...23456...102030...


AsMA | Aerospace Medical Association

AsMA | Aerospace Medical Association

This website uses cookies to ensure the best possible web experience. By continuing and using the site, you consent to the use of cookies. If you wish to disable them or to learn more about how we use cookies, please view our Cookies Policy. Got it!

Learn about the history and mission of Aerospace Medicine by watching the professionals making it happen!

Military aviation operations present numerous unique Aerospace Medicine and Human Performance issues. Sustained acceleration, fatigue, orientation problems, and attention management issues are just a few.

Commercial aviation presents Aerospace Medicine problems for the aircrew, ground support crews, and the passengers they serve.

General aviation aircraft present unique Aerospace Medicine and Human Performance problems. Human Performance factors continue to be leading causes of General Aviation mishaps.

The ability for humans to perform under extreme environmental conditions poses challenging problems for Aerospace Medicine professionals. Altitude, thermal issues, fatigue, acceleration, and numerous other environmental stressors must be appropriately managed to ensure optimized human performance. Managing the mission environment through technology requires a process of human-centered design and acquisition known as Human Systems Integration.

Human participation in space operations presents some of the most interesting and challenging Aerospace Medicine and Human Performance problems. Microgravity, bone density and muscle atrophy issues, radiation exposure, and thermal stressors are just some of the space medicine problems.

AsMA is a scientific forum providing a setting for many different disciplines to come together and share their expertise for the benefit of all persons involved in air and space travel. The Association has provided its expertise to a multitude of Federal and international agencies on a broad range of issues, including aviation and space medical standards, the aging pilot, and physiological stresses of flight. AsMA’s membership includes aerospace medicine specialists, flight nurses, physiologists, psychologists, human factors specialists, physician assistants, and researchers in this field. Most are with industry, civil aviation regulatory agencies, departments of defense and military services, the airlines, space programs, and universities.

Approximately 30% of the membershiporiginate from outside the United States.

Through the efforts of the AsMA members, safety in flight and man’s overall adaptation to adverse environments have been more nearly achieved.

Lifestyle Diseases conference, Lifestyle Diseases workshop, Global Lifestyle Diseases Conference, Lifestyle Diseases symposium, Lifestyle Diseases congress, Lifestyle Diseases meeting, Lifestyle Di…Read More

The peer-reviewed monthly journal provides contact with physicians, life scientists, bioengineers, and medical specialists working in both basic medical research and in its clinical applications…

The AsMA Global Connection Story with IACRoland Vermeiren, M.D., FAsMA

So youre looking online for a particular article from Aerospace Medicine and Human Performance (AMHP). How do you find it?

AsMAs staff were deeply saddened to hear of the death of L. Edward Antosek, M.D.

The Aerospace Human Factors Association (AsHFA) President, Dr. Annette Sobel, has published a visioning statement related to the application of Aerospace Human Factors to Space Missions. Read more

The Translational Research Institute for Space Health (TRISH) is offering several funding opportunities:

Call for 2019 TRISH Postdoctoral Fellowships Now open!Read more

More Announcements

The Aerospace Medical Association offers free information publications for passengers preparing for commercial airline travel. We also offer more detailed medical guidelines for physicians that can be used to advise patients with preexisting illness planning to travel by air.

Which of the following is NOT included in an examination of the sensorium?

a.Orientation to time, place, and personb.Retention of three unrelated memory items for five minutesc.General knowledged.Depressed or elated moode.Proverb interpretation: concrete or abstract.

Read the Answer More Questions

Read the original post:

AsMA | Aerospace Medical Association

Free gattaca Essays and Papers – 123helpme.com

– Beginning of the film, the director cites the Bible passage into, and the words are indeed spiritual in some way throughout the whole movie. Vinson was born in an era of gene Viva, during years in that wonderful (?), Each individual before birth, can be checked through sophisticated, will identify all gene defects, genetic everyone will In this close inspection database is put into being, but also because of your genes is excellent, to determine your social status. In this world, the gene is your resume, all companies admitted to the line number of people to see not ability, but whether the gene is excellent…. [tags: Genetics, Genetic disorder, DNA, Gene]

Better Essays 1167 words | (3.3 pages) | Preview

More:

Free gattaca Essays and Papers – 123helpme.com

Eugenics in the United States – Wikipedia

Eugenics, the set of beliefs and practices which aims at improving the genetic quality of the human population,[2][3] played a significant role in the history and culture of the United States prior to its involvement in World War II.[4]

Eugenics was practiced in the United States many years before eugenics programs in Nazi Germany,[5] which were largely inspired by the previous American work.[6][7][8] Stefan Khl has documented the consensus between Nazi race policies and those of eugenicists in other countries, including the United States, and points out that eugenicists understood Nazi policies and measures as the realization of their goals and demands.[9]

During the Progressive Era of the late 19th and early 20th century, eugenics was considered a method of preserving and improving the dominant groups in the population; it is now generally associated with racist and nativist elements, as the movement was to some extent a reaction to a change in emigration from Europe, rather than scientific genetics.[10]

The American eugenics movement was rooted in the biological determinist ideas of Sir Francis Galton, which originated in the 1880s. Galton studied the upper classes of Britain, and arrived at the conclusion that their social positions were due to a superior genetic makeup.[11] Early proponents of eugenics believed that, through selective breeding, the human species should direct its own evolution. They tended to believe in the genetic superiority of Nordic, Germanic and Anglo-Saxon peoples; supported strict immigration and anti-miscegenation laws; and supported the forcible sterilization of the poor, disabled and “immoral”.[12] Eugenics was also supported by African American intellectuals such as W. E. B. Du Bois, Thomas Wyatt Turner, and many academics at Tuskegee University, Howard University, and Hampton University; however, they believed the best blacks were as good as the best whites and “The Talented Tenth” of all races should mix.[13] W. E. B. Du Bois believed “only fit blacks should procreate to eradicate the race’s heritage of moral iniquity.”[13][14]

The American eugenics movement received extensive funding from various corporate foundations including the Carnegie Institution, Rockefeller Foundation, and the Harriman railroad fortune.[7] In 1906 J.H. Kellogg provided funding to help found the Race Betterment Foundation in Battle Creek, Michigan.[11] The Eugenics Record Office (ERO) was founded in Cold Spring Harbor, New York in 1911 by the renowned biologist Charles B. Davenport, using money from both the Harriman railroad fortune and the Carnegie Institution. As late as the 1920s, the ERO was one of the leading organizations in the American eugenics movement.[11][15] In years to come, the ERO collected a mass of family pedigrees and concluded that those who were unfit came from economically and socially poor backgrounds. Eugenicists such as Davenport, the psychologist Henry H. Goddard, Harry H. Laughlin, and the conservationist Madison Grant (all well respected in their time) began to lobby for various solutions to the problem of the “unfit”. Davenport favored immigration restriction and sterilization as primary methods; Goddard favored segregation in his The Kallikak Family; Grant favored all of the above and more, even entertaining the idea of extermination.[16] The Eugenics Record Office later became the Cold Spring Harbor Laboratory.

Eugenics was widely accepted in the U.S. academic community.[7] By 1928, there were 376 separate university courses in some of the United States’ leading schools, enrolling more than 20,000 students, which included eugenics in the curriculum.[17] It did, however, have scientific detractors (notably, Thomas Hunt Morgan, one of the few Mendelians to explicitly criticize eugenics), though most of these focused more on what they considered the crude methodology of eugenicists, and the characterization of almost every human characteristic as being hereditary, rather than the idea of eugenics itself.[18]

By 1910, there was a large and dynamic network of scientists, reformers, and professionals engaged in national eugenics projects and actively promoting eugenic legislation. The American Breeder’s Association was the first eugenic body in the U.S., established in 1906 under the direction of biologist Charles B. Davenport. The ABA was formed specifically to “investigate and report on heredity in the human race, and emphasize the value of superior blood and the menace to society of inferior blood.” Membership included Alexander Graham Bell, Stanford president David Starr Jordan and Luther Burbank.[19][20] The American Association for the Study and Prevention of Infant Mortality was one of the first organizations to begin investigating infant mortality rates in terms of eugenics.[21] They promoted government intervention in attempts to promote the health of future citizens.[22][verification needed]

Several feminist reformers advocated an agenda of eugenic legal reform. The National Federation of Women’s Clubs, the Woman’s Christian Temperance Union, and the National League of Women Voters were among the variety of state and local feminist organization that at some point lobbied for eugenic reforms.[23]

One of the most prominent feminists to champion the eugenic agenda was Margaret Sanger, the leader of the American birth control movement. Margaret Sanger saw birth control as a means to prevent unwanted children from being born into a disadvantaged life, and incorporated the language of eugenics to advance the movement.[24][25] Sanger also sought to discourage the reproduction of persons who, it was believed, would pass on mental disease or serious physical defects. She advocated sterilization in cases where the subject was unable to use birth control.[24] She rejected euthanasia.[26] For Sanger, it was individual women and not the state who should determine whether or not to have a child.[27][28]

In the Deep South, women’s associations played an important role in rallying support for eugenic legal reform. Eugenicists recognized the political and social influence of southern clubwomen in their communities, and used them to help implement eugenics across the region.[29] Between 1915 and 1920, federated women’s clubs in every state of the Deep South had a critical role in establishing public eugenic institutions that were segregated by sex.[30] For example, the Legislative Committee of the Florida State Federation of Women’s Clubs successfully lobbied to institute a eugenic institution for the mentally retarded that was segregated by sex.[31] Their aim was to separate mentally retarded men and women to prevent them from breeding more “feebleminded” individuals.

