Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Continue reading here:

Mind uploading in fiction – Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

The rest is here:

Mind uploading – Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

Read more:

Mind Uploading

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Read the original post:

Mind uploading – Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Go here to see the original:

Mind uploading in fiction – Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

View original post here:

Mind Uploading

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

See more here:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

View post:

Mind uploading – Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

Read more:

Mind uploading in fiction – Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

Link:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Read more from the original source:

Mind uploading – Wikipedia

Mind uploading in fiction – Wikipedia

Mind uploading, whole brain emulation or substrate-independent minds is a use of a computer or another substrate as an emulated human brain, and the view of thoughts and memories as software information states. The term mind transfer also refers to a hypothetical transfer of a mind from one biological brain to another. Uploaded minds and societies of minds, often in simulated realities, are recurring themes in science fiction novels and films since 1950s.

An early story featuring something like mind uploading is the novella Izzard and the Membrane by Walter M. Miller, Jr., first published in May 1951.[1] In this story, an American cyberneticist named Scott MacDonney is captured by Russians and made to work on an advanced computer, Izzard, which they plan to use to coordinate an attack on the United States. He has conversations with Izzard as he works on it, and when he asks it if it is self-aware, it says “answer indeterminate” and then asks “can human individual’s self-awareness transor be mechanically duplicated?” MacDonney is unfamiliar with the concept of a self-awareness transor (it is later revealed that this information was loaded into Izzard by a mysterious entity who may nor may not be God[2]), and Izzard defines it by saying “A self-awareness transor is the mathematical function which describes the specific consciousness pattern of one human individual.”[3] It is later found that this mathematical function can indeed be duplicated, although not by a detailed scan of the individual’s brain as in later notions of mind uploading; instead, Donney just has to describe the individual verbally in sufficient detail, and Izzard uses this information to locate the transor in the appropriate “mathematical region”. In Izzard’s words, “to duplicate consciousness of deceased, it will be necessary for you to furnish anthropometric and psychic characteristics of the individual. These characteristics will not determine transor, but will only give its general form. Knowing its form, will enable me to sweep my circuit pattern through its mathematical region until the proper transor is reached. At that point, the consciousness will appear among the circuits.”[4] Using this method, MacDonney is able to recreate the mind of his dead wife in Izzard’s memory, as well as create a virtual duplicate of himself, which seems to have a shared awareness with the biological MacDonney.

In The Altered Ego by Jerry Sohl (1954), a person’s mind can be “recorded” and used to create a “restoration” in the event of their death. In a restoration, the person’s biological body is repaired and brought back to life, and their memories are restored to the last time that they had their minds recorded (what the story calls a ‘brain record'[5]), an early example of a story in which a person can create periodic backups of their own mind. The recording process is not described in great detail, but it is mentioned that the recording is used to create a duplicate or “dupe” which is stored in the “restoration bank”,[6] and at one point a lecturer says that “The experience of the years, the neurograms, simple memory circuitsneurons, if you wishstored among these nerve cells, are transferred to the dupe, a group of more than ten billion molecules in colloidal suspension. They are charged much as you would charge the plates of a battery, the small neuroelectrical impulses emanating from your brain during the recording session being duplicated on the molecular structure in the solution.”[7] During restoration, they take the dupe and “infuse it into an empty brain”,[7] and the plot turns on the fact that it is possible to install one person’s dupe in the body of a completely different person.[8]

An early example featuring uploaded minds in robotic bodies can be found in Frederik Pohl’s story “The Tunnel Under the World” from 1955.[9] In this story, the protagonist Guy Burckhardt continually wakes up on the same date from a dream of dying in an explosion. Burckhardt is already familiar with the idea of putting human minds in robotic bodies, since this is what is done with the robot workers at the nearby Contro Chemical factory. As someone has once explained it to him, “each machine was controlled by a sort of computer which reproduced, in its electronic snarl, the actual memory and mind of a human being … It was only a matter, he said, of transferring a man’s habit patterns from brain cells to vacuum-tube cells.” Later in the story, Pohl gives some additional description of the procedure: “Take a master petroleum chemist, infinitely skilled in the separation of crude oil into its fractions. Strap him down, probe into his brain with searching electronic needles. The machine scans the patterns of the mind, translates what it sees into charts and sine waves. Impress these same waves on a robot computer and you have your chemist. Or a thousand copies of your chemist, if you wish, with all of his knowledge and skill, and no human limitations at all.” After some investigation, Burckhardt learns that his entire town had been killed in a chemical explosion, and the brains of the dead townspeople had been scanned and placed into miniature robotic bodies in a miniature replica of the town (as a character explains to him, ‘It’s as easy to transfer a pattern from a dead brain as a living one’), so that a businessman named Mr. Dorchin could charge companies to use the townspeople as test subjects for new products and advertisements.

Something close to the notion of mind uploading is very briefly mentioned in Isaac Asimov’s 1956 short story The Last Question: “One by one Man fused with AC, each physical body losing its mental identity in a manner that was somehow not a loss but a gain.” A more detailed exploration of the idea (and one in which individual identity is preserved, unlike in Asimov’s story) can be found in ArthurC. Clarke’s novel The City and the Stars, also from 1956 (this novel was a revised and expanded version of Clarke’s earlier story Against the Fall of Night, but the earlier version did not contain the elements relating to mind uploading). The story is set in a city named Diaspar one billion years in the future, where the minds of inhabitants are stored as patterns of information in the city’s Central Computer in between a series of 1000-year lives in cloned bodies. Various commentators identify this story as one of the first (if not the first) to deal with mind uploading, human-machine synthesis, and computerized immortality.[10][11][12][13]

Another of the “firsts” is the novel Detta r verkligheten (This is reality), 1968, by the renowned philosopher and logician Bertil Mrtensson, a novel in which he describes people living in an uploaded state as a means to control overpopulation. The uploaded people believe that they are “alive”, but in reality they are playing elaborate and advanced fantasy games. In a twist at the end, the author changes everything into one of the best “multiverse” ideas of science fiction.

In Robert Silverberg’s To Live Again (1969), an entire worldwide economy is built up around the buying and selling of “souls” (personas that have been tape-recorded at six-month intervals), allowing well-heeled consumers the opportunity to spend tens of millions of dollars on a medical treatment that uploads the most recent recordings of archived personalities into the minds of the buyers. Federal law prevents people from buying a “personality recording” unless the possessor first had died; similarly, two or more buyers were not allowed to own a “share” of the persona. In this novel, the personality recording always went to the highest bidder. However, when one attempted to buy (and therefore possess) too many personalities, there was the risk that one of the personas would wrest control of the body from the possessor.

In the 1982 novel Software, part of the Ware Tetralogy by Rudy Rucker, one of the main characters, Cobb Anderson, has his mind downloaded and his body replaced with an extremely human-like android body. The robots who persuade Anderson into doing this sell the process to him as a way to become immortal.

In William Gibson’s award-winning Neuromancer (1984), which popularized the concept of “cyberspace”, a hacking tool used by the main character is an artificial infomorph of a notorious cyber-criminal, Dixie Flatline. The infomorph only assists in exchange for the promise that he be deleted after the mission is complete.

The fiction of Greg Egan has explored many of the philosophical, ethical, legal, and identity aspects of mind transfer, as well as the financial and computing aspects (i.e. hardware, software, processing power) of maintaining “copies.” In Egan’s Permutation City (1994), Diaspora (1997) and Zendegi (2010), “copies” are made by computer simulation of scanned brain physiology. See also Egan’s “jewelhead” stories, where the mind is transferred from the organic brain to a small, immortal backup computer at the base of the skull, the organic brain then being surgically removed.

The movie The Matrix is commonly mistaken for a mind uploading movie, but with exception to suggestions in later movies, it is only about virtual reality and simulated reality, since the main character Neo’s physical brain still is required to reside his mind. The mind (the information content of the brain) is not copied into an emulated brain in a computer. Neo’s physical brain is connected into the Matrix via a brain-machine interface. Only the rest of the physical body is simulated. Neo is disconnected from and reconnected to this dreamworld.

James Cameron’s 2009 movie Avatar has so far been the commercially most successful example of a work of fiction that features a form of mind uploading. Throughout most of the movie, the hero’s mind has not actually been uploaded and transferred to another body, but is simply controlling the body from a distance, a form of telepresence. However, at the end of the movie the hero’s mind is uploaded into Eywa, the mind of the planet, and then back into his Avatar body.

Mind transfer is a theme in many other works of science fiction in a wide range of media. Specific examples include the following:

The rest is here:

Mind uploading in fiction – Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Subscribe to Aeons Newsletter

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

View original post here:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

Continued here:

Mind uploading – Wikipedia

Mind – Wikipedia

The mind is a set of cognitive faculties including consciousness, perception, thinking, judgement, language and memory. It is usually defined as the faculty of an entity’s thoughts and consciousness.[3] It holds the power of imagination, recognition, and appreciation, and is responsible for processing feelings and emotions, resulting in attitudes and actions.[citation needed]

There is a lengthy tradition in philosophy, religion, psychology, and cognitive science about what constitutes a mind and what are its distinguishing properties.

