12345...102030...


Medical genetics – Wikipedia

Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counselling people with genetic disorders would be considered part of medical genetics.

In contrast, the study of typically non-medical phenotypes such as the genetics of eye color would be considered part of human genetics, but not necessarily relevant to medical genetics (except in situations such as albinism). Genetic medicine is a newer term for medical genetics and incorporates areas such as gene therapy, personalized medicine, and the rapidly emerging new medical specialty, predictive medicine.

Medical genetics encompasses many different areas, including clinical practice of physicians, genetic counselors, and nutritionists, clinical diagnostic laboratory activities, and research into the causes and inheritance of genetic disorders. Examples of conditions that fall within the scope of medical genetics include birth defects and dysmorphology, mental retardation, autism, mitochondrial disorders, skeletal dysplasia, connective tissue disorders, cancer genetics, teratogens, and prenatal diagnosis. Medical genetics is increasingly becoming relevant to many common diseases. Overlaps with other medical specialties are beginning to emerge, as recent advances in genetics are revealing etiologies for neurologic, endocrine, cardiovascular, pulmonary, ophthalmologic, renal, psychiatric, and dermatologic conditions. The medical genetics community is increasingly involved with individuals who have undertaken elective genetic and genomic testing.

In some ways, many of the individual fields within medical genetics are hybrids between clinical care and research. This is due in part to recent advances in science and technology (for example, see the Human genome project) that have enabled an unprecedented understanding of genetic disorders.

Clinical genetics is the practice of clinical medicine with particular attention to hereditary disorders. Referrals are made to genetics clinics for a variety of reasons, including birth defects, developmental delay, autism, epilepsy, short stature, and many others. Examples of genetic syndromes that are commonly seen in the genetics clinic include chromosomal rearrangements, Down syndrome, DiGeorge syndrome (22q11.2 Deletion Syndrome), Fragile X syndrome, Marfan syndrome, Neurofibromatosis, Turner syndrome, and Williams syndrome.

In the United States, Doctors who practice clinical genetics are accredited by the American Board of Medical Genetics and Genomics (ABMGG).[1] In order to become a board-certified practitioner of Clinical Genetics, a physician must complete a minimum of 24 months of training in a program accredited by the ABMGG. Individuals seeking acceptance into clinical genetics training programs must hold an M.D. or D.O. degree (or their equivalent) and have completed a minimum of 24 months of training in an ACGME-accredited residency program in internal medicine, pediatrics, obstetrics and gynecology, or other medical specialty.[2]

Metabolic (or biochemical) genetics involves the diagnosis and management of inborn errors of metabolism in which patients have enzymatic deficiencies that perturb biochemical pathways involved in metabolism of carbohydrates, amino acids, and lipids. Examples of metabolic disorders include galactosemia, glycogen storage disease, lysosomal storage disorders, metabolic acidosis, peroxisomal disorders, phenylketonuria, and urea cycle disorders.

Cytogenetics is the study of chromosomes and chromosome abnormalities. While cytogenetics historically relied on microscopy to analyze chromosomes, new molecular technologies such as array comparative genomic hybridization are now becoming widely used. Examples of chromosome abnormalities include aneuploidy, chromosomal rearrangements, and genomic deletion/duplication disorders.

Molecular genetics involves the discovery of and laboratory testing for DNA mutations that underlie many single gene disorders. Examples of single gene disorders include achondroplasia, cystic fibrosis, Duchenne muscular dystrophy, hereditary breast cancer (BRCA1/2), Huntington disease, Marfan syndrome, Noonan syndrome, and Rett syndrome. Molecular tests are also used in the diagnosis of syndromes involving epigenetic abnormalities, such as Angelman syndrome, Beckwith-Wiedemann syndrome, Prader-willi syndrome, and uniparental disomy.

Mitochondrial genetics concerns the diagnosis and management of mitochondrial disorders, which have a molecular basis but often result in biochemical abnormalities due to deficient energy production.

There exists some overlap between medical genetic diagnostic laboratories and molecular pathology.

Genetic counseling is the process of providing information about genetic conditions, diagnostic testing, and risks in other family members, within the framework of nondirective counseling. Genetic counselors are non-physician members of the medical genetics team who specialize in family risk assessment and counseling of patients regarding genetic disorders. The precise role of the genetic counselor varies somewhat depending on the disorder.

Although genetics has its roots back in the 19th century with the work of the Bohemian monk Gregor Mendel and other pioneering scientists, human genetics emerged later. It started to develop, albeit slowly, during the first half of the 20th century. Mendelian (single-gene) inheritance was studied in a number of important disorders such as albinism, brachydactyly (short fingers and toes), and hemophilia. Mathematical approaches were also devised and applied to human genetics. Population genetics was created.

Medical genetics was a late developer, emerging largely after the close of World War II (1945) when the eugenics movement had fallen into disrepute. The Nazi misuse of eugenics sounded its death knell. Shorn of eugenics, a scientific approach could be used and was applied to human and medical genetics. Medical genetics saw an increasingly rapid rise in the second half of the 20th century and continues in the 21st century.

The clinical setting in which patients are evaluated determines the scope of practice, diagnostic, and therapeutic interventions. For the purposes of general discussion, the typical encounters between patients and genetic practitioners may involve:

Each patient will undergo a diagnostic evaluation tailored to their own particular presenting signs and symptoms. The geneticist will establish a differential diagnosis and recommend appropriate testing. These tests might evaluate for chromosomal disorders, inborn errors of metabolism, or single gene disorders.

