Revision To Rules To Decipher Color In Dinosaurs Suggests Connection Between Color And Physiology

Image Caption: Analysis for the distribution of shapes of melanin-containing organelles (melanosomes) in fossil and living amniotes shows that fuzz-covered dinosaurs like Sinosauropteryx share similarities with living lizards, turtles and crocodilians. In these living taxa color and the shape of the melanosomes are not linked in such a way that color can be reconstructed from melanosome shape alone. Melanosomes in Sinosauropteryx don't presently tell us if this animal was brown, blackish or grey. However, feathered dinosaurs are similar to birds, and we can estimate their color. Credit: Li et al. (authors)

University of Texas at Austin

New research that revises the rules allowing scientists to decipher color in dinosaurs may also provide a tool for understanding the evolutionary emergence of flight and changes in dinosaur physiology prior to its origin.

In a survey comparing the hair, skin, fuzz and feathers of living terrestrial vertebrates and fossil specimens, a research team from The University of Texas at Austin, the University of Akron, the China University of Geosciences and four other Chinese institutions found evidence for evolutionary shifts in the rules that govern the relationship between color and the shape of pigment-containing organelles known as melanosomes, as reported in the Feb. 13 edition of Nature.

At the same time, the team unexpectedly discovered that ancient maniraptoran dinosaurs, paravians, and living mammals and birds uniquely shared the evolutionary development of diverse melanosome shapes and sizes. (Diversity in the shape and size of melanosomes allows scientists to decipher color.) The evolution of diverse melanosomes in these organisms raises the possibility that melanosome shape and size could yield insights into dinosaur physiology.

Melanosomes have been at the center of recent research that has led scientists to suggest the colors of ancient fossil specimens covered in fuzz or feathers.

Melanosomes contain melanin, the most common light-absorbing pigment found in animals. Examining the shape of melanosomes from fossil specimens, scientists have recently suggested the color of several ancient species, including the fuzzy first-discovered feathered dinosaur Sinosauropteryx, and feathered species like Microraptor and Anchiornis.

According to the new research, color-decoding works well for some species, but the color of others may be trickier than thought to reconstruct.

Comparing melanosomes of 181 extant specimens, 13 fossil specimens and all previously published data on melanosome diversity, the researchers found that living turtles, lizards and crocodiles, which are ectothermic (commonly known as cold-blooded), show much less diversity in the shape of melanosomes than birds and mammals, which are endothermic (warm-blooded, with higher metabolic rates).

The limited diversity in melanosome shape among living ectotherms shows little correlation to color. The same holds true for fossil archosaur specimens with fuzzy coverings scientists have described as protofeathers or pycnofibers. In these specimens, melanosome shape is restricted to spherical forms like those in modern reptiles, throwing doubt on the ability to decipher the color of these specimens from fossil melanosomes.

Read the rest here:
Revision To Rules To Decipher Color In Dinosaurs Suggests Connection Between Color And Physiology

Related Posts

Comments are closed.