One open question regarding the nature of the mind is the mindbody problem, which investigates the relation of the mind to the physical brain and nervous system.[4] Older viewpoints included dualism and idealism, which considered the mind somehow non-physical.[4] Modern views often center around physicalism and functionalism, which hold that the mind is roughly identical with the brain or reducible to physical phenomena such as neuronal activity.[5][need quotation to verify], though dualism and idealism continue to have many supporters. Another question concerns which types of beings are capable of having minds.[citation needed] For example, whether mind is exclusive to humans, possessed also by some or all animals, by all living things, whether it is a strictly definable characteristic at all, or whether mind can also be a property of some types of human-made machines.[citation needed]

Whatever its nature, it is generally agreed that mind is that which enables a being to have subjective awareness and intentionality towards their environment, to perceive and respond to stimuli with some kind of agency, and to have consciousness, including thinking and feeling.[citation needed]

The concept of mind is understood in many different ways by many different cultural and religious traditions. Some see mind as a property exclusive to humans whereas others ascribe properties of mind to non-living entities (e.g. panpsychism and animism), to animals and to deities. Some of the earliest recorded speculations linked mind (sometimes described as identical with soul or spirit) to theories concerning both life after death, and cosmological and natural order, for example in the doctrines of Zoroaster, the Buddha, Plato, Aristotle, and other ancient Greek, Indian and, later, Islamic and medieval European philosophers.

Important philosophers of mind include Plato, Descartes, Leibniz, Locke, Berkeley, Hume, Kant, Hegel, Schopenhauer, Searle, Dennett, Fodor, Nagel, and Chalmers.[6] Psychologists such as Freud and James, and computer scientists such as Turing and Putnam developed influential theories about the nature of the mind. The possibility of non-human minds is explored in the field of artificial intelligence, which works closely in relation with cybernetics and information theory to understand the ways in which information processing by nonbiological machines is comparable or different to mental phenomena in the human mind.[citation needed]

The mind is also portrayed as the stream of consciousness where sense impressions and mental phenomena are constantly changing[7][8]

The original meaning of Old English gemynd was the faculty of memory, not of thought in general.[citation needed] Hence call to mind, come to mind, keep in mind, to have mind of, etc. The word retains this sense in Scotland.[9] Old English had other words to express “mind”, such as hyge “mind, spirit”.[citation needed]

The meaning of “memory” is shared with Old Norse, which has munr. The word is originally from a PIE verbal root *men-, meaning “to think, remember”, whence also Latin mens “mind”, Sanskrit manas “mind” and Greek “mind, courage, anger”.

The generalization of mind to include all mental faculties, thought, volition, feeling and memory, gradually develops over the 14th and 15th centuries.[10]

The attributes that make up the mind is debated. Some psychologists argue that only the “higher” intellectual functions constitute mind, particularly reason and memory.[11] In this view the emotions love, hate, fear, and joy are more primitive or subjective in nature and should be seen as different from the mind as such. Others argue that various rational and emotional states cannot be so separated, that they are of the same nature and origin, and should therefore be considered all part of it as mind.[citation needed]

In popular usage, mind is frequently synonymous with thought: the private conversation with ourselves that we carry on “inside our heads.”[12] Thus we “make up our minds,” “change our minds” or are “of two minds” about something. One of the key attributes of the mind in this sense is that it is a private sphere to which no one but the owner has access. No one else can “know our mind.” They can only interpret what we consciously or unconsciously communicate.[13]

Broadly speaking, mental faculties are the various functions of the mind, or things the mind can “do”.

Thought is a mental act that allows humans to make sense of things in the world, and to represent and interpret them in ways that are significant, or which accord with their needs, attachments, goals, commitments, plans, ends, desires, etc. Thinking involves the symbolic or semiotic mediation of ideas or data, as when we form concepts, engage in problem solving, reasoning, and making decisions. Words that refer to similar concepts and processes include deliberation, cognition, ideation, discourse and imagination.

Thinking is sometimes described as a “higher” cognitive function and the analysis of thinking processes is a part of cognitive psychology. It is also deeply connected with our capacity to make and use tools; to understand cause and effect; to recognize patterns of significance; to comprehend and disclose unique contexts of experience or activity; and to respond to the world in a meaningful way.

Memory is the ability to preserve, retain, and subsequently recall, knowledge, information or experience. Although memory has traditionally been a persistent theme in philosophy, the late nineteenth and early twentieth centuries also saw the study of memory emerge as a subject of inquiry within the paradigms of cognitive psychology. In recent decades, it has become one of the pillars of a new branch of science called cognitive neuroscience, a marriage between cognitive psychology and neuroscience.

Imagination is the activity of generating or evoking novel situations, images, ideas or other qualia in the mind. It is a characteristically subjective activity, rather than a direct or passive experience. The term is technically used in psychology for the process of reviving in the mind percepts of objects formerly given in sense perception. Since this use of the term conflicts with that of ordinary language, some psychologists have preferred to describe this process as “imaging” or “imagery” or to speak of it as “reproductive” as opposed to “productive” or “constructive” imagination. Things imagined are said to be seen in the “mind’s eye”. Among the many practical functions of imagination are the ability to project possible futures (or histories), to “see” things from another’s perspective, and to change the way something is perceived, including to make decisions to respond to, or enact, what is imagined.

Consciousness in mammals (this includes humans) is an aspect of the mind generally thought to comprise qualities such as subjectivity, sentience, and the ability to perceive the relationship between oneself and one’s environment. It is a subject of much research in philosophy of mind, psychology, neuroscience, and cognitive science. Some philosophers divide consciousness into phenomenal consciousness, which is subjective experience itself, and access consciousness, which refers to the global availability of information to processing systems in the brain.[14] Phenomenal consciousness has many different experienced qualities, often referred to as qualia. Phenomenal consciousness is usually consciousness of something or about something, a property known as intentionality in philosophy of mind.

Mental contents are those items that are thought of as being “in” the mind, and capable of being formed and manipulated by mental processes and faculties. Examples include thoughts, concepts, memories, emotions, percepts and intentions. Philosophical theories of mental content include internalism, externalism, representationalism and intentionality.[15]

Memetics is a theory of mental content based on an analogy with Darwinian evolution, which was originated by Richard Dawkins and Douglas Hofstadter in the 1980s. It is an evolutionary model of cultural information transfer. A meme, analogous to a gene, is an idea, belief, pattern of behaviour (etc.) “hosted” in one or more individual minds, and can reproduce itself from mind to mind. Thus what would otherwise be regarded as one individual influencing another to adopt a belief, is seen memetically as a meme reproducing itself.

In animals, the brain, or encephalon (Greek for “in the head”), is the control center of the central nervous system, responsible for thought. In most animals, the brain is located in the head, protected by the skull and close to the primary sensory apparatus of vision, hearing, equilibrioception, taste and olfaction. While all vertebrates have a brain, most invertebrates have either a centralized brain or collections of individual ganglia. Primitive animals such as sponges do not have a brain at all. Brains can be extremely complex. For example, the human brain contains around 86 billion neurons, each linked to as many as 10,000 others.[16][17]

Understanding the relationship between the brain and the mind mindbody problem is one of the central issues in the history of philosophy is a challenging problem both philosophically and scientifically.[18] There are three major philosophical schools of thought concerning the answer: dualism, materialism, and idealism. Dualism holds that the mind exists independently of the brain;[19] materialism holds that mental phenomena are identical to neuronal phenomena;[20] and idealism holds that only mental phenomena exist.[20]

Through most of history many philosophers found it inconceivable that cognition could be implemented by a physical substance such as brain tissue (that is neurons and synapses).[21] Descartes, who thought extensively about mind-brain relationships, found it possible to explain reflexes and other simple behaviors in mechanistic terms, although he did not believe that complex thought, and language in particular, could be explained by reference to the physical brain alone.[22]

The most straightforward scientific evidence of a strong relationship between the physical brain matter and the mind is the impact physical alterations to the brain have on the mind, such as with traumatic brain injury and psychoactive drug use.[23] Philosopher Patricia Churchland notes that this drug-mind interaction indicates an intimate connection between the brain and the mind.[24]

In addition to the philosophical questions, the relationship between mind and brain involves a number of scientific questions, including understanding the relationship between mental activity and brain activity, the exact mechanisms by which drugs influence cognition, and the neural correlates of consciousness.

Theoretical approaches to explain how mind emerges from the brain include connectionism, computationalism and Bayesian brain.

The evolution of human intelligence refers to several theories that aim to describe how human intelligence has evolved in relation to the evolution of the human brain and the origin of language.[25]

The timeline of human evolution spans some 7 million years, from the separation of the Pan genus until the emergence of behavioral modernity by 50,000 years ago. Of this timeline, the first 3 million years concern Sahelanthropus, the following 2 million concern Australopithecus, while the final 2 million span the history of actual Homo species (the Paleolithic).

Many traits of human intelligence, such as empathy, theory of mind, mourning, ritual, and the use of symbols and tools, are already apparent in great apes although in lesser sophistication than in humans.

There is a debate between supporters of the idea of a sudden emergence of intelligence, or “Great leap forward” and those of a gradual or continuum hypothesis.