Chromosome studies are used in the general genetics clinic to determine a cause for developmental delay/mental retardation, birth defects, dysmorphic features, and/or autism. Chromosome analysis is also performed in the prenatal setting to determine whether a fetus is affected with aneuploidy or other chromosome rearrangements. Finally, chromosome abnormalities are often detected in cancer samples. A large number of different methods have been developed for chromosome analysis:

Biochemical studies are performed to screen for imbalances of metabolites in the bodily fluid, usually the blood (plasma/serum) or urine, but also in cerebrospinal fluid (CSF). Specific tests of enzyme function (either in leukocytes, skin fibroblasts, liver, or muscle) are also employed under certain circumstances. In the US, the newborn screen incorporates biochemical tests to screen for treatable conditions such as galactosemia and phenylketonuria (PKU). Patients suspected to have a metabolic condition might undergo the following tests:

Each cell of the body contains the hereditary information (DNA) wrapped up in structures called chromosomes. Since genetic syndromes are typically the result of alterations of the chromosomes or genes, there is no treatment currently available that can correct the genetic alterations in every cell of the body. Therefore, there is currently no “cure” for genetic disorders. However, for many genetic syndromes there is treatment available to manage the symptoms. In some cases, particularly inborn errors of metabolism, the mechanism of disease is well understood and offers the potential for dietary and medical management to prevent or reduce the long-term complications. In other cases, infusion therapy is used to replace the missing enzyme. Current research is actively seeking to use gene therapy or other new medications to treat specific genetic disorders.

In general, metabolic disorders arise from enzyme deficiencies that disrupt normal metabolic pathways. For instance, in the hypothetical example:

Compound “A” is metabolized to “B” by enzyme “X”, compound “B” is metabolized to “C” by enzyme “Y”, and compound “C” is metabolized to “D” by enzyme “Z”.If enzyme “Z” is missing, compound “D” will be missing, while compounds “A”, “B”, and “C” will build up. The pathogenesis of this particular condition could result from lack of compound “D”, if it is critical for some cellular function, or from toxicity due to excess “A”, “B”, and/or “C”, or from toxicity due to the excess of “E” which is normally only present in small amounts and only accumulates when “C” is in excess. Treatment of the metabolic disorder could be achieved through dietary supplementation of compound “D” and dietary restriction of compounds “A”, “B”, and/or “C” or by treatment with a medication that promoted disposal of excess “A”, “B”, “C” or “E”. Another approach that can be taken is enzyme replacement therapy, in which a patient is given an infusion of the missing enzyme “Z” or cofactor therapy to increase the efficacy of any residual “Z” activity.

Dietary restriction and supplementation are key measures taken in several well-known metabolic disorders, including galactosemia, phenylketonuria (PKU), maple syrup urine disease, organic acidurias and urea cycle disorders. Such restrictive diets can be difficult for the patient and family to maintain, and require close consultation with a nutritionist who has special experience in metabolic disorders. The composition of the diet will change depending on the caloric needs of the growing child and special attention is needed during a pregnancy if a woman is affected with one of these disorders.

Medical approaches include enhancement of residual enzyme activity (in cases where the enzyme is made but is not functioning properly), inhibition of other enzymes in the biochemical pathway to prevent buildup of a toxic compound, or diversion of a toxic compound to another form that can be excreted. Examples include the use of high doses of pyridoxine (vitamin B6) in some patients with homocystinuria to boost the activity of the residual cystathione synthase enzyme, administration of biotin to restore activity of several enzymes affected by deficiency of biotinidase, treatment with NTBC in Tyrosinemia to inhibit the production of succinylacetone which causes liver toxicity, and the use of sodium benzoate to decrease ammonia build-up in urea cycle disorders.

Certain lysosomal storage diseases are treated with infusions of a recombinant enzyme (produced in a laboratory), which can reduce the accumulation of the compounds in various tissues. Examples include Gaucher disease, Fabry disease, Mucopolysaccharidoses and Glycogen storage disease type II. Such treatments are limited by the ability of the enzyme to reach the affected areas (the blood brain barrier prevents enzyme from reaching the brain, for example), and can sometimes be associated with allergic reactions. The long-term clinical effectiveness of enzyme replacement therapies vary widely among different disorders.

There are a variety of career paths within the field of medical genetics, and naturally the training required for each area differs considerably. The information included in this section applies to the typical pathways in the United States and there may be differences in other countries. US practitioners in clinical, counseling, or diagnostic subspecialties generally obtain board certification through the American Board of Medical Genetics.

Genetic information provides a unique type of knowledge about an individual and his/her family, fundamentally different from a typically laboratory test that provides a “snapshot” of an individual’s health status. The unique status of genetic information and inherited disease has a number of ramifications with regard to ethical, legal, and societal concerns.

On 19 March 2015, scientists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[3][4][5][6] In April 2015 and April 2016, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[7][8][9] In February 2016, British scientists were given permission by regulators to genetically modify human embryos by using CRISPR and related techniques on condition that the embryos were destroyed within seven days.[10] In June 2016 the Dutch government was reported to be planning to follow suit with similar regulations which would specify a 14-day limit.[11]

The more empirical approach to human and medical genetics was formalized by the founding in 1948 of the American Society of Human Genetics. The Society first began annual meetings that year (1948) and its international counterpart, the International Congress of Human Genetics, has met every 5 years since its inception in 1956. The Society publishes the American Journal of Human Genetics on a monthly basis.

Medical genetics is now recognized as a distinct medical specialty in the U.S. with its own approved board (the American Board of Medical Genetics) and clinical specialty college (the American College of Medical Genetics). The College holds an annual scientific meeting, publishes a monthly journal, Genetics in Medicine, and issues position papers and clinical practice guidelines on a variety of topics relevant to human genetics.

The broad range of research in medical genetics reflects the overall scope of this field, including basic research on genetic inheritance and the human genome, mechanisms of genetic and metabolic disorders, translational research on new treatment modalities, and the impact of genetic testing

Basic research geneticists usually undertake research in universities, biotechnology firms and research institutes.