Public acceptance in the U.S. was the reason eugenic legislation was passed.Almost 19 million people attended the PanamaPacific International Exposition in San Francisco, open for 10 months from 20 February to 4 December 1915.[32][33] The PPIE was a fair devoted to extolling the virtues of a rapidly progressing nation, featuring new developments in science, agriculture, manufacturing and technology. A subject that received a large amount of time and space was that of the developments concerning health and disease, particularly the areas of tropical medicine and race betterment (tropical medicine being the combined study of bacteriology, parasitology and entomology while racial betterment being the promotion of eugenic studies). Having these areas so closely intertwined, it seemed that they were both categorized in the main theme of the fair, the advancement of civilization. Thus in the public eye, the seemingly contradictory[clarification needed] areas of study were both represented under progressive banners of improvement and were made to seem like plausible courses of action to better American society.[34][35]

Beginning with Connecticut in 1896, many states enacted marriage laws with eugenic criteria, prohibiting anyone who was “epileptic, imbecile or feeble-minded”[36] from marrying.[37]

The first state to introduce a compulsory sterilization bill was Michigan, in 1897 but the proposed law failed to garner enough votes by legislators to be adopted. Eight years later Pennsylvania’s state legislators passed a sterilization bill that was vetoed by the governor. Indiana became the first state to enact sterilization legislation in 1907,[38] followed closely by Washington and California in 1909. Sterilization rates across the country were relatively low (California being the sole exception) until the 1927 Supreme Court case Buck v. Bell which legitimized the forced sterilization of patients at a Virginia home for the mentally retarded. The number of sterilizations performed per year increased until another Supreme Court case, Skinner v. Oklahoma, 1942, complicated the legal situation by ruling against sterilization of criminals if the equal protection clause of the constitution was violated. That is, if sterilization was to be performed, then it could not exempt white-collar criminals.[39] The state of California was at the vanguard of the American eugenics movement, performing about 20,000 sterilizations or one third of the 60,000 nationwide from 1909 up until the 1960s.[40]

While California had the highest number of sterilizations, North Carolina’s eugenics program which operated from 1933 to 1977, was the most aggressive of the 32 states that had eugenics programs.[41] An IQ of 70 or lower meant sterilization was appropriate in North Carolina.[42] The North Carolina Eugenics Board almost always approved proposals brought before them by local welfare boards.[42] Of all states, only North Carolina gave social workers the power to designate people for sterilization.[41] “Here, at last, was a method of preventing unwanted pregnancies by an acceptable, practical, and inexpensive method,” wrote Wallace Kuralt in the March 1967 journal of the N.C. Board of Public Welfare. “The poor readily adopted the new techniques for birth control.”[42]

The Immigration Restriction League was the first American entity associated officially with eugenics. Founded in 1894 by three recent Harvard University graduates, the League sought to bar what it considered inferior races from entering America and diluting what it saw as the superior American racial stock (upper class Northerners of Anglo-Saxon heritage). They felt that social and sexual involvement with these less-evolved and less-civilized races would pose a biological threat to the American population. The League lobbied for a literacy test for immigrants, based on the belief that literacy rates were low among “inferior races”. Literacy test bills were vetoed by Presidents in 1897, 1913 and 1915; eventually, President Wilson’s second veto was overruled by Congress in 1917. Membership in the League included: A. Lawrence Lowell, president of Harvard, William DeWitt Hyde, president of Bowdoin College, James T. Young, director of Wharton School and David Starr Jordan, president of Stanford University.[43]

The League allied themselves with the American Breeder’s Association to gain influence and further its goals and in 1909 established a Committee on Eugenics chaired by David Starr Jordan with members Charles Davenport, Alexander Graham Bell, Vernon Kellogg, Luther Burbank, William Ernest Castle, Adolf Meyer, H. J. Webber and Friedrich Woods. The ABA’s immigration legislation committee, formed in 1911 and headed by League’s founder Prescott F. Hall, formalized the committee’s already strong relationship with the Immigration Restriction League. They also founded the Eugenics Record Office, which was headed by Harry H. Laughlin.[44] In their mission statement, they wrote:

Society must protect itself; as it claims the right to deprive the murderer of his life so it may also annihilate the hideous serpent of hopelessly vicious protoplasm. Here is where appropriate legislation will aid in eugenics and creating a healthier, saner society in the future.[44]

Money from the Harriman railroad fortune was also given to local charities, in order to find immigrants from specific ethnic groups and deport, confine, or forcibly sterilize them.[7]

With the passage of the Immigration Act of 1924, eugenicists for the first time played an important role in the Congressional debate as expert advisers on the threat of “inferior stock” from eastern and southern Europe.[45][46] The new act, inspired by the eugenic belief in the racial superiority of “old stock” white Americans as members of the “Nordic race” (a form of white supremacy), strengthened the position of existing laws prohibiting race-mixing.[47] Eugenic considerations also lay behind the adoption of incest laws in much of the U.S. and were used to justify many anti-miscegenation laws.[48]

Stephen Jay Gould asserted that restrictions on immigration passed in the United States during the 1920s (and overhauled in 1965 with the Immigration and Nationality Act) were motivated by the goals of eugenics. During the early 20th century, the United States and Canada began to receive far higher numbers of Southern and Eastern European immigrants. Influential eugenicists like Lothrop Stoddard and Harry Laughlin (who was appointed as an expert witness for the House Committee on Immigration and Naturalization in 1920) presented arguments they would pollute the national gene pool if their numbers went unrestricted.[49][50] It has been argued that this stirred both Canada and the United States into passing laws creating a hierarchy of nationalities, rating them from the most desirable Anglo-Saxon and Nordic peoples to the Chinese and Japanese immigrants, who were almost completely banned from entering the country.[47][51]

Both class and race factored into eugenic definitions of “fit” and “unfit.” By using intelligence testing, American eugenicists asserted that social mobility was indicative of one’s genetic fitness.[52] This reaffirmed the existing class and racial hierarchies and explained why the upper-to-middle class was predominantly white. Middle-to-upper class status was a marker of “superior strains.”[31] In contrast, eugenicists believed poverty to be a characteristic of genetic inferiority, which meant that those deemed “unfit” were predominantly of the lower classes.[31]

Because class status designated some more fit than others, eugenicists treated upper and lower class women differently. Positive eugenicists, who promoted procreation among the fittest in society, encouraged middle class women to bear more children. Between 1900 and 1960, Eugenicists appealed to middle class white women to become more “family minded,” and to help better the race.[53] To this end, eugenicists often denied middle and upper class women sterilization and birth control.[54]

Since poverty was associated with prostitution and “mental idiocy,” women of the lower classes were the first to be deemed “unfit” and “promiscuous.”[31]

In 1907, Indiana passed the first eugenics-based compulsory sterilization law in the world. Thirty U.S. states would soon follow their lead.[55][56] Although the law was overturned by the Indiana Supreme Court in 1921,[57] the U.S. Supreme Court, in Buck v. Bell, upheld the constitutionality of the Virginia Sterilization Act of 1924, allowing for the compulsory sterilization of patients of state mental institutions in 1927.[58]

Some states sterilized “imbeciles” for much of the 20th century. Although compulsory sterilization is now considered an abuse of human rights, Buck v. Bell was never overturned, and Virginia did not repeal its sterilization law until 1974.[59] The most significant era of eugenic sterilization was between 1907 and 1963, when over 64,000 individuals were forcibly sterilized under eugenic legislation in the United States.[60] Beginning around 1930, there was a steady increase in the percentage of women sterilized, and in a few states only young women were sterilized. From 1930 to the 1960s, sterilizations were performed on many more institutionalized women than men.[31] By 1961, 61 percent of the 62,162 total eugenic sterilizations in the United States were performed on women.[31] A favorable report on the results of sterilization in California, the state with the most sterilizations by far, was published in book form by the biologist Paul Popenoe and was widely cited by the Nazi government as evidence that wide-reaching sterilization programs were feasible and humane.[61][62]

Men and women were compulsorily sterilized for different reasons. Men were sterilized to treat their aggression and to eliminate their criminal behavior, while women were sterilized to control the results of their sexuality.[31] Since women bore children, eugenicists held women more accountable than men for the reproduction of the less “desirable” members of society.[31] Eugenicists therefore predominantly targeted women in their efforts to regulate the birth rate, to “protect” white racial health, and weed out the “defectives” of society.[31]

A 1937 Fortune magazine poll found that 2/3 of respondents supported eugenic sterilization of “mental defectives”, 63% supported sterilization of criminals, and only 15% opposed both.[63][64]

In the 1970s, several activists and women’s rights groups discovered several physicians to be performing coerced sterilizations of specific ethnic groups of society. All were abuses of poor, nonwhite, or mentally retarded women, while no abuses against white or middle-class women were recorded.[65] Several court cases such as Madrigal v. Quilligan, a class action suit regarding forced or coerced postpartum sterilization of Latina women following cesarean sections, and Relf v. Weinberger,[66] the sterilization of two young black girls by tricking their illiterate mother into signing a waiver, helped bring to light some of the widespread abuses of sterilization supported by federal funds.[67][68]

After World War II, Dr. Clarence Gamble revived the eugenics movement in the United States through sterilization. Dr. Gamble supported the eugenics movement throughout his life. He worked as a researcher at Harvard Medical school and was well off financially, as the Procter and Gamble fortune was inherited by him. Gamble, a proponent of birth control, contributed to the founding of public birth control clinics. These were the first public clinics in the United States. Until the 1960’s and 1970’s, Gamble’s ideal form of eugenics, sterilization, was seen in various cases. Doctors told mothers that their daughters needed shots, but they were actually sterilizing them. Hispanic women were often sterilized due to the fact that they could not read the consent forms that doctors had given them. Poorer white people, African Americans, and Native American people were also targeted for forced sterilization.[69]

The number of eugenic sterilizations is agreed upon by most scholars and journalists. They claim that there were 64,000 cases of eugenic sterilization in the United States, but this number does not take into account the sterilizations that took place after 1963. Around this time was when women from different minority groups were singled out for sterilization. If the sterilizations after 1963 are taken into account, the number of eugenic sterilizations in the United States increases to 80,000. Half of these sterilizations took place after World War II. Sterilization still occurs today, in some states, drug addicts can get paid to be sterilized. Eugenic sterilization programs before World War II were mostly conducted on prisoners, or people in mental hospitals. After the war, eugenic sterilization was aimed more towards poor people and minorities. There were even judges who would force people on parole to be sterilized. People supported this revival of eugenic sterilizations because they thought it would help bring an end to some issues, like poverty and mental illness. Supporters also thought that these programs would save taxpayer money and boost the economy.[70]

In 1972, United States Senate committee testimony brought to light that at least 2,000 involuntary sterilizations had been performed on poor black women without their consent or knowledge.[71] An investigation revealed that the surgeries were all performed in the South, and were all performed on black welfare mothers with multiple children.[71] Testimony revealed that many of these women were threatened with an end to their welfare benefits until they consented to sterilization.[71] These surgeries were instances of sterilization abuse, a term applied to any sterilization performed without the consent or knowledge of the recipient, or in which the recipient is pressured into accepting the surgery. Because the funds used to carry out the surgeries came from the U.S. Office of Economic Opportunity, the sterilization abuse raised older suspicions, especially amongst the black community, that “federal programs were underwriting eugenicists who wanted to impose their views about population quality on minorities and poor women.”[31]

Native American women were also victims of sterilization abuse up into the 1970s.[72] The organization WARN (Women of All Red Nations) publicized that Native American women were threatened that, if they had more children, they would be denied welfare benefits. The Indian Health Service also repeatedly refused to deliver Native American babies until their mothers, in labor, consented to sterilization. Many Native American women unknowingly gave consent, since directions were not given in their native language. According to the General Accounting Office, an estimate of 3,406 Indian women were sterilized.[72] The General Accounting Office stated that the Indian Health Service had not followed the necessary regulations, and that the “informed consent forms did not adhere to the standards set by the United States Department of Health, Education, and Welfare (HEW).”[73]

