Elon Musk Doubles Down on Mars Dreams and Details What’s Next for SpaceX’s Starship – Singularity Hub

Elon Musk has long been open about his dreams of using SpaceX to spread humanitys presence further into the solar system. And last weekend, he gave an updated outline of his vision for how the companys rockets could enable the colonization of Mars.

The serial entrepreneur has been clear for a number of years that the main motivation for founding SpaceX was to make humans a multiplanetary species. For a long time, that seemed like the kind of aspirational goal one might set to inspire and motivate engineers rather than one with a realistic chance of coming to fruition.

But following the successful launch of the companys mammoth Starship vehicle last month, the idea is beginning to look less far-fetched. And in a speech at the companys facilities in South Texas, Musk explained how he envisions using Starship to deliver millions of tons of cargo to Mars over the next couple of decades to create a self-sustaining civilization.

Starship is the first design of a rocket that is actually capable of making life multiplanetary, Musk said. No rocket before this has had the potential to extend life to another planet.

In a slightly rambling opening to the speech, Musk explained that making humans multiplanetary could be an essential insurance policy in case anything catastrophic happens to Earth. The red planet is the most obvious choice, he said, as its neither too close nor too far from Earth and has many of the raw ingredients required to support a functioning settlement.

But he estimates it will require us to deliver several million tons of cargo to the surface to get that civilization up and running. Starship is central to those plans, and Musk outlined the companys roadmap for the massive rocket over the coming years.

Key to the vision is making the vehicle entirely reusable. That means the first hurdle is proving SpaceX can land and reuse both the Super Heavy first stage rocket and the Starship spacecraft itself. The second of those challenges will be tougher, as the vehicle must survive reentry to the atmospherein the most recent test, it broke up on its way back to Earth.

Musk says they plan to demonstrate the ability to land and reuse the Super Heavy booster this year, which he thinks has an 80 to 90 percent chance of success. Assuming they can get Starship to survive the extreme heat of reentry, they are also going to attempt landing the vehicle on a mock launch pad out at sea in 2024, with the aim of being able to land and reuse it by next year.

Proving the rocket works and is reusable is just the very first step in Musks Mars ambitions though. To achieve his goal of delivering a million people to the red planet in the next 20 years, SpaceX will have to massively ramp up its production and launch capabilities.

The company is currently building a second launch tower at its base in South Texas and is also planning to build two more at Cape Canaveral in Florida. Musk said the Texas sites would be mostly used for test launches and development work, with the Florida ones being the main hub for launches once Starship begins commercial operations.

SpaceX plans to build six Starships this year, according to Musk, but it is also building what he called a giant factory that will enable it to massively ramp up production of the spacecraft. The long-term goal is to produce multiple Starships a day. Thats crucial, according to Musk, because Starships initially wont return from Mars and will instead be used as raw materials to construct structures on the surface.

The company also plans to continue development of Starship, boosting its carrying capacity from around 100 tons today to 200 tons in the future and enabling it to complete multiple launches in a day. SpaceX also hopes to demonstrate ship-to-ship refueling in orbit next year. It will be necessary to replenish the fuel used up by Starship on launch so it has a full tank as it sets off for Mars.

Those missions will depart when the orbits of Earth and Mars bring them close together, an alignment that only happens every 26 months. As such, Musk envisions entire armadas of Starships setting off together whenever these windows arrive.

SpaceX has done some early work on what needs to happen once Starships arrive at the red planet. Theyve identified promising landing sites and the infrastructure that will need setting up, including power generation, ice-mining facilities, propellant factories, and communication networks. But Musk admits theyve yet to start development of any of these.

One glaring omission in the talk was any detail on whos going to be paying for all of this. While the goal of making humankind multiplanetary is a noble one, its far from clear how the endeavor would make money for those who put up the funds to make it possible.

Musk estimates that the cost of each launch could eventually fall to just $2 to $3 million. And he noted that profits from the companys Starlink satellites and Falcon 9 launch vehicle are currently paying for Starships development. But those revenue streams are unlikely to cover the thousands of launches a year required to make his Mars dreams a reality.

Still, the very fact that the questions these days are more about economics than technical feasibility is testament to the rapid progress SpaceX has made. The dream of becoming a multiplanetary species may not be science fiction for much longer.

Image Credit: SpaceX

Read the rest here:

Elon Musk Doubles Down on Mars Dreams and Details What's Next for SpaceX's Starship - Singularity Hub

Why the Odysseus Moon Landing Is So Important – TIME

Early this week, Facebook provided me with a sweet piece of serendipity when it served up a picture of the late Gene Cernan. I had taken and posted the picture in 2014, when Cernan, the last man on the moon, was being feted at the premiere of the documentary about his life, titled, straightforwardly, The Last Man On the Moon. I had gotten to know Gene well over the course of many years of reporting on the space program, and was keenly saddened when we lost him to cancer three years later.