Sometimes the link between a disease and an unusual gene variant is more subtle. The genetic architecture of common diseases is an important factor in determining the extent to which patterns of genetic variation influence group differences in health outcomes.[12][13][14] According to the common disease/common variant hypothesis, common variants present in the ancestral population before the dispersal of modern humans from Africa play an important role in human diseases.[15] Genetic variants associated with Alzheimer disease, deep venous thrombosis, Crohn disease, and type 2 diabetes appear to adhere to this model.[16] However, the generality of the model has not yet been established and, in some cases, is in doubt.[13][17][18] Some diseases, such as many common cancers, appear not to be well described by the common disease/common variant model.[19]

Another possibility is that common diseases arise in part through the action of combinations of variants that are individually rare.[20][21] Most of the disease-associated alleles discovered to date have been rare, and rare variants are more likely than common variants to be differentially distributed among groups distinguished by ancestry.[19][22] However, groups could harbor different, though perhaps overlapping, sets of rare variants, which would reduce contrasts between groups in the incidence of the disease.

The number of variants contributing to a disease and the interactions among those variants also could influence the distribution of diseases among groups. The difficulty that has been encountered in finding contributory alleles for complex diseases and in replicating positive associations suggests that many complex diseases involve numerous variants rather than a moderate number of alleles, and the influence of any given variant may depend in critical ways on the genetic and environmental background.[17][23][24][25] If many alleles are required to increase susceptibility to a disease, the odds are low that the necessary combination of alleles would become concentrated in a particular group purely through drift.[26]

One area in which population categories can be important considerations in genetics research is in controlling for confounding between population substructure, environmental exposures, and health outcomes. Association studies can produce spurious results if cases and controls have differing allele frequencies for genes that are not related to the disease being studied,[27] although the magnitude of this problem in genetic association studies is subject to debate.[28][29] Various methods have been developed to detect and account for population substructure,[30][31] but these methods can be difficult to apply in practice.[32]

Population substructure also can be used to advantage in genetic association studies. For example, populations that represent recent mixtures of geographically separated ancestral groups can exhibit longer-range linkage disequilibrium between susceptibility alleles and genetic markers than is the case for other populations.[33][34][35][36] Genetic studies can use this admixture linkage disequilibrium to search for disease alleles with fewer markers than would be needed otherwise. Association studies also can take advantage of the contrasting experiences of racial or ethnic groups, including migrant groups, to search for interactions between particular alleles and environmental factors that might influence health.[37][38]

Go here to see the original:

Medical genetics – Wikipedia

Medical genetics – Wikipedia

Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counselling people with genetic disorders would be considered part of medical genetics.

In contrast, the study of typically non-medical phenotypes such as the genetics of eye color would be considered part of human genetics, but not necessarily relevant to medical genetics (except in situations such as albinism). Genetic medicine is a newer term for medical genetics and incorporates areas such as gene therapy, personalized medicine, and the rapidly emerging new medical specialty, predictive medicine.

Medical genetics encompasses many different areas, including clinical practice of physicians, genetic counselors, and nutritionists, clinical diagnostic laboratory activities, and research into the causes and inheritance of genetic disorders. Examples of conditions that fall within the scope of medical genetics include birth defects and dysmorphology, mental retardation, autism, mitochondrial disorders, skeletal dysplasia, connective tissue disorders, cancer genetics, teratogens, and prenatal diagnosis. Medical genetics is increasingly becoming relevant to many common diseases. Overlaps with other medical specialties are beginning to emerge, as recent advances in genetics are revealing etiologies for neurologic, endocrine, cardiovascular, pulmonary, ophthalmologic, renal, psychiatric, and dermatologic conditions. The medical genetics community is increasingly involved with individuals who have undertaken elective genetic and genomic testing.

In some ways, many of the individual fields within medical genetics are hybrids between clinical care and research. This is due in part to recent advances in science and technology (for example, see the Human genome project) that have enabled an unprecedented understanding of genetic disorders.

Clinical genetics is the practice of clinical medicine with particular attention to hereditary disorders. Referrals are made to genetics clinics for a variety of reasons, including birth defects, developmental delay, autism, epilepsy, short stature, and many others. Examples of genetic syndromes that are commonly seen in the genetics clinic include chromosomal rearrangements, Down syndrome, DiGeorge syndrome (22q11.2 Deletion Syndrome), Fragile X syndrome, Marfan syndrome, Neurofibromatosis, Turner syndrome, and Williams syndrome.

In the United States, Doctors who practice clinical genetics are accredited by the American Board of Medical Genetics and Genomics (ABMGG).[1] In order to become a board-certified practitioner of Clinical Genetics, a physician must complete a minimum of 24 months of training in a program accredited by the ABMGG. Individuals seeking acceptance into clinical genetics training programs must hold an M.D. or D.O. degree (or their equivalent) and have completed a minimum of 24 months of training in an ACGME-accredited residency program in internal medicine, pediatrics, obstetrics and gynecology, or other medical specialty.[2]

Metabolic (or biochemical) genetics involves the diagnosis and management of inborn errors of metabolism in which patients have enzymatic deficiencies that perturb biochemical pathways involved in metabolism of carbohydrates, amino acids, and lipids. Examples of metabolic disorders include galactosemia, glycogen storage disease, lysosomal storage disorders, metabolic acidosis, peroxisomal disorders, phenylketonuria, and urea cycle disorders.

Cytogenetics is the study of chromosomes and chromosome abnormalities. While cytogenetics historically relied on microscopy to analyze chromosomes, new molecular technologies such as array comparative genomic hybridization are now becoming widely used. Examples of chromosome abnormalities include aneuploidy, chromosomal rearrangements, and genomic deletion/duplication disorders.