In 2013, it was reported that 148 female prisoners in two California prisons were sterilized between 2006 and 2010 in a supposedly voluntary program, but it was determined that the prisoners did not give consent to the procedures.[74] In September 2014, California enacted Bill SB1135 that bans sterilization in correctional facilities, unless the procedure is required to save an inmate’s life.[75]

Edwin Black wrote that one of the methods that was suggested to get rid of “defective germ-plasm in the human population” was euthanasia.[7] A 1911 Carnegie Institute report explored eighteen methods for removing defective genetic attributes, and method number eight was euthanasia.[7] The most commonly suggested method of euthanasia was to set up local gas chambers.[7] However, many in the eugenics movement did not believe that Americans were ready to implement a large-scale euthanasia program, so many doctors had to find clever ways of subtly implementing eugenic euthanasia in various medical institutions.[7] For example, a mental institution in Lincoln, Illinois fed its incoming patients milk infected with tuberculosis (reasoning that genetically fit individuals would be resistant), resulting in 3040% annual death rates.[7] Other doctors practiced euthanasia through various forms of lethal neglect.[7]

In the 1930s, there was a wave of portrayals of eugenic “mercy killings” in American film, newspapers, and magazines. In 1931, the Illinois Homeopathic Medicine Association began lobbying for the right to euthanize “imbeciles” and other defectives.[76] The Euthanasia Society of America was founded in 1938.[77]

Overall, however, euthanasia was marginalized in the U.S., motivating people to turn to forced segregation and sterilization programs as a means for keeping the “unfit” from reproducing.[7]

Mary deGormo, a former teacher, was the first person to combine ideas about health and intelligence standards with competitions at state fairs, in the form of baby contests. She developed the first such contest, the “Scientific Baby Contest” for the Louisiana State Fair in Shreveport, in 1908. She saw these contests as a contribution to the “social efficiency” movement, which was advocating for the standardization of all aspects of American life as a means of increasing efficiency.[21] DeGarmo was assisted by Doctor Jacob Bodenheimer, a pediatrician who helped her develop grading sheets for contestants, which combined physical measurements with standardized measurements of intelligence.[78]

The contest spread to other U.S. states in the early twentieth century. In Indiana, for example, Ada Estelle Schweitzer, a eugenics advocate and director of the Indiana State Board of Health’s Division of Child and Infant Hygiene, organized and supervised the state’s Better Baby contests at the Indiana State Fair from 1920 to 1932. It was among the fair’s most popular events. During the contest’s first year at the fair, a total of 78 babies were examined; in 1925 the total reached 885. Contestants peaked at 1,301 infants in 1930, and the following year the number of entrants was capped at 1,200. Although the specific impact of the contests was difficult to assess, statistics helped to support Schweitzer’s claims that the contests helped reduce infant mortality.[79]

The intent of the contest was to educate the public about raising healthier children; however, its exclusionary practices reinforced social class and racial discrimination. In Indiana, for example, the contestants were limited to white infants; African American and immigrant children were barred from the competition for ribbons and cash prizes. In addition, the scoring was biased toward white, middle-class babies.[80][81] The contest procedure included recording each child’s health history, as well as evaluations of each contestant’s physical and mental health and overall development using medical professionals. Using a process similar to the one introduced at the Louisiana State Fair, and contest guidelines that the AMA and U.S. Children’s Bureau recommended, scoring for each contestant began with 1,000 points. Deductions were made for defects, including a child’s measurements below a designated average. The contestant with the most points (and the fewest defections) was declared the winner.[82][83][84]

Standardization through scientific judgment was a topic that was very serious in the eyes of the scientific community, but has often been downplayed as just a popular fad or trend. Nevertheless, a lot of time, effort, and money was put into these contests and their scientific backing, which would influence cultural ideas as well as local and state government practices.[85][86]

The National Association for the Advancement of Colored People promoted eugenics by hosting “Better Baby” contests and the proceeds would go to its anti-lynching campaign.[13]

First appearing in 1920 at the Kansas Free Fair, Fitter Family competitions, continued all the way up to World War II. Mary T. Watts and Dr. Florence Brown Sherbon,[87][88] both initiators of the Better Baby Contests in Iowa, took the idea of positive eugenics for babies and combined it with a determinist concept of biology to come up with fitter family competitions.[89]

There were several different categories that families were judged in: Size of the family, overall attractiveness, and health of the family, all of which helped to determine the likelihood of having healthy children. These competitions were simply a continuation of the Better Baby contests that promoted certain physical and mental qualities.[90] At the time, it was believed that certain behavioral qualities were inherited from one’s parents. This led to the addition of several judging categories including: generosity, self-sacrificing, and quality of familial bonds. Additionally, there were negative features that were judged: selfishness, jealousy, suspiciousness, high-temperedness, and cruelty. Feeblemindedness, alcoholism, and paralysis were few among other traits that were included as physical traits to be judged when looking at family lineage.[91]

Doctors and specialists from the community would offer their time to judge these competitions, which were originally sponsored by the Red Cross.[91] The winners of these competitions were given a Bronze Medal as well as champion cups called “Capper Medals.” The cups were named after then Governor and Senator, Arthur Capper and he would present them to “Grade A individuals”.[92]

The perks of entering into the contests were that the competitions provided a way for families to get a free health check up by a doctor as well as some of the pride and prestige that came from winning the competitions.[91]

By 1925 the Eugenics Records Office was distributing standardized forms for judging eugenically fit families, which were used in contests in several U.S. states.[93]

Concerns about eugenics arose in the African American community after the implementation of the Negro Project of 1939, which was proposed by Margaret Sanger who was the founder of Planned Parenthood.[94] In this plan, Sanger offered birth control to Black families in the United States to give them the chance to have a better life than what the group had been experiencing in the United States.[95] She also noted that the project was proposed to empower women. The Project often sought after prominent African American leaders to spread knowledge regarding birth control and the perceived positive effects it would have on the African American community, such as poverty and the lack of education.[96] Because of this, Sanger believed that African American ministers in the South would be useful to gain the trust of people within disadvantaged, African American communities as the Church was a pillar within the community.[96] Also, political leaders such as W.E.B. Dubois were quoted in the Project proposal criticizing Black people in the United States for having many children and for being less intelligent than their white counterparts:

… the mass of ignorant Negroes still breed carelessly and disastrously, so that the increase among Negroes, even more than the increase among Whites, is from that part of the population least intelligent and fit, and least able to rear their children properly.[95]

Even though The Negro Project received a lot of praise from white leaders and eugenicists of the time, it is important to note that Margaret Sanger wanted to clear concerns that this was not a project to terminate African Americans.[96] To add to the clarification, she received support from prominent African American leaders such as Mary McLeod Bethune and Adam Clayton Powell Jr.[95] These leaders and many more would later serve on the Negro National Advisory Council of Planned Parenthood Federation of America in 1942.

Still, many modern activists criticize Margaret Sanger for practicing eugenics on the African American community. Angela Davis, a leader who is associated with the Black Panther Party, made claims of Margaret Sanger targeting the African American community to reduce the population:

Calling for the recruitment of Black ministers to lead local birth control committees, the Federation’s proposal suggested that Black people should be rendered as vulnerable as possible to their birth control propaganda.[97]

Eugenics has been supported by members of the African American community for a long time.[when?] For example, Dr. Thomas Wyatt Turner, a professor at Howard University and a well respected scientist incorporated eugenics into his classes. The NAACP founder asked his students how eugenics can affect society in a good way in 1915. Eugenics seemed to be[weaselwords] accepted by all kinds of people. W.E.B DuBois, a historian and civil rights leader had some beliefs that lined up with eugenics. He believed in developing the best versions of African Americans in order for his race to succeed. Dr. Martin Luther King Jr. even received an award from Planned Parenthood in 1966 and in his acceptance speech, given by his wife, King discussed how large families are no longer functional in an urban setting. King claimed that in the cities, African Americans who continued to have children were over populating the ghettos. She continued by saying that having this many unwanted children is a bad problem that needs to be controlled, a belief that aligns with the eugenics movement.[98]

After the eugenics movement was well established in the United States, it spread to Germany. California eugenicists began producing literature promoting eugenics and sterilization and sending it overseas to German scientists and medical professionals.[7] By 1933, California had subjected more people to forceful sterilization than all other U.S. states combined. The forced sterilization program engineered by the Nazis was partly inspired by California’s.[8]

The Rockefeller Foundation helped develop and fund various German eugenics programs,[99] including the one that Josef Mengele worked in before he went to Auschwitz.[7]

Upon returning from Germany in 1934, where more than 5,000 people per month were being forcibly sterilized, the California eugenics leader C. M. Goethe bragged to a colleague:

You will be interested to know that your work has played a powerful part in shaping the opinions of the group of intellectuals who are behind Hitler in this epoch-making program. Everywhere I sensed that their opinions have been tremendously stimulated by American thought … I want you, my dear friend, to carry this thought with you for the rest of your life, that you have really jolted into action a great government of 60 million people.[7]

Eugenics researcher Harry H. Laughlin often bragged that his Model Eugenic Sterilization laws had been implemented in the 1935 Nuremberg racial hygiene laws.[100] In 1936, Laughlin was invited to an award ceremony at Heidelberg University in Germany (scheduled on the anniversary of Hitler’s 1934 purge of Jews from the Heidelberg faculty), to receive an honorary doctorate for his work on the “science of racial cleansing”. Due to financial limitations, Laughlin was unable to attend the ceremony and had to pick it up from the Rockefeller Institute. Afterwards, he proudly shared the award with his colleagues, remarking that he felt that it symbolized the “common understanding of German and American scientists of the nature of eugenics.”[101]

Henry Friedlander wrote that although the German and American eugenics movements were similar, the US did not follow the same slippery slope as Nazi eugenics because American “federalism and political heterogeneity encouraged diversity even with a single movement.” In contrast, the German eugenics movement was more centralized and had fewer diverse ideas.[102] Unlike the American movement, one publication and one society, the German Society for Racial Hygiene, represented all German eugenicists in the early 20th century.[102][103]

After 1945, however, historians began to try to portray the US eugenics movement as distinct and distant from Nazi eugenics.[104] Jon Entine wrote that eugenics simply means “good genes” and using it as synonym for genocide is an “all-too-common distortion of the social history of genetics policy in the United States.” According to Entine, eugenics developed out of the Progressive Era and not “Hitler’s twisted Final Solution.”[105]

After Hitler’s advanced idea of eugenics, the movement lost its place in society for a bit of time. Although eugenics was not thought about much, aspects like sterilization were still going on, just not at such a public level. Although as technology developed so did the movement, the new technologies made way for genetic engineering. Instead of sterilizing people to ultimately get rid of “undesirable” people, genetic engineering “changes or removes genes to prevent disease or improve the body in some significant way.”[106]

One positive of genetic engineering is its ability to cure and prevent life-threatening diseases. Genetic engineering began in the 1970s, this is when scientists began to clone and engineer genes. From this scientists were able to create human insulin, the first-ever genetically-engineered drug. Because of this development, over the years scientists were able to create new drugs to treat devastating diseases. For example, in the early 1990s, a group of scientists were able to use a gene-drug to treat severe combined immunodeficiency in a little girl. This disease forces victims to live inside a sanitized bubble. Due to the gene therapy, the girl was cured and able to live outside of her plastic bubble.[107] Developments like this are being made constantly because of genetic engineering, however genetic engineering also has many negatives.