Theories of the evolution of intelligence include:

Philosophy of mind is the branch of philosophy that studies the nature of the mind, mental events, mental functions, mental properties, consciousness and their relationship to the physical body. The mindbody problem, i.e. the relationship of the mind to the body, is commonly seen as the central issue in philosophy of mind, although there are other issues concerning the nature of the mind that do not involve its relation to the physical body.[30] Jos Manuel Rodriguez Delgado writes, “In present popular usage, soul and mind are not clearly differentiated and some people, more or less consciously, still feel that the soul, and perhaps the mind, may enter or leave the body as independent entities.”[31]

Dualism and monism are the two major schools of thought that attempt to resolve the mindbody problem. Dualism is the position that mind and body are in some way separate from each other. It can be traced back to Plato,[32] Aristotle[33][34][35] and the Nyaya, Samkhya and Yoga schools of Hindu philosophy,[36] but it was most precisely formulated by Ren Descartes in the 17th century.[37] Substance dualists argue that the mind is an independently existing substance, whereas Property dualists maintain that the mind is a group of independent properties that emerge from and cannot be reduced to the brain, but that it is not a distinct substance.[38]

The 20th century philosopher Martin Heidegger suggested that subjective experience and activity (i.e. the “mind”) cannot be made sense of in terms of Cartesian “substances” that bear “properties” at all (whether the mind itself is thought of as a distinct, separate kind of substance or not). This is because the nature of subjective, qualitative experience is incoherent in terms of or semantically incommensurable with the concept of substances that bear properties. This is a fundamentally ontological argument.[39]

The philosopher of cognitive science Daniel Dennett, for example, argues there is no such thing as a narrative center called the “mind”, but that instead there is simply a collection of sensory inputs and outputs: different kinds of “software” running in parallel.[40] Psychologist B.F. Skinner argued that the mind is an explanatory fiction that diverts attention from environmental causes of behavior;[41] he considered the mind a “black box” and thought that mental processes may be better conceived of as forms of covert verbal behavior.[42][43]

Philosopher David Chalmers has argued that the third person approach to uncovering mind and consciousness is not effective, such as looking into other’s brains or observing human conduct, but that a first person approach is necessary. Such a first person perspective indicates that the mind must be conceptualized as something distinct from the brain.

The mind has also been described as manifesting from moment to moment, one thought moment at a time as a fast flowing stream, where sense impressions and mental phenomena are constantly changing.[8][7]

Monism is the position that mind and body are not physiologically and ontologically distinct kinds of entities. This view was first advocated in Western Philosophy by Parmenides in the 5th Century BC and was later espoused by the 17th Century rationalist Baruch Spinoza.[44] According to Spinoza’s dual-aspect theory, mind and body are two aspects of an underlying reality which he variously described as “Nature” or “God”.

The most common monisms in the 20th and 21st centuries have all been variations of physicalism; these positions include behaviorism, the type identity theory, anomalous monism and functionalism.[45]

Many modern philosophers of mind adopt either a reductive or non-reductive physicalist position, maintaining in their different ways that the mind is not something separate from the body.[45] These approaches have been particularly influential in the sciences, e.g. in the fields of sociobiology, computer science, evolutionary psychology and the various neurosciences.[46][47][48][49] Other philosophers, however, adopt a non-physicalist position which challenges the notion that the mind is a purely physical construct.

Continued progress in neuroscience has helped to clarify many of these issues, and its findings have been taken by many to support physicalists’ assertions.[55][56] Nevertheless, our knowledge is incomplete, and modern philosophers of mind continue to discuss how subjective qualia and the intentional mental states can be naturally explained.[57][58]

Neuroscience studies the nervous system, the physical basis of the mind. At the systems level, neuroscientists investigate how biological neural networks form and physiologically interact to produce mental functions and content such as reflexes, multisensory integration, motor coordination, circadian rhythms, emotional responses, learning, and memory. At a larger scale, efforts in computational neuroscience have developed large-scale models that simulate simple, functioning brains.[59] As of 2012, such models include the thalamus, basal ganglia, prefrontal cortex, motor cortex, and occipital cortex, and consequentially simulated brains can learn, respond to visual stimuli, coordinate motor responses, form short-term memories, and learn to respond to patterns. Currently, researchers aim to program the hippocampus and limbic system, hypothetically imbuing the simulated mind with long-term memory and crude emotions.[60]

By contrast, affective neuroscience studies the neural mechanisms of personality, emotion, and mood primarily through experimental tasks.

Cognitive science examines the mental functions that give rise to information processing, termed cognition. These include perception, attention, working memory, long-term memory, producing and understanding language, learning, reasoning, problem solving, and decision making. Cognitive science seeks to understand thinking “in terms of representational structures in the mind and computational procedures that operate on those structures”.[61]

Psychology is the scientific study of human behavior, mental functioning, and experience. As both an academic and applied discipline, Psychology involves the scientific study of mental processes such as perception, cognition, emotion, personality, as well as environmental influences, such as social and cultural influences, and interpersonal relationships, in order to devise theories of human behavior. Psychological patterns can be understood as low cost ways of information processing.[62] Psychology also refers to the application of such knowledge to various spheres of human activity, including problems of individuals’ daily lives and the treatment of mental health problems.

Psychology differs from the other social sciences (e.g. anthropology, economics, political science, and sociology) due to its focus on experimentation at the scale of the individual, or individuals in small groups as opposed to large groups, institutions or societies. Historically, psychology differed from biology and neuroscience in that it was primarily concerned with mind rather than brain. Modern psychological science incorporates physiological and neurological processes into its conceptions of perception, cognition, behaviour, and mental disorders.

By analogy with the health of the body, one can speak metaphorically of a state of health of the mind, or mental health. Merriam-Webster defines mental health as “A state of emotional and psychological well-being in which an individual is able to use his or her cognitive and emotional capabilities, function in society, and meet the ordinary demands of everyday life.” According to the World Health Organization (WHO), there is no one “official” definition of mental health. Cultural differences, subjective assessments, and competing professional theories all affect how “mental health” is defined. In general, most experts agree that “mental health” and “mental disorder” are not opposites. In other words, the absence of a recognized mental disorder is not necessarily an indicator of mental health.

One way to think about mental health is by looking at how effectively and successfully a person functions. Feeling capable and competent; being able to handle normal levels of stress, maintaining satisfying relationships, and leading an independent life; and being able to “bounce back,” or recover from difficult situations, are all signs of mental health.

Psychotherapy is an interpersonal, relational intervention used by trained psychotherapists to aid clients in problems of living. This usually includes increasing individual sense of well-being and reducing subjective discomforting experience. Psychotherapists employ a range of techniques based on experiential relationship building, dialogue, communication and behavior change and that are designed to improve the mental health of a client or patient, or to improve group relationships (such as in a family). Most forms of psychotherapy use only spoken conversation, though some also use various other forms of communication such as the written word, art, drama, narrative story, or therapeutic touch. Psychotherapy occurs within a structured encounter between a trained therapist and client(s). Purposeful, theoretically based psychotherapy began in the 19th century with psychoanalysis; since then, scores of other approaches have been developed and continue to be created.

Animal cognition, or cognitive ethology, is the title given to a modern approach to the mental capacities of animals. It has developed out of comparative psychology, but has also been strongly influenced by the approach of ethology, behavioral ecology, and evolutionary psychology. Much of what used to be considered under the title of “animal intelligence” is now thought of under this heading. Animal language acquisition, attempting to discern or understand the degree to which animal cognition can be revealed by linguistics-related study, has been controversial among cognitive linguists.

In 1950 Alan M. Turing published “Computing machinery and intelligence” in Mind, in which he proposed that machines could be tested for intelligence using questions and answers. This process is now named the Turing Test. The term Artificial Intelligence (AI) was first used by John McCarthy who considered it to mean “the science and engineering of making intelligent machines”.[64] It can also refer to intelligence as exhibited by an artificial (man-made, non-natural, manufactured) entity. AI is studied in overlapping fields of computer science, psychology, neuroscience and engineering, dealing with intelligent behavior, learning and adaptation and usually developed using customized machines or computers.

Research in AI is concerned with producing machines to automate tasks requiring intelligent behavior. Examples include control, planning and scheduling, the ability to answer diagnostic and consumer questions, handwriting, natural language, speech and facial recognition. As such, the study of AI has also become an engineering discipline, focused on providing solutions to real life problems, knowledge mining, software applications, strategy games like computer chess and other video games. One of the biggest limitations of AI is in the domain of actual machine comprehension. Consequentially natural language understanding and connectionism (where behavior of neural networks is investigated) are areas of active research and development.

The debate about the nature of the mind is relevant to the development of artificial intelligence. If the mind is indeed a thing separate from or higher than the functioning of the brain, then hypothetically it would be much more difficult to recreate within a machine, if it were possible at all. If, on the other hand, the mind is no more than the aggregated functions of the brain, then it will be possible to create a machine with a recognisable mind (though possibly only with computers much different from today’s), by simple virtue of the fact that such a machine already exists in the form of the human brain.

Many religions associate spiritual qualities to the human mind. These are often tightly connected to their mythology and ideas of afterlife.

The Indian philosopher-sage Sri Aurobindo attempted to unite the Eastern and Western psychological traditions with his integral psychology, as have many philosophers and New religious movements. Judaism teaches that “moach shalit al halev”, the mind rules the heart. Humans can approach the Divine intellectually, through learning and behaving according to the Divine Will as enclothed in the Torah, and use that deep logical understanding to elicit and guide emotional arousal during prayer. Christianity has tended to see the mind as distinct from the soul (Greek nous) and sometimes further distinguished from the spirit. Western esoteric traditions sometimes refer to a mental body that exists on a plane other than the physical. Hinduism’s various philosophical schools have debated whether the human soul (Sanskrit atman) is distinct from, or identical to, Brahman, the divine reality. Taoism sees the human being as contiguous with natural forces, and the mind as not separate from the body. Confucianism sees the mind, like the body, as inherently perfectible.

Buddhist teachings explain the moment-to-moment manifestation of the mind-stream.[7][8] The components that make up the mind are known as the five aggregates (i.e., material form, feelings, perception, volition, and sensory consciousness), which arise and pass away continuously. The arising and passing of these aggregates in the present moment is described as being influenced by five causal laws: biological laws, psychological laws, physical laws, volitional laws, and universal laws.[8][7] The Buddhist practice of mindfulness involves attending to this constantly changing mind-stream.

