Printed solar cells thinner than your hair could power your phone – Phys.Org

June 27, 2017 by Steve Gillman, From Horizon Magazine Nanotechnology could give us extremely thin solar panels that could power phones. Credit: Flickr/ Krlis Dambrns

Extremely thin printable solar panels could power your phone and are amongst a range of new ways nanotechnology is opening the door to a clean energy and waste-free future.

Nanotechnology, a science that focuses on understanding materials on an atomic scale, is helping researchers and businesses introduce new technologies that could transform our economy into a greener, less wasteful one.

"Nanotechnology as a field has an enormous role to play in moving our planet to sustainable and intelligent living," said Professor Martin Curley from Maynooth University in Ireland, speaking on 21 June at the EuroNanoForum conference, in Malta, organised by the Maltese Presidency of the Council of the European Union and co-funded by the EU.

He explained to an audience of businesspeople and researchers that nanotechnology holds the potential to spark 'an explosion of innovation".

One area where this innovation could have its biggest impact is with how we generate, use and consume energy.

Speaking at a session dedicated to nanotechnology in clean energy generation, Prof. Alejandro Prez-Rodrguez, from the department of electronics at the University of Barcelona, Spain, said solar energy and photovoltaic (PV) technology itself could be considered a nanotechnology sector.

"In all PV technologies and devices we put some nanotechnology If we want to move to devices with higher functionality, lower weight, higher flexibility, different colours, then we need to integrate more nanotechnologies into their materials and architecture."

At the same session, Artur Kupczunas, co-founder of Saule Technologies, explained how his company is using nanotechnology to print solar panels using perovskite crystals, a cheap and highly sensitive mineral that was first found in the Ural Mountains of Russia in 1839.

They produce thin layers of solar cells that are somewhere near one-tenth of the thickness of a single human hair. This innovation could greatly reduce the cost of producing solar energy while transforming any surface into a solar panel, from walls and road-side barriers to the surface of your smartphone.

"The most interesting factor is the (reduction of) overall costs," said Kupczunas, explaining that this means the technology could be easily scaled out across the market.

Fuel cell

At the same session, John Bgild Hansen, a senior scientist from Haldor Topse, a Danish chemical engineering company, explained how they have been using nanotechnology to look at the atomic level of gases in order to better understand their properties.

This knowledge contributed to creating a fuel cell for greener biofuel production. Their process extracts pure hydrogen from plant materials while reusing any CO2 emissions created during the process to help power the production cycle, preventing any fossil fuels entering the atmosphere.

This, he believes, is a way to 'break the bottleneck' on biofuels which currently struggle to get public and private support.

"If we want the conveniences we have today from liquid energy carriers (oil, natural gas etc.) for transport hydrocarbons (biogas) are the best," he said.

Storing wind and solar energy during unstable weather is another gap in our sustainable energy future.

Professor Magnus Bergen and his team at Sweden's Linkping University are looking into using nanotechnology to harness the molecular properties of a plastic conductive material called PEDOT:PSS. They combine this knowledge with nanocellulose, a product made from plants or oil, to create an organic material that stores energy.

"If we make a (PEDOT:PSS) battery the size of a refrigerator it can store (enough energy for) the needs of a family in a house or an apartment for a day," he said.

Because of its ability to charge quickly, it could be a way to compensate for the under- or over- production of wind and solar energy during calm or cloudy days. This, in turn, could break cities' dependency on fossil fuels.

"You need to store when you are over-producing and release when you are under-producing," Prof. Bergen explained.

Waste-free

Nanotechnology also has the ability to make technology smaller, extend the life-cycle of electronics, improve manufacturing processes, all of which would mean less waste has to go to the landfill.

Speaking at one of the sessions, Joe Murphy, from the Ellen MacArthur Foundation, an association in the UK dedicated to promoting waste as a resource, explained nanotechnologies 'may enable us to create a new material palette' that allows future products to be recycled more easily.

"At the moment we have a lot of barriers to recycling nanotechnology may enable us to do more," he said.

Explore further: European nanotechnology project to design less toxic photovoltaic materials

The University Institute for Advanced Materials Research at the Universitat Jaume I (UJI) has participated in the European Project Sunflower to develop less toxic organic photovoltaic materials viable for industrial production. ...

In the global race to create more efficient and long-lasting batteries, some are betting on nanotechnologythe use of minuscule partsas the most likely to yield a breakthrough.

In a new thesis from Uppsala University, Simon Davidsson shows that a rapid expansion of renewable energy technology is not necessarily sustainable. To find the best way forward in the coming transition towards renewable ...

A Czech company opened on Monday a production line for batteries based on nanotechnology, which uses tiny parts invisible to human eyes. The batteries are touted as potentially more efficient, longer-lasting, cheaper, lighter ...

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

Europe wants to reduce its needs for raw materials and raise the level of recycling of resources in the solar power industry. If this project is successful, greenhouse gas emissions from solar panel manufacture will fall ...

A new and highly virulent outbreak of malicious data-scrambling software appears to be causing mass disruption across the world, hitting companies and governments in Europe especially hard.

After a seven-year legal battle, European authorities came down hard on Google on Tuesday for taking advantage of its dominance in online searches to direct customers to its own businesses, fining the tech giant a record ...

While doing research at the Woods Hole Marine Biological Laboratory in Massachusetts, Sindy Tang learned of a remarkable organism: Stentor coeruleus. It's a single-celled, free-living freshwater organism, shaped like a trumpet ...

Mobile phone carriers scooped up airwaves no longer needed by television broadcasters last March in a $19-billion auction designed by UBC and Stanford University researchers.

Inside a cavernous northern Utah warehouse, hydraulic engineers send water rushing down a replica of a section of a dam built out of wood, concrete and steeltrying to pinpoint what repairs will work best at the tallest ...

Paris' Cathedral of Notre Dame has a ghost orchestra that is always performing, thanks to a sophisticated, multidisciplinary acoustics research project that will be presented during Acoustics '17 Boston, the third joint meeting ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Continue reading here:

Printed solar cells thinner than your hair could power your phone - Phys.Org

Related Posts

Comments are closed.