Molecular genetics involves the discovery of and laboratory testing for DNA mutations that underlie many single gene disorders. Examples of single gene disorders include achondroplasia, cystic fibrosis, Duchenne muscular dystrophy, hereditary breast cancer (BRCA1/2), Huntington disease, Marfan syndrome, Noonan syndrome, and Rett syndrome. Molecular tests are also used in the diagnosis of syndromes involving epigenetic abnormalities, such as Angelman syndrome, Beckwith-Wiedemann syndrome, Prader-willi syndrome, and uniparental disomy.

Mitochondrial genetics concerns the diagnosis and management of mitochondrial disorders, which have a molecular basis but often result in biochemical abnormalities due to deficient energy production.

There exists some overlap between medical genetic diagnostic laboratories and molecular pathology.

Genetic counseling is the process of providing information about genetic conditions, diagnostic testing, and risks in other family members, within the framework of nondirective counseling. Genetic counselors are non-physician members of the medical genetics team who specialize in family risk assessment and counseling of patients regarding genetic disorders. The precise role of the genetic counselor varies somewhat depending on the disorder.

Although genetics has its roots back in the 19th century with the work of the Bohemian monk Gregor Mendel and other pioneering scientists, human genetics emerged later. It started to develop, albeit slowly, during the first half of the 20th century. Mendelian (single-gene) inheritance was studied in a number of important disorders such as albinism, brachydactyly (short fingers and toes), and hemophilia. Mathematical approaches were also devised and applied to human genetics. Population genetics was created.

Medical genetics was a late developer, emerging largely after the close of World War II (1945) when the eugenics movement had fallen into disrepute. The Nazi misuse of eugenics sounded its death knell. Shorn of eugenics, a scientific approach could be used and was applied to human and medical genetics. Medical genetics saw an increasingly rapid rise in the second half of the 20th century and continues in the 21st century.

The clinical setting in which patients are evaluated determines the scope of practice, diagnostic, and therapeutic interventions. For the purposes of general discussion, the typical encounters between patients and genetic practitioners may involve:

Each patient will undergo a diagnostic evaluation tailored to their own particular presenting signs and symptoms. The geneticist will establish a differential diagnosis and recommend appropriate testing. These tests might evaluate for chromosomal disorders, inborn errors of metabolism, or single gene disorders.

Chromosome studies are used in the general genetics clinic to determine a cause for developmental delay/mental retardation, birth defects, dysmorphic features, and/or autism. Chromosome analysis is also performed in the prenatal setting to determine whether a fetus is affected with aneuploidy or other chromosome rearrangements. Finally, chromosome abnormalities are often detected in cancer samples. A large number of different methods have been developed for chromosome analysis:

Biochemical studies are performed to screen for imbalances of metabolites in the bodily fluid, usually the blood (plasma/serum) or urine, but also in cerebrospinal fluid (CSF). Specific tests of enzyme function (either in leukocytes, skin fibroblasts, liver, or muscle) are also employed under certain circumstances. In the US, the newborn screen incorporates biochemical tests to screen for treatable conditions such as galactosemia and phenylketonuria (PKU). Patients suspected to have a metabolic condition might undergo the following tests:

Each cell of the body contains the hereditary information (DNA) wrapped up in structures called chromosomes. Since genetic syndromes are typically the result of alterations of the chromosomes or genes, there is no treatment currently available that can correct the genetic alterations in every cell of the body. Therefore, there is currently no “cure” for genetic disorders. However, for many genetic syndromes there is treatment available to manage the symptoms. In some cases, particularly inborn errors of metabolism, the mechanism of disease is well understood and offers the potential for dietary and medical management to prevent or reduce the long-term complications. In other cases, infusion therapy is used to replace the missing enzyme. Current research is actively seeking to use gene therapy or other new medications to treat specific genetic disorders.

In general, metabolic disorders arise from enzyme deficiencies that disrupt normal metabolic pathways. For instance, in the hypothetical example:

Compound “A” is metabolized to “B” by enzyme “X”, compound “B” is metabolized to “C” by enzyme “Y”, and compound “C” is metabolized to “D” by enzyme “Z”.If enzyme “Z” is missing, compound “D” will be missing, while compounds “A”, “B”, and “C” will build up. The pathogenesis of this particular condition could result from lack of compound “D”, if it is critical for some cellular function, or from toxicity due to excess “A”, “B”, and/or “C”, or from toxicity due to the excess of “E” which is normally only present in small amounts and only accumulates when “C” is in excess. Treatment of the metabolic disorder could be achieved through dietary supplementation of compound “D” and dietary restriction of compounds “A”, “B”, and/or “C” or by treatment with a medication that promoted disposal of excess “A”, “B”, “C” or “E”. Another approach that can be taken is enzyme replacement therapy, in which a patient is given an infusion of the missing enzyme “Z” or cofactor therapy to increase the efficacy of any residual “Z” activity.

Dietary restriction and supplementation are key measures taken in several well-known metabolic disorders, including galactosemia, phenylketonuria (PKU), maple syrup urine disease, organic acidurias and urea cycle disorders. Such restrictive diets can be difficult for the patient and family to maintain, and require close consultation with a nutritionist who has special experience in metabolic disorders. The composition of the diet will change depending on the caloric needs of the growing child and special attention is needed during a pregnancy if a woman is affected with one of these disorders.

Medical approaches include enhancement of residual enzyme activity (in cases where the enzyme is made but is not functioning properly), inhibition of other enzymes in the biochemical pathway to prevent buildup of a toxic compound, or diversion of a toxic compound to another form that can be excreted. Examples include the use of high doses of pyridoxine (vitamin B6) in some patients with homocystinuria to boost the activity of the residual cystathione synthase enzyme, administration of biotin to restore activity of several enzymes affected by deficiency of biotinidase, treatment with NTBC in Tyrosinemia to inhibit the production of succinylacetone which causes liver toxicity, and the use of sodium benzoate to decrease ammonia build-up in urea cycle disorders.