According to Buddhist philosopher Dharmakirti, the mind has two fundamental qualities: “clarity and cognizes”. If something is not those two qualities, it cannot validly be called mind. “Clarity” refers to the fact that mind has no color, shape, size, location, weight, or any other physical characteristic, and “cognizes” that it functions to know or perceive objects.[65] “Knowing” refers to the fact that mind is aware of the contents of experience, and that, in order to exist, mind must be cognizing an object. You cannot have a mind whose function is to cognize an object existing without cognizing an object.

Mind, in Buddhism, is also described as being “space-like” and “illusion-like”. Mind is space-like in the sense that it is not physically obstructive. It has no qualities which would prevent it from existing. In Mahayana Buddhism, mind is illusion-like in the sense that it is empty of inherent existence. This does not mean it does not exist, it means that it exists in a manner that is counter to our ordinary way of misperceiving how phenomena exist, according to Buddhism. When the mind is itself cognized properly, without misperceiving its mode of existence, it appears to exist like an illusion. There is a big difference however between being “space and illusion” and being “space-like” and “illusion-like”. Mind is not composed of space, it just shares some descriptive similarities to space. Mind is not an illusion, it just shares some descriptive qualities with illusions.

Buddhism posits that there is no inherent, unchanging identity (Inherent I, Inherent Me) or phenomena (Ultimate self, inherent self, Atman, Soul, Self-essence, Jiva, Ishvara, humanness essence, etc.) which is the experiencer of our experiences and the agent of our actions. In other words, human beings consist of merely a body and a mind, and nothing extra. Within the body there is no part or set of parts which is by itself or themselves the person. Similarly, within the mind there is no part or set of parts which are themselves “the person”. A human being merely consists of five aggregates, or skandhas and nothing else.

In the same way, “mind” is what can be validly conceptually labelled onto our mere experience of clarity and knowing. There is something separate and apart from clarity and knowing which is “Awareness”, in Buddhism. “Mind” is that part of experience the sixth sense door, which can be validly referred to as mind by the concept-term “mind”. There is also not “objects out there, mind in here, and experience somewhere in-between”. There is a third thing called “awareness” which exists being aware of the contents of mind and what mind cognizes. There are five senses (arising of mere experience: shapes, colors, the components of smell, components of taste, components of sound, components of touch) and mind as the sixth institution; this means, expressly, that there can be a third thing called “awareness” and a third thing called “experiencer who is aware of the experience”. This awareness is deeply related to “no-self” because it does not judge the experience with craving or aversion.

Clearly, the experience arises and is known by mind, but there is a third thing calls Sati what is the “real experiencer of the experience” that sits apart from the experience and which can be aware of the experience in 4 levels. (Maha Sathipatthana Sutta.)

To be aware of these four levels one needs to cultivate equanimity toward Craving and Aversion. This is Called Vipassana which is different from the way of reacting with Craving and Aversion. This is the state of being aware and equanimous to the complete experience of here and now. This is the way of Buddhism, with regards to mind and the ultimate nature of minds (and persons).

Due to the mindbody problem, a lot of interest and debate surrounds the question of what happens to one’s conscious mind as one’s body dies. During brain death all brain function permanently ceases, according to the current neuroscientific view which sees these processes as the physical basis of mental phenomena, the mind fails to survive brain death and ceases to exist. This permanent loss of consciousness after death is often called “eternal oblivion”. The belief that some spiritual or incorporeal component (soul) exists and that it is preserved after death is described by the term “afterlife”.

Parapsychology is the scientific study of certain types of paranormal phenomena, or of phenomena which appear to be paranormal,[66] for instance precognition, telekinesis and telepathy.

The term is based on the Greek para (beside/beyond), psyche (soul/mind), and logos (account/explanation) and was coined by psychologist Max Dessoir in or before 1889.[67] J. B. Rhine later popularized “parapsychology” as a replacement for the earlier term “psychical research”, during a shift in methodologies which brought experimental methods to the study of psychic phenomena.[67] Parapsychology is controversial, with many scientists believing that psychic abilities have not been demonstrated to exist.[68][69][70][71][72] The status of parapsychology as a science has also been disputed,[73] with many scientists regarding the discipline as pseudoscience.[74][75][76]

Read the original:

Mind – Wikipedia

The virtual afterlife will transform humanity | Aeon Essays

In the late 1700s, machinists started making music boxes: intricate little mechanisms that could play harmonies and melodies by themselves. Some incorporated bells, drums, organs, even violins, all coordinated by a rotating cylinder. The more ambitious examples were Lilliputian orchestras, such as the Panharmonicon, invented in Vienna in 1805, or the mass-produced Orchestrion that came along in Dresden in 1851.

But the technology had limitations. To make a convincing violin sound, one had to create a little simulacrum of a violin quite an engineering feat. How to replicate a trombone? Or an oboe? The same way, of course. The artisans assumed that an entire instrument had to be copied in order to capture its distinctive tone. The metal, the wood, the reed, the shape, the exact resonance, all of it had to be mimicked. How else were you going to create an orchestral sound? The task was discouragingly difficult.

Then, in 1877, the American inventor Thomas Edison introduced the first phonograph, and the history of recorded music changed. It turns out that, in order to preserve and recreate the sound of an instrument, you dont need to know everything about it, its materials or its physical structure. You dont need a miniature orchestra in a cabinet. All you need is to focus on the one essential part of it. Record the sound waves, turn them into data, and give them immortality.

Subscribe to Aeons Newsletter

Imagine a future in which your mind never dies. When your body begins to fail, a machine scans your brain in enough detail to capture its unique wiring. A computer system uses that data to simulate your brain. It wont need to replicate every last detail. Like the phonograph, it will strip away the irrelevant physical structures, leaving only the essence of the patterns. And then there is a second you, with your memories, your emotions, your way of thinking and making decisions, translated onto computer hardware as easily as we copy a text file these days.

That second version of you could live in a simulated world and hardly know the difference. You could walk around a simulated city street, feel a cool breeze, eat at a caf, talk to other simulated people, play games, watch movies, enjoy yourself. Pain and disease would be programmed out of existence. If youre still interested in the world outside your simulated playground, you could Skype yourself into board meetings or family Christmas dinners.

This vision of a virtual-reality afterlife, sometimes called uploading, entered the popular imagination via the short story The Tunnel Under the World (1955) by the American science-fiction writer Frederik Pohl, though it also got a big boost from the movie Tron (1982). Then The Matrix (1999) introduced the mainstream public to the idea of a simulated reality, albeit one into which real brains were jacked. More recently, these ideas have caught on outside fiction. The Russian multimillionaire Dmitry Itskov made the news by proposing to transfer his mind into a robot, thereby achieving immortality. Only a few months ago, the British physicist Stephen Hawking speculated that a computer-simulated afterlife might become technologically feasible.

It is tempting to ignore these ideas as just another science-fiction trope, a nerd fantasy. But something about it wont leave me alone. I am a neuroscientist. I study the brain. For nearly 30 years, Ive studied how sensory information gets taken in and processed, how movements are controlled and, lately, how networks of neurons might compute the spooky property of awareness. I find myself asking, given what we know about the brain, whether we really could upload someones mind to a computer. And my best guess is: yes, almost certainly. That raises a host of further questions, not least: what will this technology do to us psychologically and culturally? Here, the answer seems just as emphatic, if necessarily murky in the details.

It will utterly transform humanity, probably in ways that are more disturbing than helpful. It will change us far more than the internet did, though perhaps in a similar direction. Even if the chances of all this coming to pass were slim, the implications are so dramatic that it would be wise to think them through seriously. But Im not sure the chances are slim. In fact, the more I think about this possible future, the more it seems inevitable.

If did you want to capture the music of the mind, where should you start? A lot of biological machinery goes into a human brain. A hundred billion neurons are connected in complicated patterns, each neurone constantly taking in and sending signals. The signals are the result of ions leaking in and out of cell membranes, their flow regulated by tiny protein pores and pumps. Each connection between neurons, each synapse, is itself a bewildering mechanism of proteins that are constantly in flux.

It is a daunting task just to make a plausible simulation of a single neurone, though this has already been done to an approximation. Simulating a whole network of interacting neurons, each one with truly realistic electrical and chemical properties, is beyond current technology. Then there are the complicating factors. Blood vessels react in subtle ways, allowing oxygen to be distributed more to this or that part of the brain as needed. There are also the glia, tiny cells that vastly outnumber neurons. Glia help neurons function in ways that are largely not understood: take them away and none of the synapses or signals work properly. Nobody, as far as I know, has tried a computer simulation of neurons, glia, and blood flow. But perhaps they wouldnt have to. Remember Edisons breakthrough with the phonograph: to faithfully replicate a sound, it turns out you dont also have to replicate the instrument that originally produced it.

So what is the right level of detail to copy if you want to capture a persons mind? Of all the biological complexity, what patterns in the brain must be reproduced to capture the information, the computation, and the consciousness? One of the most common suggestions is that the pattern of connectivity among neurons contains the essence of the machine. If you could measure how each neurone connects to its neighbours, youd have all the data you need to re-create that mind. An entire field of study has grown up around neural network models, computer simulations of drastically simplified neurons and synapses. These models leave out the details of glia, blood flow, membranes, proteins, ions and so on. They only consider how each neurone is connected to the others. They are wiring diagrams.