One negative of genetic engineering is the practice of eliminating “undesirable traits” within humans and its ethics. This ultimately causes a link between genetic engineering and eugenics. This practice creates many social issues in society. Many people believe using genetic engineering to essentially “perfect” the human race is a damaging practice. For example, with current genetic tests, parents are able to test a fetus for any life-threatening diseases that may impact the child’s life and then choose to abort the baby.[106] The public fears this will cause issues due to the fact that practices like these may be used to eliminate entire groups of people, like the way Hitler used the idea. The basis of Hitler’s movement was to create a superior Aryan race, he wanted to eliminate every other race. While he did not have the genetic engineering technology then, this technology could be used with similar tactics as Hitler with permanent modifications to human germ lines and the ability to terminate a pregnancy that won’t produce the best baby.[108] Genetic engineering can also lead to trait selection and enhancement in embryos. One dilemma with this application is that most genes have an effect on more than one area of the body. For example, there is a gene that deals with memory, when scientists altered this gene to improve memory and learning in mice, it also increased their sensitivity to pain. There is also the issue of whether it is ethical to do such a thing to embryos because they cannot consent to the procedure. This also leads to issues within a socio-economic standpoint. Many people see this as an opportunity for the rich to continue to improve their children when the poor are left to “suffer” with their “undesirable” genes.[109]

The 1978 Federal Sterilization Regulations, created by the United States Department of Health, Education and Welfare or HEW, (now the United States Department of Health and Human Services) outline a variety of prohibited sterilization practices that were often used previously to coerce or force women into sterilization.[110] These were intended to prevent such eugenics and neo-eugenics as resulted in the involuntary sterilization of large groups of poor and minority women. Such practices include: not conveying to patients that sterilization is permanent and irreversible, in their own language (including the option to end the process or procedure at any time without conceding any future medical attention or federal benefits, the ability to ask any and all questions about the procedure and its ramifications, the requirement that the consent seeker describes the procedure fully including any and all possible discomforts and/or side-effects and any and all benefits of sterilization); failing to provide alternative information about methods of contraception, family planning, or pregnancy termination that are nonpermanent and/or irreversible (this includes abortion); conditioning receiving welfare and/or Medicaid benefits by the individual or his/her children on the individuals “consenting” to permanent sterilization; tying elected abortion to compulsory sterilization (cannot receive a sought out abortion without “consenting” to sterilization); using hysterectomy as sterilization; and subjecting minors and the mentally incompetent to sterilization.[110][67][111] The regulations also include an extension of the informed consent waiting period from 72 hours to 30 days (with a maximum of 180 days between informed consent and the sterilization procedure).[67][110][111]

However, several studies have indicated that the forms are often dense and complex and beyond the literacy aptitude of the average American, and those seeking publicly funded sterilization are more likely to possess below-average literacy skills.[112] High levels of misinformation concerning sterilization still exist among individuals who have already undergone sterilization procedures, with permanence being one of the most common gray factors.[112][113] Additionally, federal enforcement of the requirements of the 1978 Federal Sterilization Regulation is inconsistent and some of the prohibited abuses continue to be pervasive, particularly in underfunded hospitals and lower income patient hospitals and care centers.[67][111]

View original post here:

Eugenics in the United States – Wikipedia

Eugenics – Wikipedia

Eugenics (; from Greek eugenes ‘well-born’ from eu, ‘good, well’ and genos, ‘race, stock, kin’)[2][3] is a set of beliefs and practices that aims at improving the genetic quality of a human population.[4][5] The exact definition of eugenics has been a matter of debate since the term was coined by Francis Galton in 1883. The concept predates this coinage, with Plato suggesting applying the principles of selective breeding to humans around 400BCE.

Frederick Osborn’s 1937 journal article “Development of a Eugenic Philosophy”[6] framed it as a social philosophythat is, a philosophy with implications for social order. That definition is not universally accepted. Osborn advocated for higher rates of sexual reproduction among people with desired traits (positive eugenics), or reduced rates of sexual reproduction and sterilization of people with less-desired or undesired traits (negative eugenics).

Alternatively, gene selection rather than “people selection” has recently been made possible through advances in genome editing,[7] leading to what is sometimes called new eugenics, also known as neo-eugenics, consumer eugenics, or liberal eugenics.

While eugenic principles have been practiced as far back in world history as ancient Greece, the modern history of eugenics began in the early 20th century when a popular eugenics movement emerged in the United Kingdom[8] and spread to many countries including the United States, Canada[9] and most European countries. In this period, eugenic ideas were espoused across the political spectrum. Consequently, many countries adopted eugenic policies with the intent to improve the quality of their populations’ genetic stock. Such programs included both “positive” measures, such as encouraging individuals deemed particularly “fit” to reproduce, and “negative” measures such as marriage prohibitions and forced sterilization of people deemed unfit for reproduction. People deemed unfit to reproduce often included people with mental or physical disabilities, people who scored in the low ranges of different IQ tests, criminals and deviants, and members of disfavored minority groups. The eugenics movement became negatively associated with Nazi Germany and the Holocaust when many of the defendants at the Nuremberg trials attempted to justify their human rights abuses by claiming there was little difference between the Nazi eugenics programs and the U.S. eugenics programs.[10] In the decades following World War II, with the institution of human rights, many countries gradually began to abandon eugenics policies, although some Western countries, among them the United States and Sweden, continued to carry out forced sterilizations.

Since the 1980s and 1990s, when new assisted reproductive technology procedures became available such as gestational surrogacy (available since 1985), preimplantation genetic diagnosis (available since 1989), and cytoplasmic transfer (first performed in 1996), fear has emerged about a possible revival of eugenics.

A major criticism of eugenics policies is that, regardless of whether “negative” or “positive” policies are used, they are susceptible to abuse because the criteria of selection are determined by whichever group is in political power at the time. Furthermore, negative eugenics in particular is considered by many to be a violation of basic human rights, which include the right to reproduction. Another criticism is that eugenic policies eventually lead to a loss of genetic diversity, resulting in inbreeding depression due to lower genetic variation.

Seneca the Younger

The concept of positive eugenics to produce better human beings has existed at least since Plato suggested selective mating to produce a guardian class.[12] In Sparta, every Spartan child was inspected by the council of elders, the Gerousia, which determined if the child was fit to live or not. In the early years of ancient Rome, a Roman father was obliged by law to immediately kill his child if they were physically disabled.[13] Among the ancient Germanic tribes, people who were cowardly, unwarlike or “stained with abominable vices” were put to death, usually by being drowned in swamps.[14][15]

The first formal negative eugenics, that is a legal provision against birth of inferior human beings, was promulgated in Western European culture by the Christian Council of Agde in 506, which forbade marriage between cousins.[16]

This idea was also promoted by William Goodell (18291894) who advocated the castration and spaying of the insane.[17][18]

The idea of a modern project of improving the human population through a statistical understanding of heredity used to encourage good breeding was originally developed by Francis Galton and, initially, was closely linked to Darwinism and his theory of natural selection.[19] Galton had read his half-cousin Charles Darwin’s theory of evolution, which sought to explain the development of plant and animal species, and desired to apply it to humans. Based on his biographical studies, Galton believed that desirable human qualities were hereditary traits, though Darwin strongly disagreed with this elaboration of his theory.[20] In 1883, one year after Darwin’s death, Galton gave his research a name: eugenics.[21] With the introduction of genetics, eugenics became associated with genetic determinism, the belief that human character is entirely or in the majority caused by genes, unaffected by education or living conditions. Many of the early geneticists were not Darwinians, and evolution theory was not needed for eugenics policies based on genetic determinism.[19] Throughout its recent history, eugenics has remained controversial.

Eugenics became an academic discipline at many colleges and universities and received funding from many sources.[24] Organizations were formed to win public support and sway opinion towards responsible eugenic values in parenthood, including the British Eugenics Education Society of 1907 and the American Eugenics Society of 1921. Both sought support from leading clergymen and modified their message to meet religious ideals.[25] In 1909 the Anglican clergymen William Inge and James Peile both wrote for the British Eugenics Education Society. Inge was an invited speaker at the 1921 International Eugenics Conference, which was also endorsed by the Roman Catholic Archbishop of New York Patrick Joseph Hayes.[25]

Three International Eugenics Conferences presented a global venue for eugenists with meetings in 1912 in London, and in 1921 and 1932 in New York City. Eugenic policies were first implemented in the early 1900s in the United States.[26] It also took root in France, Germany, and Great Britain.[27] Later, in the 1920s and 1930s, the eugenic policy of sterilizing certain mental patients was implemented in other countries including Belgium,[28] Brazil,[29] Canada,[30] Japan and Sweden.

In addition to being practiced in a number of countries, eugenics was internationally organized through the International Federation of Eugenics Organizations. Its scientific aspects were carried on through research bodies such as the Kaiser Wilhelm Institute of Anthropology, Human Heredity, and Eugenics, the Cold Spring Harbour Carnegie Institution for Experimental Evolution, and the Eugenics Record Office. Politically, the movement advocated measures such as sterilization laws. In its moral dimension, eugenics rejected the doctrine that all human beings are born equal and redefined moral worth purely in terms of genetic fitness. Its racist elements included pursuit of a pure “Nordic race” or “Aryan” genetic pool and the eventual elimination of “unfit” races.