But this week, on Feb. 22, Cernan made news in a bank-shot sort of way, when the Odysseus spacecraft touched down near the south lunar pole, marking the first time the U.S. had soft-landed metal on the moon since Cernan feathered his lunar module Challenger down to the surface of the Taurus-Littrow Valley on Dec. 11, 1972. The networks made much of that 52-year gulf in cosmic history, but Odysseus was significant for two other, more substantive reasons: it marked the first time a spacecraft built by a private company, not by a governmental space program, had managed a lunar landing, and it was the first time any ship had visited a spot so far in the moons south, down in a region where ice is preserved in permanently shadowed craters. Those deposits could be harvested to serve as drinking water, breathable oxygen, and even rocket fuel by future lunar astronauts.

Today, for the first time in more than a half century, the U.S. has returned to the moon, said NASA Administrator Bill Nelson in a livestream that accompanied the landing. Today, for the first time in the history of humanity, a commercial company and an American company launched and led the voyage up there.

Nelsons enthusiasm was not misplaced. The six Apollo lunar landings might have been epochal events, but they were also abbreviated ones. The longest stay any of the crews logged on the surface was just three days by Cernan and his lunar module pilot Harrison Schmitt. The shortest stay was less than 21 hours, by Neil Armstrong and Buzz Aldrin during the Apollo 11 mission, the first lunar landing, in 1969. That so-called flags and footprints model was fine for the days when the U.S. lunar program was mostly about doing some basic spelunking and, not for nothing, beating the much-feared Soviet Union at planting a flag in the lunar regolith.

But the 21st-century moon program is different. Ever since NASA established its Artemis program in 2017, the space agency has made it clear that the new era of exploration will be much more ambitious. The goal is in part for American astronauts to establish at least a semi-permanent presence on the moon, with a mini-space station known as Gateway positioned in lunar orbit, allowing crews to shuttle to and from the surface. NASA also plans to create a south pole habitat that the crews could call home. And all of this will be done by a much more diverse corps of astronauts, with women and persons of color joining the all-white, all-male list of astronauts who traveled to the moon the first time around.

There is, however, a catch: money. In the glory days of Apollo, NASA funding represented 4% of the total federal budget; now its just 0.4%. That means taking the job of designing and building spacecraft off of the space agencys plate and outsourcing it to private industry, the way SpaceX now ferries crews to the International Space Station, charging NASA for the rides the way it charges satellite manufacturers and other private customers. The Commercial Crew Program, of which SpaceX is a part, was established in 2011, and has been a rousing success, so much so that, in 2018, NASA took things a step further, announcing the Commercial Lunar Payload Services (CLPS) program, similarly outsourcing the delivery of equipment that astronaut-settlers will need.

CLPS, however, stumbled out of the gate. On Jan. 8 of this year, the Peregrine lander, built by Pittsburgh-based Astrobotic Technology, was launched to a similar lunar region that Odysseus targeted, carrying 20 payloads, including mini-rovers, a spectrometer designed to scour the soil for traces of water, and another to study the moons exceedingly tenuous atmosphere. Peregrine was not destined to make it out of Earths orbit, however, after an engine failure stranded itleaving the ship to plunge back into the atmosphere 10 days after launch.

There will be some failures, Astrobotic CEO John Thornton told TIME before the Peregrine mission launched. But if even half of these missions succeed, it is still a wild, runaway success.

Odysseus landed in that second, happier column. Built by Houston-based Intuitive Machines, the spacecraft carries six science instruments, including stereoscopic cameras, an autonomous navigation system, and a radio wave detector to help measure charged particles above the surfacecritical to determining the necessary sheathing in an eventual habitat. NASA has at least eight other CLPS missions planned, including two more by Intuitive Machines and another by Astrobotic, through 2026. After that, the program is expected to go on indefinitelysupplying lunar bases for as long as Artemis has astronauts on the moon.

Just when those explorers will arrive is unclear. The Artemis II mission, which was expected to take astronauts on a circumlunar journey in November of this year, has been postponed until September of 2025, due to R&D issues in both the Space Launch System moon rocket and the Orion spacecraft. Artemis III, set to be the first landing since the Apollo 17 astronauts trod the regolith, will likely not come until 2026 at the earliest.

That 52 year wait would not have sat well with that long-ago crew. In the same year in which they flew, the National Football Leagues Miami Dolphins made a less consequential history of their own, when they became the first and so far only team to go through an entire season undefeated. The surviving members of that legendary squad have waited out the seasons that have followed, pulling for their record to standand conceding relief when the final undefeated team at last records a loss. Cernan, for his part, wanted nothing to do with his own last man record. We leave here as we came and, God willing, we shall return, with peace and hope for all mankind, he said before he climbed back up the ladder of his lunar module and left the moon behind. The success of Odysseus does not make the fulfillment of Cernans wish imminent, but it does nudge it closer.

Follow this link:

Why the Odysseus Moon Landing Is So Important - TIME