Certain lysosomal storage diseases are treated with infusions of a recombinant enzyme (produced in a laboratory), which can reduce the accumulation of the compounds in various tissues. Examples include Gaucher disease, Fabry disease, Mucopolysaccharidoses and Glycogen storage disease type II. Such treatments are limited by the ability of the enzyme to reach the affected areas (the blood brain barrier prevents enzyme from reaching the brain, for example), and can sometimes be associated with allergic reactions. The long-term clinical effectiveness of enzyme replacement therapies vary widely among different disorders.

There are a variety of career paths within the field of medical genetics, and naturally the training required for each area differs considerably. The information included in this section applies to the typical pathways in the United States and there may be differences in other countries. US practitioners in clinical, counseling, or diagnostic subspecialties generally obtain board certification through the American Board of Medical Genetics.

Genetic information provides a unique type of knowledge about an individual and his/her family, fundamentally different from a typically laboratory test that provides a “snapshot” of an individual’s health status. The unique status of genetic information and inherited disease has a number of ramifications with regard to ethical, legal, and societal concerns.

On 19 March 2015, scientists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[3][4][5][6] In April 2015 and April 2016, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[7][8][9] In February 2016, British scientists were given permission by regulators to genetically modify human embryos by using CRISPR and related techniques on condition that the embryos were destroyed within seven days.[10] In June 2016 the Dutch government was reported to be planning to follow suit with similar regulations which would specify a 14-day limit.[11]

The more empirical approach to human and medical genetics was formalized by the founding in 1948 of the American Society of Human Genetics. The Society first began annual meetings that year (1948) and its international counterpart, the International Congress of Human Genetics, has met every 5 years since its inception in 1956. The Society publishes the American Journal of Human Genetics on a monthly basis.

Medical genetics is now recognized as a distinct medical specialty in the U.S. with its own approved board (the American Board of Medical Genetics) and clinical specialty college (the American College of Medical Genetics). The College holds an annual scientific meeting, publishes a monthly journal, Genetics in Medicine, and issues position papers and clinical practice guidelines on a variety of topics relevant to human genetics.

The broad range of research in medical genetics reflects the overall scope of this field, including basic research on genetic inheritance and the human genome, mechanisms of genetic and metabolic disorders, translational research on new treatment modalities, and the impact of genetic testing

Basic research geneticists usually undertake research in universities, biotechnology firms and research institutes.

Sometimes the link between a disease and an unusual gene variant is more subtle. The genetic architecture of common diseases is an important factor in determining the extent to which patterns of genetic variation influence group differences in health outcomes.[12][13][14] According to the common disease/common variant hypothesis, common variants present in the ancestral population before the dispersal of modern humans from Africa play an important role in human diseases.[15] Genetic variants associated with Alzheimer disease, deep venous thrombosis, Crohn disease, and type 2 diabetes appear to adhere to this model.[16] However, the generality of the model has not yet been established and, in some cases, is in doubt.[13][17][18] Some diseases, such as many common cancers, appear not to be well described by the common disease/common variant model.[19]

Another possibility is that common diseases arise in part through the action of combinations of variants that are individually rare.[20][21] Most of the disease-associated alleles discovered to date have been rare, and rare variants are more likely than common variants to be differentially distributed among groups distinguished by ancestry.[19][22] However, groups could harbor different, though perhaps overlapping, sets of rare variants, which would reduce contrasts between groups in the incidence of the disease.

The number of variants contributing to a disease and the interactions among those variants also could influence the distribution of diseases among groups. The difficulty that has been encountered in finding contributory alleles for complex diseases and in replicating positive associations suggests that many complex diseases involve numerous variants rather than a moderate number of alleles, and the influence of any given variant may depend in critical ways on the genetic and environmental background.[17][23][24][25] If many alleles are required to increase susceptibility to a disease, the odds are low that the necessary combination of alleles would become concentrated in a particular group purely through drift.[26]

One area in which population categories can be important considerations in genetics research is in controlling for confounding between population substructure, environmental exposures, and health outcomes. Association studies can produce spurious results if cases and controls have differing allele frequencies for genes that are not related to the disease being studied,[27] although the magnitude of this problem in genetic association studies is subject to debate.[28][29] Various methods have been developed to detect and account for population substructure,[30][31] but these methods can be difficult to apply in practice.[32]

Population substructure also can be used to advantage in genetic association studies. For example, populations that represent recent mixtures of geographically separated ancestral groups can exhibit longer-range linkage disequilibrium between susceptibility alleles and genetic markers than is the case for other populations.[33][34][35][36] Genetic studies can use this admixture linkage disequilibrium to search for disease alleles with fewer markers than would be needed otherwise. Association studies also can take advantage of the contrasting experiences of racial or ethnic groups, including migrant groups, to search for interactions between particular alleles and environmental factors that might influence health.[37][38]

The rest is here:

Medical genetics – Wikipedia

Genetic Medicine : Division Home | Department of Medicine

Advances in molecular biology and human genetics, coupled with the completion of the Human Genome Project and the increasing power of quantitative genetics to identify disease susceptibility genes, are contributing to a revolution in the practice of medicine. In the 21st century, practicing physicians will focus more on defining genetically determined disease susceptibility in individual patients. This strategy will be used to prevent, modify, and treat a wide array of common disorders that have unique heritable risk factors such as hypertension, obesity, diabetes, arthrosclerosis, and cancer.

The Division of Genetic Medicine provides an academic environment enabling researchers to explore new relationships between disease susceptibility and human genetics. The Division of Genetic Medicine was established to host both research and clinical research programs focused on the genetic basis of health and disease. Equipped with state-of-the-art research tools and facilities, our faculty members are advancing knowledge of the common genetic determinants of cancer, congenital neuropathies, and heart disease. The Division faculty work jointly with the Vanderbilt-Ingram Cancer Center to support the Hereditary Cancer Clinic for treating patients and families who have an inherited predisposition to various malignancies.

