, artificially as an android, or cybernetically as in sync with a biological body through a transceiver), but would not seem to require molecular nanotechnology.

If minds and environments can be simulated, the Simulation Hypothesis posits that the reality we see may in fact be a computer simulation, and that this is actually the most likely possibility.[12]

Uploading is a common theme in science fiction. Some of the earlier instances of this theme were in the Roger Zelazny 1968 novel Lord of Light and in Frederik Pohl’s 1955 short story “Tunnel Under the World.” A near miss was Neil R. Jones’ 1931 short story “The Jameson Satellite”, wherein a person’s organic brain was installed in a machine, and Olaf Stapledon’s “Last and First Men” (1930) had organic human-like brains grown into an immobile machine.

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction. Together with the 1969 book Ubik by Philip K. Dick it takes the subject to its furthest point of all the early novels in the field.

Frederik Pohl’s Gateway series (also known as the Heechee Saga) deals with a human being, Robinette Broadhead, who “dies” and, due to the efforts of his wife, a computer scientist, as well as the computer program Sigfrid von Shrink, is uploaded into the “64 Gigabit space” (now archaic, but Fred Pohl wrote Gateway in 1976). The Heechee Saga deals with the physical, social, sexual, recreational, and scientific nature of cyberspace before William Gibson’s award-winning Neuromancer, and the interactions between cyberspace and “meatspace” commonly depicted in cyberpunk fiction. In Neuromancer, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind uploaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In the 1997 novel “Shade’s Children” by Garth Nix, one of the main characters Shade (a.k.a. Robert Ingman) is an uploaded consciousness that guides the other characters through the post-apocolyptic world in which they live.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind uploading, as well as the financial and computing aspects (i.e., hardware, software, processing power) of maintaining “copies”. In Egan’s Permutation City and Diaspora, “copies” are made by computer simulation of scanned brain physiology. Also, in Egan’s “Jewelhead” stories, the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, with the organic brain then being surgically removed.

The Takeshi Kovacs novels by Richard Morgan was set in a universe where mind transfers were a part of standard life. With the use of cortical stacks, which record a person’s memories and personality into a device implanted in the spinal vertebrae, it was possible to copy the individual’s mind to a storage system at the time of death. The stack could be uploaded to a virtual reality environment for interrogation, entertainment, or to pass the time for long distance travel. The stack could also be implanted into a new body or “sleeve” which may or may not have biomechanical, genetic, or chemical “upgrades” since the sleeve could be grown or manufactured. Interstellar travel is most often accomplished by digitized human freight (“dhf”) over faster-than-light needlecast transmission.

In the “Requiem for Homo Sapiens” series of novels by David Zindell (Neverness, The Broken God, The Wild, and War in Heaven), the verb “cark” is used for uploading one’s mind (and also for changing one’s DNA). Carking is done for soul-preservation purposes by the members of the Architects church, and also for more sinister (or simply unknowable) purposes by the various “gods” that populate the galaxy such gods being human minds that have now grown into planet- or nebula-sized synthetic brains. The climax of the series centers around the struggle to prevent one character from creating a Universal Computer (under his control) that will incorporate all human minds (and indeed, the entire structure of the universe).

In the popular computer game Total Annihilation, the 4,000-year war that eventually culminated with the destruction of the Milky Way galaxy was started over the issue of mind transfer, with one group (the Arm) resisting another group (the Core) who were attempting to enforce a 100% conversion rate of humanity into machines, because machines are durable and modular, thereby making it a “public health measure.”

In the popular science fiction show Stargate SG-1 the alien race who call themselves the Asgard rely solely on cloning and mind transferring to continue their existence. This was not a choice they made, but a result of the decay of the Asgard genome due to excessive cloning, which also caused the Asgard to lose their ability to reproduce. In the episode “Tin Man”, SG-1 encounter Harlan, the last of a race that transferred their minds to robots in order to survive. SG-1 then discover that their minds have also been transferred to robot bodies. Eventually they learn that their minds were copied rather than uploaded and that the “original” SG-1 are still alive.

The Thirteenth Floor is a film made in 1999 directed by Josef Rusnak. In the film, a scientific team discovers a technology to create a fully functioning virtual world which they could experience by taking control of the bodies of simulated characters in the world, all of whom were self-aware. One plot twist was that if the virtual body a person had taken control of was killed in the simulation while they were controlling it, then the mind of the simulated character the body originally belonged to would take over the body of that person in the “real world”.

