NASA Announces Next Steps On Journey To Mars

NASA Wednesday announced more details in its plan for its Asteroid Redirect Mission (ARM), which in the mid-2020s will test a number of new capabilities needed for future human expeditions to deep space, including to Mars. NASA also announced it has increased the detection of near-Earth asteroids by 65 percent since launching its asteroid initiative three years ago.

For ARM, a robotic spacecraft will capture a boulder from the surface of a near-Earth asteroid and move it into a stable orbit around the moon for exploration by astronauts, all in support of advancing the nations journey to Mars.

"The Asteroid Redirect Mission will provide an initial demonstration of several spaceflight capabilities we will need to send astronauts deeper into space, and eventually, to Mars," said NASA Associate Administrator Robert Lightfoot. "The option to retrieve a boulder from an asteroid will have a direct impact on planning for future human missions to deep space and begin a new era of spaceflight."

The agency plans to announce the specific asteroid selected for the mission no earlier than 2019, approximately a year before launching the robotic spacecraft. Before an asteroid is considered a valid candidate for the mission, scientists must first determine its characteristics, in addition to size, such as rotation, shape and precise orbit. NASA has identified three valid candidates for the mission so far: Itokawa, Bennu and 2008 EV5. The agency expects to identify one or two additional candidates each year leading up to the mission.

Following its rendezvous with the target asteroid, the uncrewed ARM spacecraft will deploy robotic arms to capture a boulder from its surface. It then will begin a multi-year journey to redirect the boulder into orbit around the moon.

Throughout its mission, the ARM robotic spacecraft will test a number of capabilities needed for future human missions, including advanced Solar Electric Propulsion (SEP), a valuable capability that converts sunlight to electrical power through solar arrays and then uses the resulting power to propel charged atoms to move a spacecraft. This method of propulsion can move massive cargo very efficiently. While slower than conventional chemical rocket propulsion, SEP-powered spacecraft require significantly less propellant and fewer launches to support human exploration missions, which could reduce costs.

Future SEP-powered spacecraft could pre-position cargo or vehicles for future human missions into deep space, either awaiting crews at Mars or staged around the moon as a waypoint for expeditions to the Red Planet.

ARM's SEP-powered robotic spacecraft will test new trajectory and navigation techniques in deep space, working with the moon's gravity to place the asteroid in a stable lunar orbit called a distant retrograde orbit. This is a suitable staging point for astronauts to rendezvous with a deep space habitat that will carry them to Mars.

Before the piece of the asteroid is moved to lunar orbit, NASA will use the opportunity to test planetary defense techniques to help mitigate potential asteroid impact threats in the future. The experience and knowledge acquired through this operation will help NASA develop options to move an asteroid off an Earth-impacting course, if and when that becomes necessary.

View post:

NASA Announces Next Steps On Journey To Mars

Related Posts

Comments are closed.