Simple computer models of neurons, hooked together by simple synapses, are capable of enormous complexity. Such network models have been around for decades, and they differ in interesting ways from standard computer programs. For one thing, they are able to learn, as neurons subtly adjust their connections to each other. They can solve problems that are difficult for traditional programs, and are particularly good at taking noisy input and compensating for the noise. Give a neural net a fuzzy, spotty photograph, and it might still be able to categorise the object depicted, filling in the gaps and blips in the image something called pattern completion.

Despite these remarkably human-like capacities, neural network models are not yet the answer to simulating a brain. Nobody knows how to build one at an appropriate scale. Some notable attempts are being made, such as the Blue Brain project and its successor, the EU-funded Human Brain Project, both run by the Swiss Federal Institute of Technology in Lausanne. But even if computers were powerful enough to simulate 100 billion neurons and computer technology is pretty close to that capability the real problem is that nobody knows how to wire up such a large artificial network.

In some ways, the scientific problem of understanding the human brain is similar to the problem of human genetics. If you want to understand the human genome properly, an engineer might start with the basic building blocks of DNA and construct an animal, one base pair at a time, until she has created something human-like. But given the massive complexity of the human genome more than 3 billion base pairs that approach would be prohibitively difficult at the present time. Another approach would be to read the genome that we already have in real people. It is a lot easier to copy something complicated than to re-engineer it from scratch. The human genome project of the 1990s accomplished that, and even though nobody really understands it very well, at least we have a lot of copies of it on file to study.

The same strategy might be useful on the human brain. Instead of trying to wire up an artificial brain from first principles, or training a neural network over some absurdly long period until it becomes human-like, why not copy the wiring already present in a real brain? In 2005, two scientists, Olaf Sporns, professor of brain sciences at Indiana University, and Patric Hagmann, neuroscientist at the University of Lausanne, independently coined the term connectome to refer to a map or wiring diagram of every neuronal connection in a brain. By analogy to the human genome, which contains all the information necessary to grow a human being, the human connectome in theory contains all the information necessary to wire up a functioning human brain. If the basic premise of neural network modelling is correct, then the essence of a human mind is contained in its pattern of connectivity. Your connectome, simulated in a computer, would recreate your conscious mind.

It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head

Could we ever map a complete human connectome? Well, scientists have done it for a roundworm. Theyve done it for small parts of a mouse brain. A very rough, large-scale map of connectivity in the human brain is already available, though nothing like a true map of every idiosyncratic neurone and synapse in a particular persons head. The National Institutes of Health in the US is currently funding the Human Connectome Project, an effort to map a human brain in as much detail as possible. I admit to a certain optimism toward the project. The technology for brain scanning improves all the time. Right now, magnetic resonance imaging (MRI) is at the forefront. High-resolution scans of volunteers are revealing the connectivity of the human brain in more detail than anyone ever thought possible. Other, even better technologies will be invented. It seems a no-brainer (excuse the pun) that we will be able to scan, map, and store the data on every neuronal connection within a persons head. It is only a matter of time, and a timescale of five to 10 decades seems about right.

Of course, nobody knows if the connectome really does contain all the essential information about the mind. Some of it might be encoded in other ways. Hormones can diffuse through the brain. Signals can combine and interact through other means besides synaptic connections. Maybe certain other aspects of the brain need to be scanned and copied to make a high-quality simulation. Just as the music recording industry took a century of tinkering to achieve the impressive standards of the present day, the mind-recording industry will presumably require a long process of refinement.

That wont be soon enough for some of us. One of the basic facts about people is that they dont like to die. They dont like their loved ones or their pets to die. Some of them already pay enormous sums to freeze themselves, or even (somewhat gruesomely) to have their corpses decapitated and their heads frozen on the off-chance that a future technology will successfully revive them. These kinds of people will certainly pay for a spot in a virtual afterlife. And as the technology advances and the public starts to see the possibilities, the incentives will increase.

One might say (at risk of being crass) that the afterlife is a natural outgrowth of the entertainment industry. Think of the fun to be had as a simulated you in a simulated environment. You could go on a safari through Middle Earth. You could live in Hogwarts, where wands and incantations actually do produce magical results. You could live in a photogenic, outdoor, rolling country, a simulation of the African plains, with or without the tsetse flies as you wish. You could live on a simulation of Mars. You could move easily from one entertainment to the next. You could keep in touch with your living friends through all the usual social media.

I have heard people say that the technology will never catch on. People wont be tempted because a duplicate of you, no matter how realistic, is still not you. But I doubt that such existential concerns will have much of an impact once the technology arrives. You already wake up every day as a marvellous copy of a previous you, and nobody has paralysing metaphysical concerns about that. If you die and are replaced by a really good computer simulation, itll just seem to you like you entered a scanner and came out somewhere else. From the point of view of continuity, youll be missing some memories. If you had your annual brain-backup, say, eight months earlier, youll wake up missing those eight months. But you will still feel like you, and your friends and family can fill you in on what you missed. Some groups might opt out the Amish of information technology but the mainstream will presumably flock to the new thing.

And then what? Well, such a technology would change the definition of what it means to be an individual and what it means to be alive. For starters, it seems inevitable that we will tend to treat human life and death much more casually. People will be more willing to put themselves and others in danger. Perhaps they will view the sanctity of life in the same contemptuous way that the modern e-reader crowd views old fogeys who talk about the sanctity of a cloth-bound, hardcover book. Then again, how will we view the sanctity of digital life? Will simulated people, living in an artificial world, have the same human rights as the rest of us? Would it be a crime to pull the plug on a simulated person? Is it ethical to experiment on simulated consciousness? Can a scientist take a try at reproducing Jim, make a bad copy, casually delete the hapless first iteration, and then try again until he gets a satisfactory version? This is just the tip of a nasty philosophical iceberg we seem to be sailing towards.

In many religions, a happy afterlife is a reward. In an artificial one, due to inevitable constraints on information processing, spots are likely to be competitive. Who decides who gets in? Do the rich get served first? Is it merit-based? Can the promise of resurrection be dangled as a bribe to control and coerce people? Will it be withheld as a punishment? Will a special torture version of the afterlife be constructed for severe punishment? Imagine how controlling a religion would become if it could preach about an actual, objectively provable heaven and hell.

Then there are the issues that will arise if people deliberately run multiple copies of themselves at the same time, one in the real world and others in simulations. The nature of individuality, and individual responsibility, becomes rather fuzzy when you can literally meet yourself coming the other way. What, for instance, is the social expectation for married couples in a simulated afterlife? Do you stay together? Do some versions of you stay together and other versions separate?

If a brain has been replaced by a few billion lines of code, we might understand how to edit any destructive emotions right out of it

Then again, divorce might seem a little melodramatic if irreconcilable differences become a thing of the past. If your brain has been replaced by a few billion lines of code, perhaps eventually we will understand how to edit any destructive emotions right out of it. Or perhaps we should imagine an emotional system that is standard-issue, tuned and mainstreamed, such that the rest of your simulated mind can be grafted onto it. You lose the battle-scarred, broken emotional wiring you had as a biological agent and get a box-fresh set instead. This is not entirely far-fetched; indeed, it might make sense on economic rather than therapeutic grounds. The brain is roughly divisible into a cortex and a brainstem. Attaching a standard-issue brainstem to a persons individualised, simulated cortex might turn out to be the most cost-effective way to get them up and running.

So much for the self. What about the world? Will the simulated environment necessarily mimic physical reality? That seems the obvious way to start out, after all. Create a city. Create a blue sky, a pavement, the smell of food. Sooner or later, though, people will realise that a simulation can offer experiences that would be impossible in the real world. The electronic age changed music, not merely mimicking physical instruments but offering new potentials in sound. In the same way, a digital world could go to some unexpected places.

To give just one disorientating example, it might include any number of dimensions in space and time. The real world looks to us to have three spatial dimensions and one temporal one, but, as mathematicians and physicists know, more are possible. Its already possible to programme a video game in which players move through a maze of four spatial dimensions. It turns out that, with a little practice, you can gain a fair degree of intuition for the four-dimensional regime (I published a study on this in the Journal of Experimental Psychology in 2008). To a simulated mind in a simulated world, the confines of physical reality would become irrelevant. If you dont have a body any longer, why pretend?

All of the changes described above, as exotic as they are and disturbing as some of them might seem, are in a sense minor. They are about individual minds and individual experiences. If uploading were only a matter of exotic entertainment, literalising peoples psychedelic fantasies, then it would be of limited significance. If simulated minds can be run in a simulated world, then the most transformative change, the deepest shift in human experience, would be the loss of individuality itself the integration of knowledge into a single intelligence, smarter and more capable than anything that could exist in the natural world.

You wake up in a simulated welcome hall in some type of simulated body with standard-issue simulated clothes. What do you do? Maybe you take a walk and look around. Maybe you try the food. Maybe you play some tennis. Maybe go watch a movie. But sooner or later, most people will want to reach for a cell phone. Send a tweet from paradise. Text a friend. Get on Facebook. Connect through social media. But here is the quirk of uploaded minds: the rules of social media are transformed.

Real life, our life, will shrink in importance until it becomes a kind of larval phase

In the real world, two people can share experiences and thoughts. But lacking a USB port in our heads, we cant directly merge our minds. In a simulated world, that barrier falls. A simple app, and two people will be able to join thoughts directly with each other. Why not? Its a logical extension. We humans are hyper-social. We love to network. We already live in a half-virtual world of minds linked to minds. In an artificial afterlife, given a few centuries and few tweaks to the technology, what is to stop people from merging into berpeople who are combinations of wisdom, experience, and memory beyond anything possible in biology? Two minds, three minds, 10, pretty soon everyone is linked mind-to-mind. The concept of separate identity is lost. The need for simulated bodies walking in a simulated world is lost. The need for simulated food and simulated landscapes and simulated voices disappears. Instead, a single platform of thought, knowledge, and constant realisation emerges. What starts out as an artificial way to preserve minds after death gradually takes on an emphasis of its own. Real life, our life, shrinks in importance until it becomes a kind of larval phase. Whatever quirky experiences you might have had during your biological existence, they would be valuable only if they can be added to the longer-lived and much more sophisticated machine.