Genetic differences in humans at the molecular level not only contribute to the disease process but also significantly impact an individuals ability to respond optimally to drug therapy. Vanderbilt is a pioneer in precisely identifying genetic differences between patients and making rational treatment decisions at the bedside.

See the article here:

Genetic Medicine : Division Home | Department of Medicine

Genetic Medicine | Internal Medicine | Michigan Medicine …

Goutham Narla, MD, PhD, Chief, Division of Genetic Medicine

As use of genomic technologies continue to increase in research and clinical settings, the Division of Genetic Medicine serves a key role in bringing together basic, clinical, and translational expertise in genomic medicine, with multidisciplinary faculty comprised of MDs, PhD scientists, and genetic counselors. Demand for expertise in genetics continues to increase, and the Division of Genetic Medicine is committed to advancing scientific discovery and clinical care of patients.

In addition to our Medical Genetics Clinic, genetics services are available through several other Michigan Medicine clinics and programs, including the Breast and Ovarian Cancer Risk Evaluation Program, Cancer GeneticsClinic,Inherited Cardiomyopathies and Arrhythmias Program,Neurogenetics Clinic, Pediatric Genetics Clinic, and Prenatal Evaluation Clinic.

Our faculty are focused on various research areas including cancer genetics, inherited hematologic disorders, neural stem cells,the mechanisms and regulation of DNA repair processes in mammalian cells, predictive genetic testing,understanding the mechanisms controlled by Hox genes, birth defects, bleeding and thrombotic disorders, and human limb malformations.

Division of Genetic Medicinefaculty are actively engaged in the education, teaching, and mentorship of clinicians, and clinical and basic scientists, including undergraduate and graduate students, medical students, residents, and fellows from various subspecialties.

Read more from the original source:

Genetic Medicine | Internal Medicine | Michigan Medicine …

Genetic Medicine | List of High Impact Articles | PPts …

Genetic medicine is the integration and application of genomic technologies allows biomedical researchers and clinicians to collect data from large study population and to understand disease and genetic bases of drug response. It includes genome structure, functional genomics, epigenomics, genome scale population genomics, systems analysis, pharmacogenomics and proteomics. The Division of Genetic Medicine provides an academic environment enabling researchers to explore new relationships between disease susceptibility and human genetics. The Division of Genetic Medicine was established to host both research and clinical research programs focused on the genetic basis of health and disease. Equipped with state-of-the-art research tools and facilities, our faculty members are advancing knowledge of the common genetic determinants of cancer, congenital neuropathies, and heart disease.

Related Journals of Genetic Medicine

Cellular & Molecular Medicine, Translational Biomedicine, Biochemistry & Molecular Biology Journal, Cellular & Molecular Medicine, Electronic Journal of Biology, Molecular Enzymology and Drug Targets, Journal of Applied Genetics, Journal of Medical Genetics, Genetics in Medicine, Journal of Anti-Aging Medicine, Reproductive Medicine and Biology, Romanian journal of internal medicine

Follow this link:

Genetic Medicine | List of High Impact Articles | PPts …

Genomics and Medicine | NHGRI

It has often been estimated that it takes, on average, 17years to translate a novel research finding into routine clinical practice. This time lag is due to a combination of factors, including the need to validate research findings, the fact that clinical trials are complex and take time to conduct and then analyze, and because disseminating information and educating healthcare workers about a new advance is not an overnight process.

Once sufficient evidence has been generated to demonstrate a benefit to patients, or “clinical utility,” professional societies and clinical standards groups will use that evidence to determine whether to incorporate the new test into clinical practice guidelines. This determination will also factor in any potential ethical and legal issues, as well economic factors such as cost-benefit ratios.

The NHGRIGenomic Medicine Working Group(GMWG) has been gathering expert stakeholders in a series of genomic medicine meetingsto discuss issues surrounding the adoption of genomic medicine. Particularly, the GMWG draws expertise from researchers at the cutting edge of this new medical toolset, with the aim of better informing future translational research at NHGRI. Additionally the working group provides guidance to theNational Advisory Council on Human Genome Research (NACHGR)and NHGRI in other areas of genomic medicine implementation, such as outlining infrastructural needs for adoption of genomic medicine, identifying related efforts for future collaborations, and reviewing progress overall in genomic medicine implementation.

See the original post here:

Genomics and Medicine | NHGRI

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Cryptocurrency News
On the whole, cryptocurrency prices are down from our previous report on cryptos, with the market slipping on news of an exchange being hacked and a report about Bitcoin manipulation.

However, there have been two bright spots: 1) an official from the U.S. Securities and Exchange Commission (SEC) said that Ethereum is not a security, and 2) Coinbase is expanding its selection of tokens.

Let’s start with the good news.
SEC Says ETH Is Not a Security
Investors have some reason to cheer this week. A high-ranking SEC official told attendees of the Yahoo! All Markets Summit: Crypto that Ethereum and Bitcoin are not.

The post Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More appeared first on Profit Confidential.

Read the original here:

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Ripple vs SWIFT: The War Begins
While most criticisms of XRP do nothing to curb my bullish Ripple price forecast, there is one obstacle that nags at my conscience. Its name is SWIFT.

The Society for Worldwide Interbank Financial Telecommunication (SWIFT) is the king of international payments.

It coordinates wire transfers across 11,000 banks in more than 200 countries and territories, meaning that in order for XRP prices to ascend to $10.00, Ripple needs to launch a successful coup. That is, and always has been, an unwritten part of Ripple’s story.

We’ve seen a lot of progress on that score. In the last three years, Ripple wooed more than 100 financial firms onto its.

The post Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More appeared first on Profit Confidential.

Read more here:

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News & Market Summary
Investors finally saw some light at the end of the tunnel last week, with cryptos soaring across the board. No one quite knows what kicked off the rally—as it could have been any of the stories we discuss below—but the net result was positive.

