Harnessing bioengineered microbes as a versatile platform for space nutrition – Nature.com

Berliner, A. J. et al. Towards a biomanufactory on Mars. Front. Astron Space Sci. 8, 711550 (2021). This article presents a comprehensive study toward developing sustainable biomanufacturing for extended human operations on Mars.

Google Scholar

Berliner, A. J. et al. Space bioprocess engineering on the horizon. Commun. Eng. 1, 13 (2022).

Douglas, G. L., Zwart, S. R. & Smith, S. M. Space food for thought: challenges and considerations for food and nutrition on exploration missions. J. Nutr. 150, 22422244 (2020).

PubMed Google Scholar

Montague, M. et al. The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 11351142 (2012).

ADS PubMed Google Scholar

Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401407 (2020).

CAS PubMed Google Scholar

Llorente, B., Williams, T. C. & Goold, H. D. The multiplanetary future of plant synthetic biology. Genes 9, 348 (2018). The authors discuss using synthetic biology approaches to take full advantage of plants to contribute to supporting human ventures off-Earth.

PubMed Central Google Scholar

Menezes, A. A., Cumbers, J., Hogan, J. A. & Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12, 20140715 (2015).

PubMed PubMed Central Google Scholar

Way, J. C., Silver, P. A. & Howard, R. J. Sun-driven microbial synthesis of chemicals in space. Int. J. Astrobiol. 10, 359364 (2011).

ADS CAS Google Scholar

Cannon, K. M. & Britt, D. T. Feeding one million people on Mars. N. Space 7, 245254 (2019).

ADS Google Scholar

Hader, D. P. On the way to Mars-flagellated algae in bioregenerative life support systems under microgravity conditions. Front. Plant Sci. 10, 1621 (2019).

PubMed Google Scholar

Choi, K. R., Yu, H. E. & Lee, S. Y. Microbial food: microorganisms repurposed for our food. Micro. Biotechnol. 15, 1825 (2022). This article discusses repurposing microorganisms as food, comparing microbial-, animal-, and plant-derived biomass productions environmental impact and nutritional properties.

Google Scholar

Sun, L., Xin, F. & Alper, H. S. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol. Adv. 47, 107694 (2021).

CAS PubMed Google Scholar

Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Security 11, 265278 (2019). This review summarizes microbial-based foods challenges and potential impacts in addressing environmental sustainability and food security. Basic nutritional properties of microbial food products are also compared to other food products.

Google Scholar

Samuel, D. Investigation of ancient egyptian baking and brewing methods by correlative microscopy. Science 273, 488490 (1996).

ADS CAS PubMed Google Scholar

Onofre, S. B., Bertoldo, I. C., Abatti, D. & Refosco, D. Chemical composition of the biomass of Saccharomyces cerevisiae - (Meyen ex E. C. Hansen, 1883) yeast obtained from the beer manufacturing process. Int. J. Environ. Agric Biotechnol. 2, 558562 (2017).

Google Scholar

Nielsen, J. Yeast systems biology: model organism and cell factory. Biotechnol. J. 14, e1800421 (2019).

PubMed Google Scholar

Purevdorj-Gage, B., Sheehan, K. B. & Hyman, L. E. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4569457 (2006).

ADS CAS PubMed PubMed Central Google Scholar

Bell, P. J. L. et al. An electro-microbial process to uncouple food production from photosynthesis for application in space exploration. Life 12, 1002 (2022).

CAS PubMed PubMed Central Google Scholar

Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 42454250 (2015).

ADS CAS PubMed PubMed Central Google Scholar

Meerman, R. & Brown, A. J. When somebody loses weight, where does the fat go? BMJ 349, g7257 (2014).

PubMed Google Scholar

Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 14071412 (2017).

CAS PubMed Google Scholar

Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020). Methylotrophic metabolism enables growth on methanol, a one-carbon alternative to sugar fermentation. Here the authors use adaptive laboratory evolution to uncover native methylotrophy capacity in the yeast Saccharomyces cerevisiae.

ADS CAS PubMed PubMed Central Google Scholar

Averesch, N. J. Choice of microbial system for in-situ resource utilization on Mars. Front. Astron Space Sci. 8, 700370 (2021).

Google Scholar

Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B. M. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review. iScience 24, 102813 (2021).

ADS CAS PubMed PubMed Central Google Scholar

Looser, V. et al. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol. Adv. 33, 11771193 (2015).

CAS PubMed Google Scholar

Verduyn, C. Physiology of yeasts in relation to biomass yields. Antonie Leeuwenhoek 60, 325353 (1991).

CAS PubMed Google Scholar

Verseux, C. et al. Sustainable life support on Marsthe potential roles of cyanobacteria. Int. J. Astrobiol. 15, 6592 (2016).

ADS CAS Google Scholar

Verseux, C. et al. A Low-Pressure, N2/CO2 atmosphere is suitable for cyanobacterium-based life-support systems on Mars. Front. Microbiol. 12, 611798 (2021).