I am not talking about utopia. To me, this prospect is three parts intriguing and seven parts horrifying. I am genuinely glad I wont be around. This will be a new phase of human existence that is just as messy and difficult as any other phase has been, one as alien to us now as the internet age would have been to a Roman citizen 2,000 years ago; as alien as Roman society would have been to a Natufian hunter-gatherer 10,000 years before that. Such is progress. We always manage to live more-or-less comfortably in a world that would have frightened and offended the previous generations.

Syndicate this Essay

More here:

The virtual afterlife will transform humanity | Aeon Essays

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

More here:

Mind uploading – Wikipedia

Mind Uploading

Welcome

Minduploading.org is a collection of pages and articles designed to explore the concepts underlying mind uploading. The articles are intended to be a readable introduction to the basic technical and philosophical topics covering mind uploading and substrate-independent minds. The focus is on careful definitions of the common terms and what the implications are if mind uploading becomes possible.

Mind uploading is an ongoing area of active research, bringing together ideas from neuroscience, computer science, engineering, and philosophy. This site refers to a number of participants and researchers who are helping to make mind uploading possible.

Realistically, mind uploading likely lies many decades in the future, but the short-term offers the possibility of advanced neural prostheses that may benefit us.

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of transferring the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Javas design principle write once, run everywhere makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

See the original post:

Mind Uploading

Mind – Wikipedia

The mind is a set of cognitive faculties including consciousness, perception, thinking, judgement, language and memory. It is usually defined as the faculty of an entity’s thoughts and consciousness.[3] It holds the power of imagination, recognition, and appreciation, and is responsible for processing feelings and emotions, resulting in attitudes and actions.[citation needed]

There is a lengthy tradition in philosophy, religion, psychology, and cognitive science about what constitutes a mind and what are its distinguishing properties.

One open question regarding the nature of the mind is the mindbody problem, which investigates the relation of the mind to the physical brain and nervous system.[4] Older viewpoints included dualism and idealism, which considered the mind somehow non-physical.[4] Modern views often center around physicalism and functionalism, which hold that the mind is roughly identical with the brain or reducible to physical phenomena such as neuronal activity.[5][need quotation to verify], though dualism and idealism continue to have many supporters. Another question concerns which types of beings are capable of having minds.[citation needed] For example, whether mind is exclusive to humans, possessed also by some or all animals, by all living things, whether it is a strictly definable characteristic at all, or whether mind can also be a property of some types of human-made machines.[citation needed]

Whatever its nature, it is generally agreed that mind is that which enables a being to have subjective awareness and intentionality towards their environment, to perceive and respond to stimuli with some kind of agency, and to have consciousness, including thinking and feeling.[citation needed]

The concept of mind is understood in many different ways by many different cultural and religious traditions. Some see mind as a property exclusive to humans whereas others ascribe properties of mind to non-living entities (e.g. panpsychism and animism), to animals and to deities. Some of the earliest recorded speculations linked mind (sometimes described as identical with soul or spirit) to theories concerning both life after death, and cosmological and natural order, for example in the doctrines of Zoroaster, the Buddha, Plato, Aristotle, and other ancient Greek, Indian and, later, Islamic and medieval European philosophers.

Important philosophers of mind include Plato, Descartes, Leibniz, Locke, Berkeley, Hume, Kant, Hegel, Schopenhauer, Searle, Dennett, Fodor, Nagel, and Chalmers.[6] Psychologists such as Freud and James, and computer scientists such as Turing and Putnam developed influential theories about the nature of the mind. The possibility of non-human minds is explored in the field of artificial intelligence, which works closely in relation with cybernetics and information theory to understand the ways in which information processing by nonbiological machines is comparable or different to mental phenomena in the human mind.[citation needed]

The mind is also portrayed as the stream of consciousness where sense impressions and mental phenomena are constantly changing[7][8]

The original meaning of Old English gemynd was the faculty of memory, not of thought in general.[citation needed] Hence call to mind, come to mind, keep in mind, to have mind of, etc. The word retains this sense in Scotland.[9] Old English had other words to express “mind”, such as hyge “mind, spirit”.[citation needed]

The meaning of “memory” is shared with Old Norse, which has munr. The word is originally from a PIE verbal root *men-, meaning “to think, remember”, whence also Latin mens “mind”, Sanskrit manas “mind” and Greek “mind, courage, anger”.

The generalization of mind to include all mental faculties, thought, volition, feeling and memory, gradually develops over the 14th and 15th centuries.[10]

The attributes that make up the mind is debated. Some psychologists argue that only the “higher” intellectual functions constitute mind, particularly reason and memory.[11] In this view the emotions love, hate, fear, and joy are more primitive or subjective in nature and should be seen as different from the mind as such. Others argue that various rational and emotional states cannot be so separated, that they are of the same nature and origin, and should therefore be considered all part of it as mind.[citation needed]

In popular usage, mind is frequently synonymous with thought: the private conversation with ourselves that we carry on “inside our heads.”[12] Thus we “make up our minds,” “change our minds” or are “of two minds” about something. One of the key attributes of the mind in this sense is that it is a private sphere to which no one but the owner has access. No one else can “know our mind.” They can only interpret what we consciously or unconsciously communicate.[13]

Broadly speaking, mental faculties are the various functions of the mind, or things the mind can “do”.

Thought is a mental act that allows humans to make sense of things in the world, and to represent and interpret them in ways that are significant, or which accord with their needs, attachments, goals, commitments, plans, ends, desires, etc. Thinking involves the symbolic or semiotic mediation of ideas or data, as when we form concepts, engage in problem solving, reasoning, and making decisions. Words that refer to similar concepts and processes include deliberation, cognition, ideation, discourse and imagination.

Thinking is sometimes described as a “higher” cognitive function and the analysis of thinking processes is a part of cognitive psychology. It is also deeply connected with our capacity to make and use tools; to understand cause and effect; to recognize patterns of significance; to comprehend and disclose unique contexts of experience or activity; and to respond to the world in a meaningful way.

Memory is the ability to preserve, retain, and subsequently recall, knowledge, information or experience. Although memory has traditionally been a persistent theme in philosophy, the late nineteenth and early twentieth centuries also saw the study of memory emerge as a subject of inquiry within the paradigms of cognitive psychology. In recent decades, it has become one of the pillars of a new branch of science called cognitive neuroscience, a marriage between cognitive psychology and neuroscience.

Imagination is the activity of generating or evoking novel situations, images, ideas or other qualia in the mind. It is a characteristically subjective activity, rather than a direct or passive experience. The term is technically used in psychology for the process of reviving in the mind percepts of objects formerly given in sense perception. Since this use of the term conflicts with that of ordinary language, some psychologists have preferred to describe this process as “imaging” or “imagery” or to speak of it as “reproductive” as opposed to “productive” or “constructive” imagination. Things imagined are said to be seen in the “mind’s eye”. Among the many practical functions of imagination are the ability to project possible futures (or histories), to “see” things from another’s perspective, and to change the way something is perceived, including to make decisions to respond to, or enact, what is imagined.

Consciousness in mammals (this includes humans) is an aspect of the mind generally thought to comprise qualities such as subjectivity, sentience, and the ability to perceive the relationship between oneself and one’s environment. It is a subject of much research in philosophy of mind, psychology, neuroscience, and cognitive science. Some philosophers divide consciousness into phenomenal consciousness, which is subjective experience itself, and access consciousness, which refers to the global availability of information to processing systems in the brain.[14] Phenomenal consciousness has many different experienced qualities, often referred to as qualia. Phenomenal consciousness is usually consciousness of something or about something, a property known as intentionality in philosophy of mind.

Mental contents are those items that are thought of as being “in” the mind, and capable of being formed and manipulated by mental processes and faculties. Examples include thoughts, concepts, memories, emotions, percepts and intentions. Philosophical theories of mental content include internalism, externalism, representationalism and intentionality.[15]

Memetics is a theory of mental content based on an analogy with Darwinian evolution, which was originated by Richard Dawkins and Douglas Hofstadter in the 1980s. It is an evolutionary model of cultural information transfer. A meme, analogous to a gene, is an idea, belief, pattern of behaviour (etc.) “hosted” in one or more individual minds, and can reproduce itself from mind to mind. Thus what would otherwise be regarded as one individual influencing another to adopt a belief, is seen memetically as a meme reproducing itself.

