Use cases of Stereo Matching part8(Machine Learning + AI) – Medium

Author : Andrea Pilzer, Yuxin Hou, Niki Loppi, Arno Solin, Juho Kannala

Abstract : We introduce visual hints expansion for guiding stereo matching to improve generalization. Our work is motivated by the robustness of Visual Inertial Odometry (VIO) in computer vision and robotics, where a sparse and unevenly distributed set of feature points characterizes a scene. To improve stereo matching, we propose to elevate 2D hints to 3D points. These sparse and unevenly distributed 3D visual hints are expanded using a 3D random geometric graph, which enhances the learning and inference process. We evaluate our proposal on multiple widely adopted benchmarks and show improved performance without access to additional sensors other than the image sequence. To highlight practical applicability and symbiosis with visual odometry, we demonstrate how our methods run on embedded hardware.

2.Comparison of Stereo Matching Algorithms for the Development of Disparity Map (arXiv)

Author : Hamid Fsian, Vahid Mohammadi, Pierre Gouton, Saeid Minaei

Abstract : Stereo Matching is one of the classical problems in computer vision for the extraction of 3D information but still controversial for accuracy and processing costs. The use of matching techniques and cost functions is crucial in the development of the disparity map. This paper presents a comparative study of six different stereo matching algorithms including Block Matching (BM), Block Matching with Dynamic Programming (BMDP), Belief Propagation (BP), Gradient Feature Matching (GF), Histogram of Oriented Gradient (HOG), and the proposed method. Also three cost functions namely Mean Squared Error (MSE), Sum of Absolute Differences (SAD), Normalized Cross-Correlation (NCC) were used and compared. The stereo images used in this study were from the Middlebury Stereo Datasets provided with perfect and imperfect calibrations. Results show that the selection of matching function is quite important and also depends on the images properties. Results showed that the BP algorithm in most cases provided better results getting accuracies over 95%

See more here:

Use cases of Stereo Matching part8(Machine Learning + AI) - Medium

Related Posts

Comments are closed.