The Matrix is a film released the same year as The Thirteenth Floor that has the same kind of solipsistic philosophy. In The Matrix, the protagonist Neo finds out that the world he has been living in is nothing but a simulated dreamworld. However, this should be considered as virtual reality rather than mind uploading, since Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from this dreamworld by human rebels fighting against AI-driven machines in what seems to be a neverending war. During the course of the movie, Neo and his friends are connected back into the Matrix dreamworld in order to fight the machine race.

In the series Battlestar Galactica the antagonists of the story are the Cylons, sentient computers created by man which developed to become nearly identical to human beings. When they die they rely on mind transferring to keep on living so that “death becomes a learning experience”.

The 1995 movie Strange Days explores the idea of a technology capable of recording a conscious event. However, in this case, the mind itself is not uploaded into the device. The recorded event, which time frame is limited to that of the recording session, is frozen in time on a data disc much like today’s audio and video. Wearing the “helmet” in playback mode, another person can experience the external stimuli interpretation of the brain, the memories, the feelings, the thoughts and the actions that the original person recorded from his/her life. During playback, the observer temporarily quits his own memories and state of consciousness (the real self). In other words, one can “live” a moment in the life of another person, and one can “live” the same moment of his/her life more than once. In the movie, a direct link to a remote helmet can also be established, allowing another person to experience a live event.

Followers of the Ralian religion advocate mind uploading in the process of human cloning to achieve eternal life. Living inside of a computer is also seen by followers as an eminent possibility.[13]

However, mind uploading is also advocated by a number of secular researchers in neuroscience and artificial intelligence, such as Marvin Minsky. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in Cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, Ph.D., who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many Transhumanists look forward to the development and deployment of mind uploading technology, with many predicting that it will become possible within the 21st century due to technological trends such as Moore’s Law. Many view it as the end phase of the Transhumanist project, which might be said to begin with the genetic engineering of biological humans, continue with the cybernetic enhancement of genetically engineered humans, and finally obtain with the replacement of all remaining biological aspects.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer.

Raymond Kurzweil, a prominent advocate of transhumanism and the likelihood of a technological singularity, has suggested that the easiest path to human-level artificial intelligence may lie in “reverse-engineering the human brain”, which he usually uses to refer to the creation of a new intelligence based on the general “principles of operation” of the brain, but he also sometimes uses the term to refer to the notion of uploading individual human minds based on highly detailed scans and simulations. This idea is discussed on pp. 198-203 of his book The Singularity is Near, for example.

Hans Moravec describes and advocates mind uploading in both his 1988 book Mind Children: The Future of Robot and Human Intelligence and also his 2000 book Robot: Mere Machine to Transcendent Mind. Moravec is referred to by Marvin Minsky in Minsky’s essay Will Robots Inherit the Earth?.[14]

fr:Tlchargement de l’espritja:ru:

View post:

Mind uploading | Transhumanism Wiki | FANDOM powered by Wikia

Brain Uploading – TV Tropes

“The point is, if we can store music on a compact disc, why can’t we store a man’s intelligence and personality on one? So, I have the engineers figuring that one out now.”Artificial Intelligence is hard. Why reinvent the wheel, when you’ve got plenty of humans walking around? Who will miss one, right?Alternatively, you might be one of those humans looking for easy immortality. Either way, once you finish scanning the brain, you end up with a file that you run in a physics simulator, and presto, you have a computer that remembers being a human. If you do it carefully enough, the original brain won’t even notice it happening.This computer has a number of advantages over a meat human. The simulation can be run many thousands of times faster than objective speed, if you’ve got enough computing power. It can be backed up with trivial ease. You can run multiple copies at the same time, and have them do different things, make exotic personality composites, and tinker around with the inner workings of the brain in ways that are either difficult or impossible to do with a meat brain. Additionally, there’s the fact that it’s impossible to kill as long as its data is backed up somewhere and there exists a computer on which to run it – you can just restart the simulation wherever you left off and the mind won’t even recognize it.Critics of the concept are quick to point out that it presupposes an understanding of neurology (not just human neurology, but even the neurology of a common insect) far, far beyond what currently exists; and that without that knowledge, even the most powerful computer cannot do this. Proponents of the idea assure us that this knowledge is coming. Proponents who hope to live to see and actually benefit from it assure us that it’s coming really really soon.As with The Singularity, the idea of brain uploading has inevitably taken on a quasi-religious aspect for many in recent years, since it does promise immortality of a sort (as long as your backups and the hardware to run them on are safe), and even transcendence of the body.The advantages bestowed by brain uploading are a bit overwhelming if you’re trying to incorporate them into a story. It kind of kills the tension when the protagonist can restore from backup whenever the Big Bad kills them. Authors have devised a number of cop-outs, which you can recognize by asking these questions:

open/close all folders

Anime and Manga

Comic Books

Fan Works

He took out the hexagonal chip from his coat, the Soul Catcher that contained Shepard’s memories, her mind, her skills… but ironically, not her soul.

Films Live-Action

Literature

Live-Action TV

The TARDIS: Do you really not recognize me? Just because they put me in here? The Doctor: They said you were dangerous. The TARDIS: Not the cage, stupid. (puts fingers on temples) In here. They put me in here!

Other Sites

Podcasts

Stand Up Comedy

Tabletop Games

Video Games

Visual Novels

Webcomics

Web Originals

Western Animation

Alternate Reality Games

Real Life

See more here:

Brain Uploading – TV Tropes

Brain Uploading – TV Tropes

“The point is, if we can store music on a compact disc, why can’t we store a man’s intelligence and personality on one? So, I have the engineers figuring that one out now.”Artificial Intelligence is hard. Why reinvent the wheel, when you’ve got plenty of humans walking around? Who will miss one, right?Alternatively, you might be one of those humans looking for easy immortality. Either way, once you finish scanning the brain, you end up with a file that you run in a physics simulator, and presto, you have a computer that remembers being a human. If you do it carefully enough, the original brain won’t even notice it happening.This computer has a number of advantages over a meat human. The simulation can be run many thousands of times faster than objective speed, if you’ve got enough computing power. It can be backed up with trivial ease. You can run multiple copies at the same time, and have them do different things, make exotic personality composites, and tinker around with the inner workings of the brain in ways that are either difficult or impossible to do with a meat brain. Additionally, there’s the fact that it’s impossible to kill as long as its data is backed up somewhere and there exists a computer on which to run it – you can just restart the simulation wherever you left off and the mind won’t even recognize it.Critics of the concept are quick to point out that it presupposes an understanding of neurology (not just human neurology, but even the neurology of a common insect) far, far beyond what currently exists; and that without that knowledge, even the most powerful computer cannot do this. Proponents of the idea assure us that this knowledge is coming. Proponents who hope to live to see and actually benefit from it assure us that it’s coming really really soon.As with The Singularity, the idea of brain uploading has inevitably taken on a quasi-religious aspect for many in recent years, since it does promise immortality of a sort (as long as your backups and the hardware to run them on are safe), and even transcendence of the body.The advantages bestowed by brain uploading are a bit overwhelming if you’re trying to incorporate them into a story. It kind of kills the tension when the protagonist can restore from backup whenever the Big Bad kills them. Authors have devised a number of cop-outs, which you can recognize by asking these questions:

open/close all folders

Anime and Manga

Comic Books

Fan Works

He took out the hexagonal chip from his coat, the Soul Catcher that contained Shepard’s memories, her mind, her skills… but ironically, not her soul.

Films Live-Action

Literature

Live-Action TV

The TARDIS: Do you really not recognize me? Just because they put me in here? The Doctor: They said you were dangerous. The TARDIS: Not the cage, stupid. (puts fingers on temples) In here. They put me in here!

Other Sites

Podcasts

Stand Up Comedy

Tabletop Games

Video Games

Visual Novels

Webcomics

Web Originals

Western Animation

Alternate Reality Games

Real Life

See the article here:

Brain Uploading – TV Tropes

Brain Uploading – TV Tropes

“The point is, if we can store music on a compact disc, why can’t we store a man’s intelligence and personality on one? So, I have the engineers figuring that one out now.”Artificial Intelligence is hard. Why reinvent the wheel, when you’ve got plenty of humans walking around? Who will miss one, right?Alternatively, you might be one of those humans looking for easy immortality. Either way, once you finish scanning the brain, you end up with a file that you run in a physics simulator, and presto, you have a computer that remembers being a human. If you do it carefully enough, the original brain won’t even notice it happening.This computer has a number of advantages over a meat human. The simulation can be run many thousands of times faster than objective speed, if you’ve got enough computing power. It can be backed up with trivial ease. You can run multiple copies at the same time, and have them do different things, make exotic personality composites, and tinker around with the inner workings of the brain in ways that are either difficult or impossible to do with a meat brain. Additionally, there’s the fact that it’s impossible to kill as long as its data is backed up somewhere and there exists a computer on which to run it – you can just restart the simulation wherever you left off and the mind won’t even recognize it.Critics of the concept are quick to point out that it presupposes an understanding of neurology (not just human neurology, but even the neurology of a common insect) far, far beyond what currently exists; and that without that knowledge, even the most powerful computer cannot do this. Proponents of the idea assure us that this knowledge is coming. Proponents who hope to live to see and actually benefit from it assure us that it’s coming really really soon.As with The Singularity, the idea of brain uploading has inevitably taken on a quasi-religious aspect for many in recent years, since it does promise immortality of a sort (as long as your backups and the hardware to run them on are safe), and even transcendence of the body.The advantages bestowed by brain uploading are a bit overwhelming if you’re trying to incorporate them into a story. It kind of kills the tension when the protagonist can restore from backup whenever the Big Bad kills them. Authors have devised a number of cop-outs, which you can recognize by asking these questions:

open/close all folders

Anime and Manga

Comic Books

Fan Works

He took out the hexagonal chip from his coat, the Soul Catcher that contained Shepard’s memories, her mind, her skills… but ironically, not her soul.

Films Live-Action

Literature

Live-Action TV

The TARDIS: Do you really not recognize me? Just because they put me in here? The Doctor: They said you were dangerous. The TARDIS: Not the cage, stupid. (puts fingers on temples) In here. They put me in here!

Other Sites

Podcasts

Stand Up Comedy

Tabletop Games

Video Games

Visual Novels

Webcomics

Web Originals

Western Animation

Alternate Reality Games

Real Life

Read more:

Brain Uploading – TV Tropes

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

See the original post:

Mind uploading – Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Follow this link:

Mind uploading – Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

Read the original here:

Mind Uploading

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Originally posted here:

Mind uploading in fiction – Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Read the rest here:

Mind uploading – Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

See the original post here:

The virtual afterlife will transform humanity | Aeon Essays

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

Here is the original post:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Continue reading here:

Mind uploading – Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Go here to read the rest:

Mind uploading in fiction – Wikipedia

Michael Graziano on The Evolution of Consciousness and …

Biography: Michael Graziano (Wikipedia) is a scientist, novelist, and composer, and is currently aprofessor of Psychology and Neuroscience at Princeton University.His previous work focused on how the cortex monitors the space around the body and controls movement within that space, including groundbreaking research into the brains homunculus. His current research focuses on the biological basis of attention and consciousness. He has proposed the Attention Schema theory, an explanation of how, and for what adaptive advantage, brains attribute the property of awareness to themselves. His 2013 book, Consciousness and the Social Brain, explores this theory in-depth and extends it in novel and surprising ways.

Andy McKenzie:Your recent book,Consciousness and the Social Brain, describes and expands upon your fascinating and well-received model of consciousness. Interestingly, consciousness itself is perhaps too narrow as a description of the content in your book, since you also describe attention, and specifically how consciousness arises as useful adaptation for modeling ones attention processes and the attention processes of others. One thing Im particularly curious about this is: if we were to wind back the evolutionary clock, is there any other way that consciousness could have evolved? For example, if it were to have evolved in a highly cooperative species as opposed to one in which social games play such a prominent role, would the consciousness that developed be recognizable as such?

Michael Graziano: The evolutionary question is a good one. We suspect that awareness, in some form, is very evolutionarily old, and has its roots as far back as half a billion years ago. Different species may have different bells and whistles, different quirks or flavors, but almost every animal has either something like awareness or some very simple precursor algorithm from which our awareness emerged.

As you hinted in your question, the story starts with attention, this mechanistic ability to focus resources on a limited set of signals and process them in depth. Attention may have evolved very early, probably about half a billion years ago, as soon as animals had sophisticated nervous systems. That means insects, fish, mammals, birds, even octopuses, have some version of attention. And we think that as soon as attention appeared, evolution would have begun to construct an attention schema. The brain not only performs attention, but also builds an internal description of what its doing. This follows from everything we know about control engineering. If you want to control something, you need an internal description of it. This internal description of attention would have come in very early in evolution and then gradually become more elaborate. Its this internal description of attention, this attention schema, distorted and blurry, that tells us we have a non-physical essence inside us that allows us to mentally possess items and that empowers us to act on those items. Awareness is the internal model of attention.