In animals, the brain, or encephalon (Greek for “in the head”), is the control center of the central nervous system, responsible for thought. In most animals, the brain is located in the head, protected by the skull and close to the primary sensory apparatus of vision, hearing, equilibrioception, taste and olfaction. While all vertebrates have a brain, most invertebrates have either a centralized brain or collections of individual ganglia. Primitive animals such as sponges do not have a brain at all. Brains can be extremely complex. For example, the human brain contains around 86 billion neurons, each linked to as many as 10,000 others.[16][17]

Understanding the relationship between the brain and the mind mindbody problem is one of the central issues in the history of philosophy is a challenging problem both philosophically and scientifically.[18] There are three major philosophical schools of thought concerning the answer: dualism, materialism, and idealism. Dualism holds that the mind exists independently of the brain;[19] materialism holds that mental phenomena are identical to neuronal phenomena;[20] and idealism holds that only mental phenomena exist.[20]

Through most of history many philosophers found it inconceivable that cognition could be implemented by a physical substance such as brain tissue (that is neurons and synapses).[21] Descartes, who thought extensively about mind-brain relationships, found it possible to explain reflexes and other simple behaviors in mechanistic terms, although he did not believe that complex thought, and language in particular, could be explained by reference to the physical brain alone.[22]

The most straightforward scientific evidence of a strong relationship between the physical brain matter and the mind is the impact physical alterations to the brain have on the mind, such as with traumatic brain injury and psychoactive drug use.[23] Philosopher Patricia Churchland notes that this drug-mind interaction indicates an intimate connection between the brain and the mind.[24]

In addition to the philosophical questions, the relationship between mind and brain involves a number of scientific questions, including understanding the relationship between mental activity and brain activity, the exact mechanisms by which drugs influence cognition, and the neural correlates of consciousness.

Theoretical approaches to explain how mind emerges from the brain include connectionism, computationalism and Bayesian brain.

The evolution of human intelligence refers to several theories that aim to describe how human intelligence has evolved in relation to the evolution of the human brain and the origin of language.[25]

The timeline of human evolution spans some 7 million years, from the separation of the Pan genus until the emergence of behavioral modernity by 50,000 years ago. Of this timeline, the first 3 million years concern Sahelanthropus, the following 2 million concern Australopithecus, while the final 2 million span the history of actual Homo species (the Paleolithic).

Many traits of human intelligence, such as empathy, theory of mind, mourning, ritual, and the use of symbols and tools, are already apparent in great apes although in lesser sophistication than in humans.

There is a debate between supporters of the idea of a sudden emergence of intelligence, or “Great leap forward” and those of a gradual or continuum hypothesis.

Theories of the evolution of intelligence include:

Philosophy of mind is the branch of philosophy that studies the nature of the mind, mental events, mental functions, mental properties, consciousness and their relationship to the physical body. The mindbody problem, i.e. the relationship of the mind to the body, is commonly seen as the central issue in philosophy of mind, although there are other issues concerning the nature of the mind that do not involve its relation to the physical body.[30] Jos Manuel Rodriguez Delgado writes, “In present popular usage, soul and mind are not clearly differentiated and some people, more or less consciously, still feel that the soul, and perhaps the mind, may enter or leave the body as independent entities.”[31]

Dualism and monism are the two major schools of thought that attempt to resolve the mindbody problem. Dualism is the position that mind and body are in some way separate from each other. It can be traced back to Plato,[32] Aristotle[33][34][35] and the Nyaya, Samkhya and Yoga schools of Hindu philosophy,[36] but it was most precisely formulated by Ren Descartes in the 17th century.[37] Substance dualists argue that the mind is an independently existing substance, whereas Property dualists maintain that the mind is a group of independent properties that emerge from and cannot be reduced to the brain, but that it is not a distinct substance.[38]

The 20th century philosopher Martin Heidegger suggested that subjective experience and activity (i.e. the “mind”) cannot be made sense of in terms of Cartesian “substances” that bear “properties” at all (whether the mind itself is thought of as a distinct, separate kind of substance or not). This is because the nature of subjective, qualitative experience is incoherent in terms of or semantically incommensurable with the concept of substances that bear properties. This is a fundamentally ontological argument.[39]

The philosopher of cognitive science Daniel Dennett, for example, argues there is no such thing as a narrative center called the “mind”, but that instead there is simply a collection of sensory inputs and outputs: different kinds of “software” running in parallel.[40] Psychologist B.F. Skinner argued that the mind is an explanatory fiction that diverts attention from environmental causes of behavior;[41] he considered the mind a “black box” and thought that mental processes may be better conceived of as forms of covert verbal behavior.[42][43]

Philosopher David Chalmers has argued that the third person approach to uncovering mind and consciousness is not effective, such as looking into other’s brains or observing human conduct, but that a first person approach is necessary. Such a first person perspective indicates that the mind must be conceptualized as something distinct from the brain.

The mind has also been described as manifesting from moment to moment, one thought moment at a time as a fast flowing stream, where sense impressions and mental phenomena are constantly changing.[8][7]

Monism is the position that mind and body are not physiologically and ontologically distinct kinds of entities. This view was first advocated in Western Philosophy by Parmenides in the 5th Century BC and was later espoused by the 17th Century rationalist Baruch Spinoza.[44] According to Spinoza’s dual-aspect theory, mind and body are two aspects of an underlying reality which he variously described as “Nature” or “God”.

The most common monisms in the 20th and 21st centuries have all been variations of physicalism; these positions include behaviorism, the type identity theory, anomalous monism and functionalism.[45]

Many modern philosophers of mind adopt either a reductive or non-reductive physicalist position, maintaining in their different ways that the mind is not something separate from the body.[45] These approaches have been particularly influential in the sciences, e.g. in the fields of sociobiology, computer science, evolutionary psychology and the various neurosciences.[46][47][48][49] Other philosophers, however, adopt a non-physicalist position which challenges the notion that the mind is a purely physical construct.

Continued progress in neuroscience has helped to clarify many of these issues, and its findings have been taken by many to support physicalists’ assertions.[55][56] Nevertheless, our knowledge is incomplete, and modern philosophers of mind continue to discuss how subjective qualia and the intentional mental states can be naturally explained.[57][58]

Neuroscience studies the nervous system, the physical basis of the mind. At the systems level, neuroscientists investigate how biological neural networks form and physiologically interact to produce mental functions and content such as reflexes, multisensory integration, motor coordination, circadian rhythms, emotional responses, learning, and memory. At a larger scale, efforts in computational neuroscience have developed large-scale models that simulate simple, functioning brains.[59] As of 2012, such models include the thalamus, basal ganglia, prefrontal cortex, motor cortex, and occipital cortex, and consequentially simulated brains can learn, respond to visual stimuli, coordinate motor responses, form short-term memories, and learn to respond to patterns. Currently, researchers aim to program the hippocampus and limbic system, hypothetically imbuing the simulated mind with long-term memory and crude emotions.[60]

By contrast, affective neuroscience studies the neural mechanisms of personality, emotion, and mood primarily through experimental tasks.

Cognitive science examines the mental functions that give rise to information processing, termed cognition. These include perception, attention, working memory, long-term memory, producing and understanding language, learning, reasoning, problem solving, and decision making. Cognitive science seeks to understand thinking “in terms of representational structures in the mind and computational procedures that operate on those structures”.[61]

Psychology is the scientific study of human behavior, mental functioning, and experience. As both an academic and applied discipline, Psychology involves the scientific study of mental processes such as perception, cognition, emotion, personality, as well as environmental influences, such as social and cultural influences, and interpersonal relationships, in order to devise theories of human behavior. Psychological patterns can be understood as low cost ways of information processing.[62] Psychology also refers to the application of such knowledge to various spheres of human activity, including problems of individuals’ daily lives and the treatment of mental health problems.

Psychology differs from the other social sciences (e.g. anthropology, economics, political science, and sociology) due to its focus on experimentation at the scale of the individual, or individuals in small groups as opposed to large groups, institutions or societies. Historically, psychology differed from biology and neuroscience in that it was primarily concerned with mind rather than brain. Modern psychological science incorporates physiological and neurological processes into its conceptions of perception, cognition, behaviour, and mental disorders.

By analogy with the health of the body, one can speak metaphorically of a state of health of the mind, or mental health. Merriam-Webster defines mental health as “A state of emotional and psychological well-being in which an individual is able to use his or her cognitive and emotional capabilities, function in society, and meet the ordinary demands of everyday life.” According to the World Health Organization (WHO), there is no one “official” definition of mental health. Cultural differences, subjective assessments, and competing professional theories all affect how “mental health” is defined. In general, most experts agree that “mental health” and “mental disorder” are not opposites. In other words, the absence of a recognized mental disorder is not necessarily an indicator of mental health.

One way to think about mental health is by looking at how effectively and successfully a person functions. Feeling capable and competent; being able to handle normal levels of stress, maintaining satisfying relationships, and leading an independent life; and being able to “bounce back,” or recover from difficult situations, are all signs of mental health.

Psychotherapy is an interpersonal, relational intervention used by trained psychotherapists to aid clients in problems of living. This usually includes increasing individual sense of well-being and reducing subjective discomforting experience. Psychotherapists employ a range of techniques based on experiential relationship building, dialogue, communication and behavior change and that are designed to improve the mental health of a client or patient, or to improve group relationships (such as in a family). Most forms of psychotherapy use only spoken conversation, though some also use various other forms of communication such as the written word, art, drama, narrative story, or therapeutic touch. Psychotherapy occurs within a structured encounter between a trained therapist and client(s). Purposeful, theoretically based psychotherapy began in the 19th century with psychoanalysis; since then, scores of other approaches have been developed and continue to be created.

Animal cognition, or cognitive ethology, is the title given to a modern approach to the mental capacities of animals. It has developed out of comparative psychology, but has also been strongly influenced by the approach of ethology, behavioral ecology, and evolutionary psychology. Much of what used to be considered under the title of “animal intelligence” is now thought of under this heading. Animal language acquisition, attempting to discern or understand the degree to which animal cognition can be revealed by linguistics-related study, has been controversial among cognitive linguists.