Of course, prices won’t stay on this rocket ride forever. I expect to see a resurgence of volatility in short order, because the market is moving as a single unit. Everything is rising in tandem.

This tells me that investors are simply “buying the dip” rather than identifying which cryptos have enough real-world value to outlive the crash.

So if you want to know when.

The post Cryptocurrency News: XRP Validators, Malta, and Practical Tokens appeared first on Profit Confidential.

The rest is here:

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News
This was a bloody week for cryptocurrencies. Everything was covered in red, from Ethereum (ETH) on down to the Basic Attention Token (BAT).

Some investors claim it was inevitable. Others say that price manipulation is to blame.

We think the answers are more complicated than either side has to offer, because our research reveals deep contradictions between the price of cryptos and the underlying development of blockchain projects.

For instance, a leading venture capital (VC) firm launched a $300.0-million crypto investment fund, yet liquidity continues to dry up in crypto markets.

Another example is the U.S. Securities and Exchange Commission’s.

The post Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto appeared first on Profit Confidential.

Read the rest here:

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Another Crypto Hack Derails Recovery
Since our last report, hackers broke into yet another cryptocurrency exchange. This time the target was Bithumb, a Korean exchange known for high-flying prices and ultra-active traders.

While the hackers made off with approximately $31.5 million in funds, the exchange is working with relevant authorities to return the stolen tokens to their respective owners. In the event that some is still missing, the exchange will cover the losses. (Source: “Bithumb Working With Other Crypto Exchanges to Recover Hacked Funds,”.

The post Cryptocurrency News: Looking Past the Bithumb Crypto Hack appeared first on Profit Confidential.

Read the original:

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News
Although cryptocurrency prices were heating up last week (Bitcoin, especially), regulators poured cold water on the rally by rejecting calls for a Bitcoin exchange-traded fund (ETF). This is the second time that the proposal fell on deaf ears. (More on that below.)

Crypto mining ran into similar trouble, as you can see from Advanced Micro Devices, Inc.‘s (NASDAQ:AMD) most recent quarterly earnings. However, it wasn’t all bad news. Investors should, for instance, be cheering the fact that hedge funds are ramping up their involvement in cryptocurrency markets.

Without further ado, here are those stories in greater detail.
ETF Rejection.

The post Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds appeared first on Profit Confidential.

View post:

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News: What You Need to Know This Week

Cryptocurrency News
Cryptocurrencies traded sideways since our last report on cryptos. However, I noticed something interesting when playing around with Yahoo! Finance’s cryptocurrency screener: There are profitable pockets in this market.

Incidentally, Yahoo’s screener is far superior to the one on CoinMarketCap, so if you’re looking to compare digital assets, I highly recommend it.

But let’s get back to my epiphany.

In the last month, at one point or another, most crypto assets on our favorites list saw double-digit increases. It’s true that each upswing was followed by a hard crash, but investors who rode the trend would have made a.

The post Cryptocurrency News: What You Need to Know This Week appeared first on Profit Confidential.

Go here to read the rest:

Cryptocurrency News: What You Need to Know This Week

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News
While headline numbers look devastating this week, investors might take some solace in knowing that cryptocurrencies found their bottom at roughly $189.8 billion in market cap—that was the low point. Since then, investors put more than $20.0 billion back into the market.

During the rout, Ethereum broke below $300.00 and XRP fell below $0.30, marking yearly lows for both tokens. The same was true down the list of the top 100 biggest cryptos.

Altcoins took the brunt of the hit. BTC Dominance, which reveals how tightly investment is concentrated in Bitcoin, rose from 42.62% to 53.27% in just one month, showing that investors either fled altcoins at higher.

The post Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs appeared first on Profit Confidential.

Read the original here:

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Cryptocurrency News
Even though the cryptocurrency news was upbeat in recent days, the market tumbled after the U.S. Securities and Exchange Commission (SEC) rejected calls for a Bitcoin (BTC) exchange-traded fund (ETF).

That news came as a blow to investors, many of whom believe the ETF would open the cryptocurrency industry up to pension funds and other institutional investors. This would create a massive tailwind for cryptos, they say.

So it only follows that a rejection of the Bitcoin ETF should send cryptos tumbling, correct? Well, maybe you can follow that logic. To me, it seems like a dramatic overreaction.

I understand that legitimizing cryptos is important. But.

The post Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity appeared first on Profit Confidential.

Read more from the original source:

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Bitcoin Rise: Is the Recent Bitcoin Price Surge a Sign of Things to Come or Another Misdirection?

What You Need to Know About the Bitcoin Price Rise
It wasn’t that long ago that Bitcoin (BTC) dominated headlines for its massive growth, with many cryptocurrency millionaires being made. The Bitcoin price surged ever upward and many people thought the gravy train would never stop running—until it did.

Prices crashed, investors abandoned the space, and lots of people lost money. Cut to today and we’re seeing another big Bitcoin price surge; is this time any different?

I’m of a mind that investors ought to think twice before jumping back in on Bitcoin.

Bitcoin made waves when it once again crested above $5,000. Considering that it started 2019 around $3,700,.

The post Bitcoin Rise: Is the Recent Bitcoin Price Surge a Sign of Things to Come or Another Misdirection? appeared first on Profit Confidential.

Continued here:

Bitcoin Rise: Is the Recent Bitcoin Price Surge a Sign of Things to Come or Another Misdirection?

The Mueller Report Confirms We’re Living in a Cyberpunk Dystopia

The Mueller Report, heavily redacted, describes a number of high-tech Russian operations designed to undermine and sway the 2016 Presidential election.

Harm to Ongoing Matter

When the Justice Department released a heavily-redacted version of the Mueller Report Thursday, the conversation quickly devolved into partisan bickering.

Only time will tell what the report means for the Trump administration. But what’s immediately clear is that concepts that were once restricted to fictional cyberpunk dystopias — from government hackers to botnet propaganda networks — are now mainstream enough to influence international politics.