So its not that some animals are conscious and others are not. Its much more of a graded thing. As humans, of course, we have our own peculiar human form of consciousness. We use it not only to understand ourselves, but also to understand others. One of the main human uses of consciousness is to attribute it to others; its foundational to our social intelligence.

I do think that if we had a different set of species properties, we would have a different flavor of consciousness. Just like different animals have different kinds of legs, adapted to their own needs, but we can recognize them all as legs.

In fact, given the complexity of wiring up a brain during infancy and childhood, I suspect that different people have slightly different consciousness constructs. What it means to be conscious is probably slightly different for different people. Thats a wild thought.

Andy McKenzie: In your Aeon article from a year and a half ago, you wrote:

> I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly.

You then go on to discuss some of the interesting and at time troubling social ramifications that this would entail. Do you still consider the prospect of mind uploading to be technically feasible more likely than not? And either way, what do you think is the strongest argument against the relatively near term (say, within 100-200 years) feasibility of mind uploading?

Michael Graziano: Yes, I think mind uploading is possible and even inevitable. The technology is moving that way, and there is way too much social motivation to stop that momentum. Just like Kofu wanted to imprint his memory on the world by building the largest of the great pyramids, and now some people put every detail of their lives online and that online presence lingers on like a ghost after the person is dead there will be a huge market for preserving so much of yourself that the trace left over actually thinks and feels and talks like you do, and has your memories, and believes it IS you. As strange and discombobulating as that seems, it is ultimately technically possible. I think it will be a gradual development. These preserved minds will be crude at first, not really fully naturalistic. More like caricatures of people. Within fifty years, Id say it will be technically possible to do a first crude pass at it, and someone will try it on a mouse or a frog or something. Its a matter of gradual refinement after that, until the caricature becomes a duplicate. It all depends on the progress in scanning technology. If we develop a non-invasive scan, like an MRI, that can get down to the microscopic details of individual neurons and their synaptic connections, then were set.

One of the strangest quirks of the mind-uploading mythos is the notion that if you upload yourself into a computer, your real self in the real world disappears. And you have to get yourself back out of the computer to return to the real world. This wonderful bit of fantasy is total nonsense and was invented to solve a narrative problem in story telling. If you copied your mind and uploaded it onto a computer, thered be two of you, one in the real world and one in the computer world, living through separate experiences. And the one in the computer world could in principle be copied any number of times, until there are millions of you. And some of those versions of you could be directly linked to other uploaded minds, with direct access to each others thoughts. This is very hard for people to wrap their minds around. It challenges our understanding of individuality. This is the main philosophical challenge of our future, it seems to me; the breakdown of the concept of individuality.

Andy McKenzie:You mentioned a non-invasive scan of microscopic details of individual neurons and their synaptic connections as a step towards mind uploading. Obviously this is somewhat speculative at this point, but Im curious: what do you think will be the level of scanning resolution detail required to produce an uploaded mind that would identify as being the same as the original mind?

Michael Graziano: To produce the first crude approximation to an uploaded mind, wed need a scan at a resolution that gives us the very thin processes or wires sprouting from neurons, and the synapses between neurons. That would be at the sub micron level. Maybe 100 nanometers. Thats very small. Current MRI technology, at the highest resolution typically used on the brain, can resolve physical details at about half a millimeter at the best. There are scanning techniques that can do much better, but right now are limited in various ways, for example to scanning a small piece of tissue. So a lot of development is needed. On the other hand, that development is going on rather aggressively, and there is no reason to think there is any fundamental technical limit in sight.

Nobody knows how refined a scan would be need to be, to duplicate all the nuances. It could be that a much more refined method, down to the molecular level, is needed. Nobody will know until people start to try these things out.

Andy McKenzie:What are you working on now?

Michael Graziano:My lab continues to study how consciousness is implemented in the brain. We do experiments on people, for example in the MRI scanner, to test and refine the Attention Schema theory of the biological basis of awareness.

Andy McKenzie: Thanks, Professor Graziano!

View original post here:

Michael Graziano on The Evolution of Consciousness and …

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Follow this link:

Mind uploading – Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

View original post here:

Mind uploading in fiction – Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

More here:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Here is the original post:

Mind uploading – Wikipedia


12345...10...