PubMed PubMed Central Google Scholar

Ducat, D. C., Avelar-Rivas, J. A., Way, J. C. & Silver, P. A. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78, 26602668 (2012).

ADS CAS PubMed PubMed Central Google Scholar

Guadalupe-Medina, V. et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol. Biofuels 6, 125 (2013).

CAS PubMed PubMed Central Google Scholar

Papapetridis, I. et al. Optimizing anaerobic growth rate and fermentation kinetics in Saccharomyces cerevisiae strains expressing Calvin-cycle enzymes for improved ethanol yield. Biotechnol. Biofuels 11, 17 (2018).

PubMed PubMed Central Google Scholar

Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210216 (2020). The authors engineered the metabolism of the yeast Pichia pastoris to enable it to grow as an autotrophic organism using CO2 as a sole carbon source.

CAS PubMed Google Scholar

Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 12551263 (2019).

CAS PubMed PubMed Central Google Scholar

Fabarius, J. T., Wegat, V., Roth, A. & Sieber, V. Synthetic methylotrophy in yeasts: towards a circular bioeconomy. Trends Biotechnol. 39, 348358 (2021).

CAS PubMed Google Scholar

Gonzalez de la Cruz, J., Machens, F., Messerschmidt, K. & Bar-Even, A. Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth. Biol. 8, 911917 (2019).

CAS PubMed PubMed Central Google Scholar

Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Synth. Syst. Biotechnol. 4, 180188 (2019).

PubMed PubMed Central Google Scholar

Marcellin, E., Angenent, L. T., Nielsen, L. K. & Molitor, B. Recycling carbon for sustainable protein production using gas fermentation. Curr. Opin. Biotechnol. 76, 102723 (2022).

CAS PubMed Google Scholar

Godard, P. et al. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 27, 30653086 (2007).

CAS PubMed PubMed Central Google Scholar

Brabender, M., Hussain, M. S., Rodriguez, G. & Blenner, M. A. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl. Microbiol. Biotechnol. 102, 23132322 (2018).

CAS PubMed Google Scholar

Santa Maria, S. R., Marina, D. B., Tieze, S. M., Liddell, L. C. & Bhattacharya, S. BioSentinel: long-term Saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology 20, 114 (2020).

Postma, E. D. et al. Modular, synthetic chromosomes as new tools for large scale engineering of metabolism. Metab. Eng. 72, 113 (2022). This article describes the development of synthetic neochromosomes with modular design as platforms for reprogramming yeast metabolism and installing new functionalities.

CAS PubMed Google Scholar

Kutyna, D. R. et al. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nat. Commun. 13, 3628 (2022). This work demonstrates the concept of using synthetic neochromosomes to provide phenotypic plasticity to yeast, including expanding the range of utilizable carbon sources.

ADS CAS PubMed PubMed Central Google Scholar

Beekwilder, J. et al. Polycistronic expression of a beta-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to beta-ionone production. J. Biotechnol. 192 Pt B, 383392 (2014).

PubMed Google Scholar

Majer, E., Llorente, B., Rodriguez-Concepcion, M. & Daros, J. A. Rewiring carotenoid biosynthesis in plants using a viral vector. Sci. Rep. 7, 41645 (2017).

ADS CAS PubMed PubMed Central Google Scholar

Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

ADS CAS PubMed PubMed Central Google Scholar

Walker, R. S. K. & Pretorius, I. S. Synthetic biology for the engineering of complex wine yeast communities. Nat. Food 3, 249254 (2022).

CAS Google Scholar

Besong, S., Jackson, J. A., Hicks, C. L. & Hemken, R. W. Effects of a supplemental liquid yeast product on feed intake, ruminal profiles, and yield, composition, and organoleptic characteristics of milk from lactating Holstein cows. J. Dairy Sci. 79, 16541658 (1996).

CAS PubMed Google Scholar

Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 15491558.e1514 (2018).

CAS PubMed Google Scholar

Yazawa, H., Iwahashi, H., Kamisaka, Y., Kimura, K. & Uemura, H. Improvement of polyunsaturated fatty acids synthesis by the coexpression of CYB5 with desaturase genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 87, 21852193 (2010).

CAS PubMed Google Scholar

Tavares, S. et al. Metabolic engineering of Saccharomyces cerevisiae for production of Eicosapentaenoic Acid, using a novel Delta 5-Desaturase from Paramecium tetraurelia. Appl. Environ. Microbiol. 77, 18541861 (2011).

ADS CAS PubMed Google Scholar

Qiu, X., Hong, H. & MacKenzie, S. L. Identification of a Delta 4 fatty acid desaturase from Thraustochytrium sp. involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 276, 3156131566 (2001).

CAS PubMed Google Scholar

See more here:

Harnessing bioengineered microbes as a versatile platform for space nutrition - Nature.com

Related Posts

Comments are closed.