Early critics of the philosophy of eugenics included the American sociologist Lester Frank Ward,[39] the English writer G. K. Chesterton, the German-American anthropologist Franz Boas, who argued that advocates of eugenics greatly over-estimate the influence of biology,[40] and Scottish tuberculosis pioneer and author Halliday Sutherland. Ward’s 1913 article “Eugenics, Euthenics, and Eudemics”, Chesterton’s 1917 book Eugenics and Other Evils, and Boas’ 1916 article “Eugenics” (published in The Scientific Monthly) were all harshly critical of the rapidly growing movement. Sutherland identified eugenists as a major obstacle to the eradication and cure of tuberculosis in his 1917 address “Consumption: Its Cause and Cure”,[41] and criticism of eugenists and Neo-Malthusians in his 1921 book Birth Control led to a writ for libel from the eugenist Marie Stopes. Several biologists were also antagonistic to the eugenics movement, including Lancelot Hogben.[42] Other biologists such as J. B. S. Haldane and R. A. Fisher expressed skepticism in the belief that sterilization of “defectives” would lead to the disappearance of undesirable genetic traits.[43]

Among institutions, the Catholic Church was an opponent of state-enforced sterilizations.[44] Attempts by the Eugenics Education Society to persuade the British government to legalize voluntary sterilization were opposed by Catholics and by the Labour Party.[45] The American Eugenics Society initially gained some Catholic supporters, but Catholic support declined following the 1930 papal encyclical Casti connubii.[25] In this, Pope Pius XI explicitly condemned sterilization laws: “Public magistrates have no direct power over the bodies of their subjects; therefore, where no crime has taken place and there is no cause present for grave punishment, they can never directly harm, or tamper with the integrity of the body, either for the reasons of eugenics or for any other reason.”[46]

As a social movement, eugenics reached its greatest popularity in the early decades of the 20th century, when it was practiced around the world and promoted by governments, institutions, and influential individuals. Many countries enacted[47] various eugenics policies, including: genetic screenings, birth control, promoting differential birth rates, marriage restrictions, segregation (both racial segregation and sequestering the mentally ill), compulsory sterilization, forced abortions or forced pregnancies, ultimately culminating in genocide.

The scientific reputation of eugenics started to decline in the 1930s, a time when Ernst Rdin used eugenics as a justification for the racial policies of Nazi Germany. Adolf Hitler had praised and incorporated eugenic ideas in Mein Kampf in 1925 and emulated eugenic legislation for the sterilization of “defectives” that had been pioneered in the United States once he took power. Some common early 20th century eugenics methods involved identifying and classifying individuals and their families, including the poor, mentally ill, blind, deaf, developmentally disabled, promiscuous women, homosexuals, and racial groups (such as the Roma and Jews in Nazi Germany) as “degenerate” or “unfit”, and therefore led to segregation, institutionalization, sterilization, euthanasia, and even mass murder. The Nazi practice of euthanasia was carried out on hospital patients in the Aktion T4 centers such as Hartheim Castle.

By the end of World War II, many discriminatory eugenics laws were abandoned, having become associated with Nazi Germany.[50] H. G. Wells, who had called for “the sterilization of failures” in 1904,[51] stated in his 1940 book The Rights of Man: Or What are we fighting for? that among the human rights, which he believed should be available to all people, was “a prohibition on mutilation, sterilization, torture, and any bodily punishment”.[52] After World War II, the practice of “imposing measures intended to prevent births within [a national, ethnical, racial or religious] group” fell within the definition of the new international crime of genocide, set out in the Convention on the Prevention and Punishment of the Crime of Genocide.[53] The Charter of Fundamental Rights of the European Union also proclaims “the prohibition of eugenic practices, in particular those aiming at selection of persons”.[54] In spite of the decline in discriminatory eugenics laws, some government mandated sterilizations continued into the 21st century. During the ten years President Alberto Fujimori led Peru from 1990 to 2000, 2,000 persons were allegedly involuntarily sterilized.[55] China maintained its one-child policy until 2015 as well as a suite of other eugenics based legislation to reduce population size and manage fertility rates of different populations.[56][57][58] In 2007 the United Nations reported coercive sterilizations and hysterectomies in Uzbekistan.[59] During the years 2005 to 2013, nearly one-third of the 144 California prison inmates who were sterilized did not give lawful consent to the operation.[60]

Developments in genetic, genomic, and reproductive technologies at the end of the 20th century have raised numerous questions regarding the ethical status of eugenics, effectively creating a resurgence of interest in the subject.Some, such as UC Berkeley sociologist Troy Duster, claim that modern genetics is a back door to eugenics.[61] This view is shared by White House Assistant Director for Forensic Sciences, Tania Simoncelli, who stated in a 2003 publication by the Population and Development Program at Hampshire College that advances in pre-implantation genetic diagnosis (PGD) are moving society to a “new era of eugenics”, and that, unlike the Nazi eugenics, modern eugenics is consumer driven and market based, “where children are increasingly regarded as made-to-order consumer products”.[62] In a 2006 newspaper article, Richard Dawkins said that discussion regarding eugenics was inhibited by the shadow of Nazi misuse, to the extent that some scientists would not admit that breeding humans for certain abilities is at all possible. He believes that it is not physically different from breeding domestic animals for traits such as speed or herding skill. Dawkins felt that enough time had elapsed to at least ask just what the ethical differences were between breeding for ability versus training athletes or forcing children to take music lessons, though he could think of persuasive reasons to draw the distinction.[63]

Lee Kuan Yew, the Founding Father of Singapore, started promoting eugenics as early as 1983.[64][65]

In October 2015, the United Nations’ International Bioethics Committee wrote that the ethical problems of human genetic engineering should not be confused with the ethical problems of the 20th century eugenics movements. However, it is still problematic because it challenges the idea of human equality and opens up new forms of discrimination and stigmatization for those who do not want, or cannot afford, the technology.[66]

Transhumanism is often associated with eugenics, although most transhumanists holding similar views nonetheless distance themselves from the term “eugenics” (preferring “germinal choice” or “reprogenetics”)[67] to avoid having their position confused with the discredited theories and practices of early-20th-century eugenic movements.

Prenatal screening can be considered a form of contemporary eugenics because it may lead to abortions of children with undesirable traits.[68]

The term eugenics and its modern field of study were first formulated by Francis Galton in 1883,[69] drawing on the recent work of his half-cousin Charles Darwin.[70][71] Galton published his observations and conclusions in his book Inquiries into Human Faculty and Its Development.

The origins of the concept began with certain interpretations of Mendelian inheritance and the theories of August Weismann. The word eugenics is derived from the Greek word eu (“good” or “well”) and the suffix -gens (“born”), and was coined by Galton in 1883 to replace the word “stirpiculture”, which he had used previously but which had come to be mocked due to its perceived sexual overtones.[73] Galton defined eugenics as “the study of all agencies under human control which can improve or impair the racial quality of future generations”.[74]

Historically, the term eugenics has referred to everything from prenatal care for mothers to forced sterilization and euthanasia.[75] To population geneticists, the term has included the avoidance of inbreeding without altering allele frequencies; for example, J. B. S. Haldane wrote that “the motor bus, by breaking up inbred village communities, was a powerful eugenic agent.”[76] Debate as to what exactly counts as eugenics continues today.[77]

Edwin Black, journalist and author of War Against the Weak, claims eugenics is often deemed a pseudoscience because what is defined as a genetic improvement of a desired trait is often deemed a cultural choice rather than a matter that can be determined through objective scientific inquiry.[78] The most disputed aspect of eugenics has been the definition of “improvement” of the human gene pool, such as what is a beneficial characteristic and what is a defect. Historically, this aspect of eugenics was tainted with scientific racism and pseudoscience.[79][80][81]

Early eugenists were mostly concerned with factors of perceived intelligence that often correlated strongly with social class. Some of these early eugenists include Karl Pearson and Walter Weldon, who worked on this at the University College London.[20]

Eugenics also had a place in medicine. In his lecture “Darwinism, Medical Progress and Eugenics”, Karl Pearson said that everything concerning eugenics fell into the field of medicine. He basically placed the two words as equivalents. He was supported in part by the fact that Francis Galton, the father of eugenics, also had medical training.[82]

Eugenic policies have been conceptually divided into two categories.[75] Positive eugenics is aimed at encouraging reproduction among the genetically advantaged; for example, the reproduction of the intelligent, the healthy, and the successful. Possible approaches include financial and political stimuli, targeted demographic analyses, in vitro fertilization, egg transplants, and cloning.[83] The movie Gattaca provides a fictional example of a dystopian society that uses eugenics to decided what you are capable of and your place in the world. Negative eugenics aimed to eliminate, through sterilization or segregation, those deemed physically, mentally, or morally “undesirable”. This includes abortions, sterilization, and other methods of family planning.[83] Both positive and negative eugenics can be coercive; abortion for fit women, for example, was illegal in Nazi Germany.[84]

Jon Entine claims that eugenics simply means “good genes” and using it as synonym for genocide is an “all-too-common distortion of the social history of genetics policy in the United States.” According to Entine, eugenics developed out of the Progressive Era and not “Hitler’s twisted Final Solution”.[85]

According to Richard Lynn, eugenics may be divided into two main categories based on the ways in which the methods of eugenics can be applied.[86]

The first major challenge to conventional eugenics based upon genetic inheritance was made in 1915 by Thomas Hunt Morgan. He demonstrated the event of genetic mutation occurring outside of inheritance involving the discovery of the hatching of a fruit fly (Drosophila melanogaster) with white eyes from a family with red eyes. Morgan claimed that this demonstrated that major genetic changes occurred outside of inheritance and that the concept of eugenics based upon genetic inheritance was not completely scientifically accurate. Additionally, Morgan criticized the view that subjective traits, such as intelligence and criminality, were caused by heredity because he believed that the definitions of these traits varied and that accurate work in genetics could only be done when the traits being studied were accurately defined.[123] Despite Morgan’s public rejection of eugenics, much of his genetic research was absorbed by eugenics.[124][125]

The heterozygote test is used for the early detection of recessive hereditary diseases, allowing for couples to determine if they are at risk of passing genetic defects to a future child.[126] The goal of the test is to estimate the likelihood of passing the hereditary disease to future descendants.[126]

Recessive traits can be severely reduced, but never eliminated unless the complete genetic makeup of all members of the pool was known, as aforementioned. As only very few undesirable traits, such as Huntington’s disease, are dominant, it could be argued[by whom?] from certain perspectives that the practicality of “eliminating” traits is quite low.[citation needed]

There are examples of eugenic acts that managed to lower the prevalence of recessive diseases, although not influencing the prevalence of heterozygote carriers of those diseases. The elevated prevalence of certain genetically transmitted diseases among the Ashkenazi Jewish population (TaySachs, cystic fibrosis, Canavan’s disease, and Gaucher’s disease), has been decreased in current populations by the application of genetic screening.[127]

Pleiotropy occurs when one gene influences multiple, seemingly unrelated phenotypic traits, an example being phenylketonuria, which is a human disease that affects multiple systems but is caused by one gene defect.[128] Andrzej Pkalski, from the University of Wrocaw, argues that eugenics can cause harmful loss of genetic diversity if a eugenics program selects a pleiotropic gene that could possibly be associated with a positive trait. Pekalski uses the example of a coercive government eugenics program that prohibits people with myopia from breeding but has the unintended consequence of also selecting against high intelligence since the two go together.[129]

Eugenic policies could also lead to loss of genetic diversity, in which case a culturally accepted “improvement” of the gene pool could very likelyas evidenced in numerous instances in isolated island populations result in extinction due to increased vulnerability to disease, reduced ability to adapt to environmental change, and other factors both known and unknown. A long-term, species-wide eugenics plan might lead to a scenario similar to this because the elimination of traits deemed undesirable would reduce genetic diversity by definition.[130]

Edward M. Miller claims that, in any one generation, any realistic program should make only minor changes in a fraction of the gene pool, giving plenty of time to reverse direction if unintended consequences emerge, reducing the likelihood of the elimination of desirable genes.[131] Miller also argues that any appreciable reduction in diversity is so far in the future that little concern is needed for now.[131]

While the science of genetics has increasingly provided means by which certain characteristics and conditions can be identified and understood, given the complexity of human genetics, culture, and psychology, at this point no agreed objective means of determining which traits might be ultimately desirable or undesirable. Some diseases such as sickle-cell disease and cystic fibrosis respectively confer immunity to malaria and resistance to cholera when a single copy of the recessive allele is contained within the genotype of the individual. Reducing the instance of sickle-cell disease genes in Africa where malaria is a common and deadly disease could indeed have extremely negative net consequences.

