Neurotechnology for Brain Injury Fact Sheet | BrainLine

You or someone you care about has sustained a brain injury. You have heard that there are many advances and interesting research occurring in the treatment and management of brain injuries. This article will help inform you about neurotechnology, a new field that offers technical devices and therapies for persons living with brain injury. This article will also review some important aspects of neurotechnology, including the types of technologies and important issues to consider before pursuing the use of a device or therapy. One way in which this article might be useful is to serve as the basis for discussion with a trained medical professional who is familiar with your specific condition.

Neurotechnology is a broad term used to refer to medical electronics used to interact with the human nervous system. The field has made rapid advancements in recent history: components have shrunk, electronics improved, and we, as a society, have become more accepting of interacting with technology. For instance, think about how common a heart pacemaker is today compared to only two decades ago. Devices are available commercially for brain injury treatment in such areas as pain management, breathing assistance, rehabilitation techniques and diagnostic practices. There are also many new technologies being investigated in research centers. These devices cannot reverse the damage to the brain. They are tools that can be used, for instance, to combat secondary conditions, provide further independence or to aid in the rehabilitation process.

The basis of neurotechnology is the electrical signals the body uses to send messages. Electrical stimulation is the primary feature of this technology. Even though a muscle is paralyzed, it does not mean that the muscle cannot contract when it is stimulated. For those with mobility impairments that do not have peripheral nerve damage, electrical stimulation may be utilized; it is being demonstrated through exciting new technologies. The technologies are also being reviewed to excite neurons in the nervous system.

In the 1950s, the first attempt was made to apply electrical stimulation to the phrenic nerve to allow a person to breathe without a ventilator. This gradually developed into a field of science called FES (Functional Electrical Stimulation). FES encompasses a variety of therapeutic techniques and treatments used to activate muscles that may not be functioning properly due to injury, disease or a physical abnormality. Over the decades, this field of science that combines medicine, biomedical engineering and technology evolved into what is now called neurotechnology.

Areas of Neurotechnology

Neurotechnology can be divided into four areas: Neuromodulation, Neural Prostheses, Neural Rehabilitation, NeuroPharmaceutical, and NeuroSensing and Diagnostics. Each area has a distinct definition however some devices may be applicable to more than one area.

These four segments make up the innovative field of neurotechnology. This is an emerging field; it is essential that the consumer carefully consider each device, therapy or treatment protocol before choosing to participate.

Important Considerations of Use

Below are some important considerations to review prior to participating in a therapy, treatment or device use.

Individuals interested in neurotechnology treatments, therapies or devices should consider the time commitment and financial requirements and be evaluated and supervised by a clinician specializing in brain injury.

It was formerly an article of faith among scientists that damage to the brain was permanent, and neurons, once destroyed by trauma, could not regenerate. Decades of research into the brain have shown otherwise. There is a growing wave of scientific evidence for regenerative processes in the brain, and proof for the brain's innate plasticity the natural capacity of the brain to rewire itself, to form new connections and re-model existing ones.

Cortical maps of the brain have shown the ability to modify bodily areas by sensory input and experience. Such studies about spatial navigation areas in the brains of taxi-drivers or areas corresponding to the motor maps of fingers in Braille readers demonstrate such capabilities of the brain. Axons, the projections that connect different cortical zones, continue to develop well into adulthood. Therapies guided by principles of neuroplasticity can encourage axonal regrowth, compensating for damaged neural tissue instead of re-growing it. There are neuronal assemblies, such as the hippocampus, which appear to possess limited regenerative properties, but research into this phenomenon is in its infancy. Nonetheless, as young as it is, the field of neuroplasticity is cause for cautious optimism among persons with brain injury and their families.

This research has obvious therapeutic implications for the treatment of brain injury. Doctors who specialize in the physical rehabilitation of patients with stroke have drawn on neuroplasticity research in devising therapies such as constraint-induced therapy, which forces use of the side of the body affected by stroke, by restricting use of the unaffected side. Forced to use the affected arm intensively and repetitively for weeks, stroke survivors will often see gains in their ability to use the impaired limb. Other more low-tech therapies drawing on the concept of neuroplasticity include compensatory therapies. The person with brain injury is trained to use a reminder system such as a notebook or calendar to compensate for memory or cognitive deficits. The continued use of such systems is hoped to encourage the growth of new habits, and, it is assumed, new axonal connections between regions of cortex spared by brain injury.

One of the most exciting realms of therapeutic technology, guided by the principles of research, is neurotechnology. This fact sheet outlines some of the current research areas in this field and offers practical guidelines for taking advantage of these advances. Families and persons with brain injury should be aware of these findings, and discuss them with their doctors. The inherent limitations in recovery caused by the loss of neural tissue can be balanced with the capacity for recovery offered by therapy and technology.

There are no quick-fix-its for brain injury just as there is no cure-all for any chronic health condition. We do not intend to offer false hope or make promises beyond what qualified medical professionals can make. Nonetheless, research into the regenerative properties of the brain can serve as a silver lining in the cloud of trauma and impairment caused by brain injury.

Go here to read the rest:

Neurotechnology for Brain Injury Fact Sheet | BrainLine

Related Posts

Comments are closed.