Black Boxes

The readable text of the report details how Russia used social media, hackers, and other sophisticated techniques to try and sway the 2016 U.S. Presidential election in favor of Trump — efforts that reached millions of Americans and recruited others to actively spread their propaganda before and after the election.

Russians working for an organization called the Internet Research Agency created accounts on Twitter and Facebook, through which they reached millions — including many members of the Trump Administration, Trump’s sons, and Trump himself — while sharing pro-Trump and anti-Clinton messages, memes, and images.

Personal Privacy

Meanwhile, other Russian operatives were taking a more direct approach — by hacking into Democratic Party servers, releasing sensitive information though sock puppet personas like “DCLeaks” and “Guccifer” and giving stolen data to WikiLeaks. Just to make the whole thing a little more “Shadowrun,” they funded the operation by mining Bitcoin.

In the long view, the report might be less memorable for its specific claims than as a blueprint for the future of information warfare — and the strange ways technology can be used to manipulate and control populations.

READ MORE: Report On The Investigation Into Russian Interference In The 2016 Presidential Election [CNN]

More on Mueller: Everything You Need to Know From Mark Zuckerberg’s Congressional Testimony: Day 1

The post The Mueller Report Confirms We’re Living in a Cyberpunk Dystopia appeared first on Futurism.

View post:

The Mueller Report Confirms We’re Living in a Cyberpunk Dystopia

When the Large Hadron Collider Turns on, It May Trap Dark Matter

Scientists have a new plan to try and spot dark matter by searching for particular particles once the Large Hadron Collider's upgrades are complete.

Eyes Peeled

When the Large Hadron Collider (LHC) turns back on and starts smashing particles again sometime in 2021, it may also point us in the direction of dark matter.

For years, scientists have been trying and failing to spot the invisible stuff that makes up the majority of matter in the universe. But now researchers have a new target: a comparatively heavy and long-lived particle that may be produced by the high-energy collisions at the LHC.

The particle is thought by some physicists to occasionally interact with dark matter — giving scientists a new lead toward spotting the elusive material.

Dangling Particle

Research published this month in Physical Review Letters describes how systems that have already been put in place at the LHC could detect these long-lived particles, which are named as such because they travel slower and last longer than other particles generated by LHC experiments.

The time difference is on the scale of nanoseconds, according to a University of Chicago press release — something that the LHC was already able to detect and will be even better at once upgrades are completed.

“If the particle is there, we just have to find a way to dig it out,” University of Chicago physicist LianTao Wang said in the press release. “Usually, the key is finding the question to ask.”

READ MORE: Scientists invent way to trap mysterious ‘dark world’ particle at Large Hadron Collider [University of Chicago newsroom via Phys.org]

More on dark matter: An Oxford Scientist May Have Solved the Mystery of Dark Matter

The post When the Large Hadron Collider Turns on, It May Trap Dark Matter appeared first on Futurism.

Read more from the original source:

When the Large Hadron Collider Turns on, It May Trap Dark Matter

Astronomers Finally Found the Universe’s First Type of Molecule

Scientists finally detect helium hydride, a combination of helium and hydrogen, thought to be the first molecule to form in the universe.

Happy Hunting

Based on scientists’ calculations, the first molecule to ever form from stray atoms in the universe was likely helium hydride, a combination of helium and hydrogen.

For decades, physicists have hunted the universe for the elusive molecule. And now an international team of researchers say they’ve finally found it — thereby confirming the presumed first step in the universe’s chemistry.

No Doubt

In a study published in the journal Nature Wednesday, the researchers describe how they used NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), the world’s largest airborne observatory, to detect helium hydride in a planetary nebula about 3,000 light-years away from Earth.

“It was so exciting to be there, seeing helium hydride for the first time in the data,” researcher Rolf Guesten said in a news release. “This brings a long search to a happy ending and eliminates doubts about our understanding of the underlying chemistry of the early universe.”

READ MORE: The Universe’s First Type of Molecule Is Found at Last [NASA]

More on the early universe: Scientists Now Know When the First Stars Formed in the Universe

The post Astronomers Finally Found the Universe’s First Type of Molecule appeared first on Futurism.

Visit link:

Astronomers Finally Found the Universe’s First Type of Molecule

India Blew up a Satellite. Now A “Space Fence” Is Tracking Its Debris

When India blew up a satellite, it introduced a lot of debris into orbit. Lockheed Martin's experimental Space Fence is keeping an eye on it.

Explosive Demonstration

Last month, India demonstrated its capabilities as a spacefaring nation and drew international criticism when it used a missile to blew up one of its own satellites.

The launch happened to coincide with Lockheed Martin’s test run of a new space monitoring technology called the Space Fence, which can detect and track any unregistered objects orbiting the Earth. According to Space News, that was a stroke of luck that could mitigate damage to people and equipment in space.

Picket Fence

The satellite explosion essentially turned the satellite into a cloud of space debris, which could in the future collide with other satellites, scientific instruments, or astronauts in orbit around the Earth — remember “Gravity”?

“We happened to be up during an endurance test and we were very excited to see that the system performed nominally,” Matthew Hughes, Lockheed Martin business development manager, told Space News. “Space fence is all about the ability to identify break ups, maneuvers, closely spaced objects, proximity operations, new foreign launches.”

While Space Fence isn’t an actual blockade in space, it can at least help officials prepare for and plan around collisions.

READ MORE: Indian anti-satellite test proves early test for Space Fence [Space News]

More on India’s Satellite: NASA: When India Blew up a Satellite, it Endangered Astronauts

The post India Blew up a Satellite. Now A “Space Fence” Is Tracking Its Debris appeared first on Futurism.

Read this article:

India Blew up a Satellite. Now A “Space Fence” Is Tracking Its Debris


12345...102030...