However, some genetic diseases cause people to consider some elements of eugenics.

Societal and political consequences of eugenics call for a place in the discussion on the ethics behind the eugenics movement.[132] Many of the ethical concerns regarding eugenics arise from its controversial past, prompting a discussion on what place, if any, it should have in the future. Advances in science have changed eugenics. In the past, eugenics had more to do with sterilization and enforced reproduction laws.[133] Now, in the age of a progressively mapped genome, embryos can be tested for susceptibility to disease, gender, and genetic defects, and alternative methods of reproduction such as in vitro fertilization are becoming more common.[134] Therefore, eugenics is no longer ex post facto regulation of the living but instead preemptive action on the unborn.[135]

With this change, however, there are ethical concerns which lack adequate attention, and which must be addressed before eugenic policies can be properly implemented in the future. Sterilized individuals, for example, could volunteer for the procedure, albeit under incentive or duress, or at least voice their opinion. The unborn fetus on which these new eugenic procedures are performed cannot speak out, as the fetus lacks the voice to consent or to express his or her opinion.[136] Philosophers disagree about the proper framework for reasoning about such actions, which change the very identity and existence of future persons.[137]

A common criticism of eugenics is that “it inevitably leads to measures that are unethical”.[138] Some fear future “eugenics wars” as the worst-case scenario: the return of coercive state-sponsored genetic discrimination and human rights violations such as compulsory sterilization of persons with genetic defects, the killing of the institutionalized and, specifically, segregation and genocide of races perceived as inferior.[139] Health law professor George Annas and technology law professor Lori Andrews are prominent advocates of the position that the use of these technologies could lead to such human-posthuman caste warfare.[140][141]

In his 2003 book Enough: Staying Human in an Engineered Age, environmental ethicist Bill McKibben argued at length against germinal choice technology and other advanced biotechnological strategies for human enhancement. He writes that it would be morally wrong for humans to tamper with fundamental aspects of themselves (or their children) in an attempt to overcome universal human limitations, such as vulnerability to aging, maximum life span and biological constraints on physical and cognitive ability. Attempts to “improve” themselves through such manipulation would remove limitations that provide a necessary context for the experience of meaningful human choice. He claims that human lives would no longer seem meaningful in a world where such limitations could be overcome with technology. Even the goal of using germinal choice technology for clearly therapeutic purposes should be relinquished, since it would inevitably produce temptations to tamper with such things as cognitive capacities. He argues that it is possible for societies to benefit from renouncing particular technologies, using as examples Ming China, Tokugawa Japan and the contemporary Amish.[142]

Some, for example Nathaniel C. Comfort from Johns Hopkins University, claim that the change from state-led reproductive-genetic decision-making to individual choice has moderated the worst abuses of eugenics by transferring the decision-making from the state to the patient and their family.[143] Comfort suggests that “the eugenic impulse drives us to eliminate disease, live longer and healthier, with greater intelligence, and a better adjustment to the conditions of society; and the health benefits, the intellectual thrill and the profits of genetic bio-medicine are too great for us to do otherwise.”[144] Others, such as bioethicist Stephen Wilkinson of Keele University and Honorary Research Fellow Eve Garrard at the University of Manchester, claim that some aspects of modern genetics can be classified as eugenics, but that this classification does not inherently make modern genetics immoral. In a co-authored publication by Keele University, they stated that “[e]ugenics doesn’t seem always to be immoral, and so the fact that PGD, and other forms of selective reproduction, might sometimes technically be eugenic, isn’t sufficient to show that they’re wrong.”[145]

In their book published in 2000, From Chance to Choice: Genetics and Justice, bioethicists Allen Buchanan, Dan Brock, Norman Daniels and Daniel Wikler argued that liberal societies have an obligation to encourage as wide an adoption of eugenic enhancement technologies as possible (so long as such policies do not infringe on individuals’ reproductive rights or exert undue pressures on prospective parents to use these technologies) in order to maximize public health and minimize the inequalities that may result from both natural genetic endowments and unequal access to genetic enhancements.[146]

Original position, a hypothetical situation developed by American philosopher John Rawls, has been used as an argument for negative eugenics.[147][148]

Notes

Bibliography

Read the original here:

Eugenics – Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The biological brain may not survive the copying process. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, to enable interstellar space travels, and a means for human culture to survive a global disaster by making a functional copy of a human society in a Matrioshka brain, i.e. a computing device that consumes all energy from a star. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed[clarification needed] computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llins.[10]

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut could be used instead of a “live” astronaut in human spaceflight, avoiding the perils of zero gravity, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[14] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[16]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[17]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[18]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[19]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[20] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[21] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[21] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[23]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[24] This is not to deny that minds are richly adapted to their substrates.[25] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[26] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[27] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and elsewhere. At best, a copy of the original mind is created.[27] Neural correlates of consciousness, a sub-branch of neuroscience, states that consciousness may be thought of as a state-dependent property of some undefined complex, adaptive, and highly interconnected biological system.[28]

Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31] Some have also asserted that consciousness is a part of an extra-biological system that is yet to be discovered and cannot be fully understood under the present constraints of neurobiology. Without the transference of consciousness, true mind-upload or perpetual immortality cannot be practically achieved.[32]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[33][34] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[35] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[36] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[37][38][39]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[40]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to verify this.[41] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[40] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[40]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[40] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[42] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[40] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[42]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[43]

Many questions arise regarding the legal personhood of emulations.[44] Would they be given the rights of biological humans? If a person makes an emulated copy of themselves and then dies, does the emulation inherit their property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[44]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[43] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[43]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[43]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[49]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[50] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[51]

Read more from the original source:

Mind uploading – Wikipedia

EXPLAINED: How we will soon be able to upload our MINDS to …

The bold predictions were made by Ray Kurzwell, director of engineering at Google, which has now been put under the microscope by Express.co.uk.

During a Global Futures 2045 International Congress, he sensationally said: We’re going to become increasingly non-biological to the point where the non-biological part dominates and the biological part is not important any more.

The mind-boggling speech added that mankind will have machine bodies by 2100.

Professor Stephen Hawking also thinks it will be possible to upload our minds saying the brain is like a programme in the mind, which is like a computer, so it was theoretically possible to copy the brain onto a computer and so provide a form of life after death.

But he added that this is way beyond out present capabilities.

Express.co.uk discovered mankind is caught in a paradox with experts knowing they WILL be able to do it, but are not sure how.

While there are solid theories about how we can make sci-fi a reality, theres one major hurdle scientists need to figure out first understanding what the mind actually is.

The average brain is made up of around 86 billion neurones which all interact with each other by sending electrical signals.

Although this is known, what remains unclear is how this makes up the mind what makes us which is proving to be a stumbling block in conscious uploading.

As it stands, it would take around two years to completely map a flys brain and all of its interaction with itself, so mapping a human brain, including memories which again is unclear how theyre stored, to upload to computer would be virtually impossible, but this doesnt mean that it wont come in the future.

When Express.co.uk contacted Google to explain how it will be able to upload minds to a computer, it played its cards typically close to its chest.

A source at Google said it is currently learning how to make computers easier and will begin looking into mind uploading in the future.

Kurzweil added: Our scanning machines today can clearly capture neural features as long as the scanner is very close to the source.

Within 30 years, however, we will be able to send billions of nanobots-blood cell-size scanning machines-through every capillary of the brain to create a complete noninvasive scan of every neural feature.

A shot full of nanobots will someday allow the most subtle details of our knowledge, skills and personalities to be copied into a file and stored in a computer.

But Professor Rafael Yuste of Columbia University said: “The challenge is precisely how to go from a physical substrate of cells that are connected inside this organ, to our mental world, our thoughts, our memories, our feelings.

Read more here:

EXPLAINED: How we will soon be able to upload our MINDS to …

Mind uploading – RationalWiki

Mind uploading is a science fictional trope and popular desired actualization among transhumanists. It’s also one of the hypothesised solutions to bringing people back from cryonics. It posits that your soul ‘mind pattern’ can be implemented in a computer.

Proponents typically will say you just need to preserve a dead person’s brain, slice it very thinly, scan each piece with microscopes, and reconstruct and run the connections on a computer. With continued exponential improvements in computing, this will soon be possible!

Except it isn’t that simple. The brain is not a ‘computer’ as such, and the neurons are much more complicated than the simplified ‘neurons’ of machine learning. It isn’t feasible to preserve a dying brain before cell death destroys much of the information you are trying to get. Even if it were, preservation techniques only allow one to see the structure of the connections between neurons, but further detail is lost.

The brain, like any organ, works via biochemistry. It doesn’t have a standardized computer architecture whereby you can download data. Vital information of the distribution of various molecules and how they are distributed and interact needs to be recorded, but this is heavily damaged by any preservation solution. There does not appear to be a way, even in theory, to preserve the biochemistry in a readable state.

As biologist PZ Myers – who freezes zebrafish brains a whole lot, and would be delighted to have anything recoverable at the end – explained:

We dont have a method to lock down the state of a 1.5kg brain. What youre going to be recording is the dying brain, with cells spewing and collapsing and triggering apoptotic activity everywhere. And thats another thing: what the heck is going to be recorded? You need to measure the epigenetic state of every nucleus, the distribution of highly specific, low copy number molecules in every dendritic spine, the state of molecules in flux along transport pathways, and the precise concentration of all ions in every single compartment. Does anyone have a fixation method that preserves the chemical state of the tissue? All the ones I know of involve chemically modifying the cells and proteins and fluid environment. Does anyone have a scanning technique that records a complete chemical breakdown of every complex component present?

The concept has been criticized further by Myers[2][3][4] and by neuroscientist Kenneth D. Miller.[5]

Additionally, computer emulations of brain activity, even if it was just the connections between neurons, are not going to be affordable. Progress in Moore’s Law cannot continue much more, due to fundamental atomic constraints. This means that the price of computing cannot keep falling like it has, so the enormous supercomputers that would be required to run any uploaded mind would be unaffordable, even in the future.

