What is Nanotechnology? | Nano

Nanotechnology is science, engineering, and technologyconductedat the nanoscale, which is about 1 to 100 nanometers.

Physicist Richard Feynman, the father of nanotechnology.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled Theres Plenty of Room at the Bottom by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn't until 1981, with the development of the scanning tunneling microscope that could "see" individual atoms, that modern nanotechnology began.

Its hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atomsthe food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, its impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recentlyabout 30 years ago.

Once scientists had the right tools, such as thescanning tunneling microscope (STM)and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materialswereused for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didnt know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today's scientists andengineers are finding a wide variety of ways to deliberatelymake materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight,increased control oflight spectrum, and greater chemical reactivity than theirlarger-scale counterparts.

Read more:

What is Nanotechnology? | Nano

Related Posts

Comments are closed.