It seems likely that the best and most efficient medium for running a human mind is a human brain, so keep yours in good working order.

Several metaphysical questions are brought up by the prospect of mind uploading. Like many such questions, these may not be objectively answerable, and philosophers would no doubt continue to debate them even if uploading somehow became a reality.

The first major philosophical question is more or less falsifiable: whether consciousness is artificially replicable in its entirety. In other words, assuming that consciousness is not magic, and that the brain is the seat of consciousness, does it depend on any special functions or quantum mechanical effects that cannot ever be replicated on another substrate? This question, of course, remains unanswered although, considering the current state of cognitive science, it is not unreasonable to think that consciousness will be found to be replicable in the future.

Assuming that consciousness is proven to be artificially replicable, the second question is whether the “strong AI hypothesis” is justified or not: if a machine accurately replicates consciousness, such that it passes a Turing Test or is otherwise indistinguishable from a natural human being, is the machine really conscious, or is it a soulless mechanism that merely imitates consciousness?

Third, assuming that a machine can actually be conscious (which is no great stretch of the imagination, considering that the human brain is essentially a biological machine), is a copy of your consciousness really you? Is it even possible to copy consciousness? Is mind uploading really a ticket to immortality, in that “you” or your identity can be “uploaded”?

Advocates of mind uploading take the functionalist/reductionist approach of defining human existence as the identity, which is based on memories and personalities rather than physical substrates or subjectivity.[6] They believe that the identity is essential; the copy of the mind holds just as much claim to being that person as the original, even if both were to exist simultaneously. When the physical body of a copied person dies, nothing that defines the person as an individual has been lost. In this context, all that matters is that the memories and personality of the individual are preserved. As the recently murdered protagonist states in Down and Out in the Magic Kingdom, “I feel like me and no one else is making that claim. Who cares if I’ve been restored from a backup?”

Skeptics of mind uploading[7] question if it’s possible to transfer a consciousness from one substrate to another, and hold that this is critical to the life-extension application of mind uploading. The transfer of identity is similar to the process of transferring data from one computer hard drive to another. The new person would be a copy of the original; a new consciousness with the same identity. With this approach, mind uploading would simply create a “mind-clone”[8] an artificial person with an identity gleaned from another. The philosophical problem with uploading “yourself” to a computer is very similar to the “swamp man” and teleportation thought experiments. [9] Suppose Alec Davidson goes hiking in the swamp and is struck and killed by a lightning bolt. At the same time, nearby in the swamp another lightning bolt spontaneously rearranges a bunch of molecules such that, entirely by coincidence, they take on exactly the same form that Dr. Holland’s Davidson’s body had at the moment of his untimely death. This being, whom Davidson terms Swamp Thing “Swampman,” has, of course, a brain which is structurally identical to that which Davidson had, and will thus, presumably, behave exactly as Davidson would have. He will walk out of the swamp, return to Davidson’s office at Berkeley, and write the same essays he would have written; he will interact like an amicable person with all of Davidson’s friends and family, and so forth. This is one reason that has led critics to say it’s not at all clear that the concept mind uploading is even meaningful. [10] For the skeptic, the thought of permanently losing subjective consciousness (death), while another consciousness that shares their identity lives on yields no comfort. Daniel Dennett, in Consciousness Explained, has called into question the validity of these sorts of thought experiments altogether, maintaining that when a thought experiment is too far removed from the actual state of affairs, our intuitions cease to be meaningful.

Consciousness is currently (poorly) understood to be an epiphenomenon of brain activity specifically of the cerebral cortex[11]. Identity and consciousness are distinct from one another though presumably the former could not exist without the latter. Unlike an identity, which is a composition of information stored within a brain it is reasonable to assume that a particular subjective consciousness is an intrinsic property of a particular physical brain. Thus, even a perfect physical copy of that brain would not share the subjective consciousness of that brain. This holds true of all ‘brains’ (consciousness-producing machines), biological or otherwise. When/if non-biological brains are ever developed/discovered it would be reasonable to assume that each would have its own intrinsic, non-transferable subjective consciousness, independent of its identity. It is likely that mind uploading would preserve an identity, if not the subjective consciousness that begot it. If identity rather than subjective consciousness is taken to be the essential, mind uploading succeeds in the opinion of mind-uploading-immortalist advocates.

Mind uploading has also ethical issues, especially in what refers to duplicates of a given self, as well as others relatives to the harmful things that could be done on what basically would now be an equivalent of a computer file or program, and that (at least for now and at least not so easily too) cannot happen in a human mind -namely, erasing it or destroying the computer that is running the simulation/storing the uploaded mind killing for good the person, modifying its contents deleting and/or adding others, merging two or more previous selves into other and vice-versa, being copied or moved ad infinitum, messing with inputs (sort of sending someone to a “digital heaven” or a “digital hell” -or worse-), messing with the way time is felt by the uploaded speeding or slowing the simulation (or causing it to enter into an infinite loop), infecting a mind with the equivalent of a computer virus (or rather the equivalent of a neurological disease)… the list goes on-.

Believing that there is some mystical “essence” to consciousness that isn’t preserved by copying is ultimately a form of dualism, however. Humans lose consciousness at least daily, yet still remain the same person in the morning. In the extreme, humans completely cease all activity, brain or otherwise, during deep hypothermic circulatory arrest, yet still remain the same person on resuscitation,[12] demonstrating that continuity of consciousness is not necessary for identity or personhood. Rather, the properties that make us identifiable as individuals are stored in the physical structure of the brain.

Ultimately, this is a subjective problem, not an objective one: If a copy is made of a book, is it still the same book? It depends if you subjectively consider “the book” to be the physical artifact or the information contained within. Is it the same book that was once held by Isaac Newton? No. Is it the same book that was once read by Isaac Newton? Yes.

The rest is here:

Mind uploading – RationalWiki

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

Read the rest here:

Mind Uploading

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

See the original post:

UC San Diego NanoEngineering Department

Nanoengineering – Wikipedia

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

The first nanoengineering program was started at the University of Toronto within the Engineering Science program as one of the options of study in the final years. In 2003, the Lund Institute of Technology started a program in Nanoengineering. In 2004, the College of Nanoscale Science and Engineering at SUNY Polytechnic Institute was established on the campus of the University at Albany. In 2005, the University of Waterloo established a unique program which offers a full degree in Nanotechnology Engineering. [1] Louisiana Tech University started the first program in the U.S. in 2005. In 2006 the University of Duisburg-Essen started a Bachelor and a Master program NanoEngineering. [2] Unlike early NanoEngineering programs, the first Nanoengineering Department in the world, offering both undergraduate and graduate degrees, was established by the University of California, San Diego in 2007.In 2009, the University of Toronto began offering all Options of study in Engineering Science as degrees, bringing the second nanoengineering degree to Canada. Rice University established in 2016 a Department of Materials Science and NanoEngineering (MSNE).DTU Nanotech – the Department of Micro- and Nanotechnology – is a department at the Technical University of Denmark established in 1990.

In 2013, Wayne State University began offering a Nanoengineering Undergraduate Certificate Program, which is funded by a Nanoengineering Undergraduate Education (NUE) grant from the National Science Foundation. The primary goal is to offer specialized undergraduate training in nanotechnology. Other goals are: 1) to teach emerging technologies at the undergraduate level, 2) to train a new adaptive workforce, and 3) to retrain working engineers and professionals.[3]

More:

Nanoengineering – Wikipedia

NETS – What are Nanoengineering and Nanotechnology?

is one billionth of a meter, or three to five atoms in width. It would take approximately 40,000 nanometers lined up in a row to equal the width of a human hair. NanoEngineering concerns itself with manipulating processes that occur on the scale of 1-100 nanometers.

The general term, nanotechnology, is sometimes used to refer to common products that have improved properties due to being fortified with nanoscale materials. One example is nano-improved tooth-colored enamel, as used by dentists for fillings. The general use of the term nanotechnology then differs from the more specific sciences that fall under its heading.

NanoEngineering is an interdisciplinary science that builds biochemical structures smaller than bacterium, which function like microscopic factories. This is possible by utilizing basic biochemical processes at the atomic or molecular level. In simple terms, molecules interact through natural processes, and NanoEngineering takes advantage of those processes by direct manipulation.

SOURCE:http://www.wisegeek.com/what-is-nanoengineering.htm

Original post:

NETS – What are Nanoengineering and Nanotechnology?

Undergraduate Degree Programs | NanoEngineering

The Department of NanoEngineering offers undergraduate programs leading to theB.S. degreesinNanoengineeringandChemical Engineering. The Chemical Engineering and NanoEngineering undergraduate programs areaccredited by the Engineering Accreditation Commission of ABET. The undergraduate degree programs focus on integrating the various sciences and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.These two degree programshave very different requirements and are described in separate sections.

B.S. NanoEngineering

TheNanoEngineering Undergraduate Program became effective Fall 2010.Thismajor focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. The program includes affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The NanoEngineering undergraduate program is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanoengineers who are multidisciplinary and can work in a broad spectrum of industries.

B.S. Chemical Engineering

The Chemical Engineering undergraduate program is housed within the NanoEngineering Department. The program is made up of faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, the Department of Bioengineering and the Department of NanoEngineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). As of Fall 2008, the Department of NanoEngineering has taken over the administration of the B.S. degree in Chemical Engineering.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering website for their program of study, and their undergraduate/graduate advisor if they have questions. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the departments student affairs advisors on an annual basis.

Students can meet with the academic advisors during walk-in hours, schedule an appointment, or send messages through the Virtual Advising Center (VAC).

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken.

Independent Study

Students may take NANO 199 or CENG 199, Independent Study for Undergraduates, under the guidance of a NANO or CENG faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division Technical Elective or Nanoengineering Elective course requirements for the major. Students interested in this alternative must have completed at least 90 units and earned a UCSD cumulative GPA of 3.0 or better. Eligible students must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. Please visit the Student Affairs office for more information.

See the rest here:

Undergraduate Degree Programs | NanoEngineering

About the NANO-ENGINEERING FLAGSHIP

Turning the NaI concept into reality necessitates an extraordinary and long-term effort. This requires the integration of nanoelectronics, nanophotonics, nanophononics, nanospintronics, topological effects, as well as the physics and chemistry of materials. This also requires operations in an extremely broad range of science and technology, including Microwaves, Millimeter waves, TeraHertz, Infrared and Optics, and will exploit various excitations, such as surface waves, spin waves, phonons, electrons, photons, plasmons, and their hybrids, for sensing, information processing and storage. Integrating

This high level of integration, which goes beyond individual functionalities, components and devices and requires cooperation across a range of disciplines, makes the Nano Engineering Flagship unique in its approach. It will be crucial in tackling the 6 strategic challenges identified as:

Continue reading here:

About the NANO-ENGINEERING FLAGSHIP

The NANO-ENGINEERING FLAGSHIP initiative

Nano-Engineering introduces a novel key-enabling non-invasive broadband technology, the Nano-engineered Interface (NaI), realising omni -connectivity and putting humans and their interactions at the center of the future digital society.Omni-connectivity encompasses real-time communication, sensing, monitoring, and data processing among humans, objects, and their environment. The vision of Omni-connectivity englobes people in a new sphere of extremely simplified, intuitive and natural communication.The Nano-engineered Interface (NaI) a non-invasive wireless ultraflat functional system will make this possible. NaI will be applicable to any surface on any physical item and thereby exponentially diversify and increase connections among humans, wearables, vehicles, and everyday objects. NaI will communicate with other NaI-networks from local up to satellites by using the whole frequency spectrum from microwave frequency to optics

Go here to see the original:

The NANO-ENGINEERING FLAGSHIP initiative

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring technological transfer of memories and personality from one brain to another is “Intelligence Undying” by Edmond Hamilton, first published in the April 1936 issue of Amazing Stories. In this story, an elderly scientist named John Hanley explains that when humans are first born, “our minds are a blank sheet except for certain reflexes which we all inherit. But from our birth onward, our minds are affected by all about us, our reflexes are conditioned, as the behaviorists say. All we experience is printed on the sheet of our minds. … Everything a human being learns, therefore, simply establishes new connections between the nerve-cells of the brain. … As I said, a newborn child has no such knowledge-connections in his cortex at allhe has not yet formed any. Now if I take that child immediately after birth and establish in his brain exactly the same web of intricate neurone-connections I have built up in my own brain, he will have exactly the same mind, memories, knowledge, as I have … his mind will be exactly identical with my mind!” He then explains he has developed a technique to do just this, saying “I’ve devised a way to scan my brain’s intricate web of neurone connections by electrical impulses, and by means of those impulses to build up an exactly identical web of neurone connections in the infant’s brain. Just as a television scanning-disk can break down a complicated picture into impulses that reproduce the picture elsewhere.” He adds that the impulses scanning his brain will kill him, but the “counter-impulses” imprinting the same pattern on the baby’s brain will not harm him. The story shows the successful transfer of John Hanley’s mind to the baby, who he describes as “John Hanley 2nd”, and then skips forward to the year 3144 to depict “John Hanley, 21st” using his advanced technology to become the ruler of the Earth in order to end a war between the two great political powers of the time, and then further ahead to “John Hanley, 416th” helping to evacuate humanity to the planet Mercury in response to the Sun shrinking into a white dwarf. He chooses to remain on Earth awaiting death, so that people would “learn once more to do for themselves, would become again a strong a self-reliant race”, with Hanley concluding that he “had been wrong in living as a single super-mind down through the ages. He saw that now, and now he was undoing that wrong.”

A story featuring human minds replicated in a computer is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind which are stored in an artificial medium. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Go here to read the rest:

Mind uploading in fiction – Wikipedia

AI Dreamed Up These Nightmare Fuel Halloween Masks

Nightmare Fuel

Someone programmed an AI to dream up Halloween masks, and the results are absolute nightmare fuel. Seriously, just look at some of these things.

“What’s so scary or unsettling about it is that it’s not so detailed that it shows you everything,” said Matt Reed, the creator of the masks, in an interview with New Scientist. “It leaves just enough open for your imagination to connect the dots.”

A selection of masks featured on Reed’s twitter. Credit: Matt Reed/Twitter

Creative Horror

To create the masks, Reed — whose day job is as a technologist at a creative agency called redpepper — fed an open source AI tool 5,000 pictures of Halloween masks he sourced from Google Images. He then instructed the tool to generate its own masks.

The fun and spooky project is yet another sign that AI is coming into its own as a creative tool. Just yesterday, a portrait generated by a similar system fetched more than $400,000 at a prominent British auction house.

And Reed’s masks are evocative. Here at the Byte, if we looked through the peephole and saw one of these on a trick or treater, we might not open our door.

READ MORE: AI Designed These Halloween Masks and They Are Absolutely Terrifying [New Scientist]

More on AI-generated art: Generated Art Will Go on Sale Alongside Human-Made Works This Fall

The rest is here:

AI Dreamed Up These Nightmare Fuel Halloween Masks

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

Over and Over

“The security robot is patrolling. Ding-ding. Ding-ding. The security robot is patrolling. Ding-ding. Ding-ding.”

That’s what Olympic attendees will hear ad nauseam when they step onto the platforms of Tokyo’s train stations in 2020. The source: Perseusbot, a robot security guard Japanese developers unveiled to the press on Thursday.

Observe and Report

According to reporting by Kyodo News, the purpose of the AI-powered Perseusbot is to lower the burden on the stations’ staff when visitors flood Tokyo during the 2020 Olympics.

The robot is roughly 5.5 feet tall and equipped with security cameras that allow it to note suspicious behaviors, such as signs of violence breaking out or unattended packages, as it autonomous patrols the area. It can then alert security staff to the issues by sending notifications directly to their smart phones.

Prior Prepration

Just like the athletes who will head to Tokyo in 2020, Perseusbot already has a training program in the works — it’ll patrol Tokyo’s Seibu Shinjuku Station from November 26 to 30. This dry run should give the bot’s developers a chance to work out any kinks before 2020.

If all goes as hoped, the bot will be ready to annoy attendees with its incessant chant before the Olympic torch is lit. And, you know, keep everyone safe, too.

READ MORE: Robot Station Security Guard Unveiled Ahead of 2020 Tokyo Olympics [Kyodo News]

More robot security guards: Robot Security Guards Are Just the Beginning

View original post here:

Robot Security Guards Will Constantly Nag Spectators at the Tokyo Olympics

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Snap Decisions

On first glance, a site that collects people’s opinions about whose life an autonomous car should favor doesn’t tell us anything we didn’t already know. But look closer, and you’ll catch a glimpse of humanity’s dark side.

The Moral Machine is an online survey designed by MIT researchers to gauge how the public would want an autonomous car to behave in a scenario in which someone has to die. It asks questions like: “If an autonomous car has to choose between killing a man or a woman, who should it kill? What if the woman is elderly but the man is young?”

Essentially, it’s a 21st century update on the Trolley Problem, an ethical thought experiment no doubt permanently etched into the mind of anyone who’s seen the second season of “The Good Place.”

Ethical Dilemma

The MIT team launched the Moral Machine in 2016, and more than two million people from 233 countries participated in the survey — quite a significant sample size.

On Wednesday, the researchers published the results of the experiment in the journal Nature, and they really aren’t all that surprising: Respondents value the life of a baby over all others, with a female child, male child, and pregnant woman following closely behind. Yawn.

It’s when you look at the other end of the spectrum — the characters survey respondents were least likely to “save” — that you’ll see something startling: Survey respondents would rather the autonomous car kill a human criminal than a dog.

moral machine
Image Credit: MIT

Ugly Reflection

While the team designed the survey to help shape the future of autonomous vehicles, it’s hard not to focus on this troubling valuing of a dog’s life over that of any human, criminal or not. Does this tell us something important about how society views the criminal class? Reveal that we’re all monsters when hidden behind the internet’s cloak of anonymity? Confirm that we really like dogs?

The MIT team doesn’t address any of these questions in their paper, and really, we wouldn’t expect them to — it’s their job to report the survey results, not extrapolate some deeper meaning from them. But whether the Moral Machine informs the future of autonomous vehicles or not, it’s certainly held up a mirror to humanity’s values, and we do not like the reflection we see.

READ MORE: Driverless Cars Should Spare Young People Over Old in Unavoidable Accidents, Massive Survey Finds [Motherboard]

More on the Moral Machine: MIT’s “Moral Machine” Lets You Decide Who Lives & Dies in Self-Driving Car Crashes

Read more:

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Scientists Say New Material Could Hold up an Actual Space Elevator

Space Elevator

It takes a lot of energy to put stuff in space. That’s why one longtime futurist dream is a “space elevator” — a long cable strung between a geostationary satellite and the Earth that astronauts could use like a dumbwaiter to haul stuff up into orbit.

The problem is that such a system would require an extraordinarily light, strong cable. Now, researchers from Beijing’s Tsinghua University say they’ve developed a carbon nanotube fiber so sturdy and lightweight that it could be used to build an actual space elevator.

Going Up

The researchers published their paper in May, but it’s now garnering the attention of their peers. Some believe the Tsinghua team’s material really could lead to the creation of an elevator that would make it cheaper to move astronauts and materials into space.

“This is a breakthrough,” colleague Wang Changqing, who studies space elevators at Northwestern Polytechnical University, told the South China Morning Post.

Huge If True

There are still countless galling technical problems that need to be overcome before a space elevator would start to look plausible. Wang pointed out that it’d require tens of thousands of kilometers of the new material, for instance, as well as a shield to protect it from space debris.

But the research brings us one step closer to what could be a true game changer: a vastly less expensive way to move people and spacecraft out of Earth’s gravity.

READ MORE: China Has Strongest Fibre That Can Haul 160 Elephants – and a Space Elevator? [South China Morning Post]

More on space elevators: Why Space Elevators Could Be the Future of Space Travel

Read more from the original source:

Scientists Say New Material Could Hold up an Actual Space Elevator

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Ups and Downs

Can we please get off Mr. Musk’s Wild Ride now? We don’t know how much more of this Tesla rollercoaster we can take.

In 2018 alone, Elon Musk’s clean energy company has endured a faulty flufferbot, furious investors, and an SEC probe and settlement. But there was good news, too. Model 3 deliveries reportedly increased, and just this week, we found out that Tesla had a historic financial quarter, generating $312 million in profit.

And now we’re plummeting again.

Closing In

On Friday, The Wall Street Journal reported that the Federal Bureau of Investigation (FBI) is deepening a criminal probe into whether Tesla “misstated information about production of its Model 3 sedans and misled investors about the company’s business going back to early 2017.”

We’ve known about the FBI’s Tesla criminal probe since September 18, but this is the first report confirming that Model 3 production is at the center of the investigation.

According to the WSJ’s sources, FBI agents have been reaching out to former Tesla employees in recent weeks to ask if they’d be willing to testify in the criminal case, though no word yet on whether any have agreed.

Casual CEO

We might be having trouble keeping up with these twists and turns, but Musk seems to be taking the FBI’s Tesla criminal probe all in stride — he spent much of Friday afternoon joking around with his Twitter followers about dank memes.

Clearly he has the stomach for this, but it’d be hard to blame any Tesla investors for deciding they’d had enough.

READ MORE: Tesla Faces Deepening Criminal Probe Over Whether It Misstated Production Figures [The Wall Street Journal]

More on Tesla: Elon Musk Says Your Tesla Will Earn You Money While You Sleep

Read the rest here:

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production


...23456...102030...