In 1950 Alan M. Turing published “Computing machinery and intelligence” in Mind, in which he proposed that machines could be tested for intelligence using questions and answers. This process is now named the Turing Test. The term Artificial Intelligence (AI) was first used by John McCarthy who considered it to mean “the science and engineering of making intelligent machines”.[64] It can also refer to intelligence as exhibited by an artificial (man-made, non-natural, manufactured) entity. AI is studied in overlapping fields of computer science, psychology, neuroscience and engineering, dealing with intelligent behavior, learning and adaptation and usually developed using customized machines or computers.

Research in AI is concerned with producing machines to automate tasks requiring intelligent behavior. Examples include control, planning and scheduling, the ability to answer diagnostic and consumer questions, handwriting, natural language, speech and facial recognition. As such, the study of AI has also become an engineering discipline, focused on providing solutions to real life problems, knowledge mining, software applications, strategy games like computer chess and other video games. One of the biggest limitations of AI is in the domain of actual machine comprehension. Consequentially natural language understanding and connectionism (where behavior of neural networks is investigated) are areas of active research and development.

The debate about the nature of the mind is relevant to the development of artificial intelligence. If the mind is indeed a thing separate from or higher than the functioning of the brain, then hypothetically it would be much more difficult to recreate within a machine, if it were possible at all. If, on the other hand, the mind is no more than the aggregated functions of the brain, then it will be possible to create a machine with a recognisable mind (though possibly only with computers much different from today’s), by simple virtue of the fact that such a machine already exists in the form of the human brain.

Many religions associate spiritual qualities to the human mind. These are often tightly connected to their mythology and ideas of afterlife.

The Indian philosopher-sage Sri Aurobindo attempted to unite the Eastern and Western psychological traditions with his integral psychology, as have many philosophers and New religious movements. Judaism teaches that “moach shalit al halev”, the mind rules the heart. Humans can approach the Divine intellectually, through learning and behaving according to the Divine Will as enclothed in the Torah, and use that deep logical understanding to elicit and guide emotional arousal during prayer. Christianity has tended to see the mind as distinct from the soul (Greek nous) and sometimes further distinguished from the spirit. Western esoteric traditions sometimes refer to a mental body that exists on a plane other than the physical. Hinduism’s various philosophical schools have debated whether the human soul (Sanskrit atman) is distinct from, or identical to, Brahman, the divine reality. Taoism sees the human being as contiguous with natural forces, and the mind as not separate from the body. Confucianism sees the mind, like the body, as inherently perfectible.

Buddhist teachings explain the moment-to-moment manifestation of the mind-stream.[7][8] The components that make up the mind are known as the five aggregates (i.e., material form, feelings, perception, volition, and sensory consciousness), which arise and pass away continuously. The arising and passing of these aggregates in the present moment is described as being influenced by five causal laws: biological laws, psychological laws, physical laws, volitional laws, and universal laws.[8][7] The Buddhist practice of mindfulness involves attending to this constantly changing mind-stream.

According to Buddhist philosopher Dharmakirti, the mind has two fundamental qualities: “clarity and cognizes”. If something is not those two qualities, it cannot validly be called mind. “Clarity” refers to the fact that mind has no color, shape, size, location, weight, or any other physical characteristic, and “cognizes” that it functions to know or perceive objects.[65] “Knowing” refers to the fact that mind is aware of the contents of experience, and that, in order to exist, mind must be cognizing an object. You cannot have a mind whose function is to cognize an object existing without cognizing an object.

Mind, in Buddhism, is also described as being “space-like” and “illusion-like”. Mind is space-like in the sense that it is not physically obstructive. It has no qualities which would prevent it from existing. In Mahayana Buddhism, mind is illusion-like in the sense that it is empty of inherent existence. This does not mean it does not exist, it means that it exists in a manner that is counter to our ordinary way of misperceiving how phenomena exist, according to Buddhism. When the mind is itself cognized properly, without misperceiving its mode of existence, it appears to exist like an illusion. There is a big difference however between being “space and illusion” and being “space-like” and “illusion-like”. Mind is not composed of space, it just shares some descriptive similarities to space. Mind is not an illusion, it just shares some descriptive qualities with illusions.

Buddhism posits that there is no inherent, unchanging identity (Inherent I, Inherent Me) or phenomena (Ultimate self, inherent self, Atman, Soul, Self-essence, Jiva, Ishvara, humanness essence, etc.) which is the experiencer of our experiences and the agent of our actions. In other words, human beings consist of merely a body and a mind, and nothing extra. Within the body there is no part or set of parts which is by itself or themselves the person. Similarly, within the mind there is no part or set of parts which are themselves “the person”. A human being merely consists of five aggregates, or skandhas and nothing else.

In the same way, “mind” is what can be validly conceptually labelled onto our mere experience of clarity and knowing. There is something separate and apart from clarity and knowing which is “Awareness”, in Buddhism. “Mind” is that part of experience the sixth sense door, which can be validly referred to as mind by the concept-term “mind”. There is also not “objects out there, mind in here, and experience somewhere in-between”. There is a third thing called “awareness” which exists being aware of the contents of mind and what mind cognizes. There are five senses (arising of mere experience: shapes, colors, the components of smell, components of taste, components of sound, components of touch) and mind as the sixth institution; this means, expressly, that there can be a third thing called “awareness” and a third thing called “experiencer who is aware of the experience”. This awareness is deeply related to “no-self” because it does not judge the experience with craving or aversion.

Clearly, the experience arises and is known by mind, but there is a third thing calls Sati what is the “real experiencer of the experience” that sits apart from the experience and which can be aware of the experience in 4 levels. (Maha Sathipatthana Sutta.)

To be aware of these four levels one needs to cultivate equanimity toward Craving and Aversion. This is Called Vipassana which is different from the way of reacting with Craving and Aversion. This is the state of being aware and equanimous to the complete experience of here and now. This is the way of Buddhism, with regards to mind and the ultimate nature of minds (and persons).

Due to the mindbody problem, a lot of interest and debate surrounds the question of what happens to one’s conscious mind as one’s body dies. During brain death all brain function permanently ceases, according to the current neuroscientific view which sees these processes as the physical basis of mental phenomena, the mind fails to survive brain death and ceases to exist. This permanent loss of consciousness after death is often called “eternal oblivion”. The belief that some spiritual or incorporeal component (soul) exists and that it is preserved after death is described by the term “afterlife”.

Parapsychology is the scientific study of certain types of paranormal phenomena, or of phenomena which appear to be paranormal,[66] for instance precognition, telekinesis and telepathy.

The term is based on the Greek para (beside/beyond), psyche (soul/mind), and logos (account/explanation) and was coined by psychologist Max Dessoir in or before 1889.[67] J. B. Rhine later popularized “parapsychology” as a replacement for the earlier term “psychical research”, during a shift in methodologies which brought experimental methods to the study of psychic phenomena.[67] Parapsychology is controversial, with many scientists believing that psychic abilities have not been demonstrated to exist.[68][69][70][71][72] The status of parapsychology as a science has also been disputed,[73] with many scientists regarding the discipline as pseudoscience.[74][75][76]

Read more:

Mind – Wikipedia

Mind uploading – Wikipedia

Whole brain emulation (WBE), mind upload or brain upload (sometimes called “mind copying” or “mind transfer”) is the hypothetical futuristic process of scanning the mental state (including long-term memory and “self”) of a particular brain substrate and copying it to a computer. The computer could then run a simulation model of the brain’s information processing, such that it responds in essentially the same way as the original brain (i.e., indistinguishable from the brain for all relevant purposes) and experiences having a conscious mind.[1][2][3]

Mind uploading may potentially be accomplished by either of two methods: Copy-and-Transfer or gradual replacement of neurons. In the case of the former method, mind uploading would be achieved by scanning and mapping the salient features of a biological brain, and then by copying, transferring, and storing that information state into a computer system or another computational device. The simulated mind could be within a virtual reality or simulated world, supported by an anatomic 3D body simulation model. Alternatively the simulated mind could reside in a computer that is inside (or connected to) a (not necessarily humanoid) robot or a biological body in real life.[4]

Among some futurists and within the transhumanist movement, mind uploading is treated as an important proposed life extension technology. Some believe mind uploading is humanity’s current best option for preserving the identity of the species, as opposed to cryonics. Another aim of mind uploading is to provide a permanent backup to our “mind-file”, and a means for functional copies of human minds to survive a global disaster or interstellar space travels. Whole brain emulation is discussed by some futurists as a “logical endpoint”[4] of the topical computational neuroscience and neuroinformatics fields, both about brain simulation for medical research purposes. It is discussed in artificial intelligence research publications as an approach to strong AI. Computer-based intelligence such as an upload could think much faster than a biological human even if it were no more intelligent. A large-scale society of uploads might, according to futurists, give rise to a technological singularity, meaning a sudden time constant decrease in the exponential development of technology.[5] Mind uploading is a central conceptual feature of numerous science fiction novels and films.

Substantial mainstream research in related areas is being conducted in animal brain mapping and simulation, development of faster supercomputers, virtual reality, braincomputer interfaces, connectomics and information extraction from dynamically functioning brains.[6] According to supporters, many of the tools and ideas needed to achieve mind uploading already exist or are currently under active development; however, they will admit that others are, as yet, very speculative, but still in the realm of engineering possibility. Neuroscientist Randal Koene has formed a nonprofit organization called Carbon Copies to promote mind uploading research.

The human brain contains, on average, about 86 billion nerve cells called neurons, each individually linked to other neurons by way of connectors called axons and dendrites. Signals at the junctures (synapses) of these connections are transmitted by the release and detection of chemicals known as neurotransmitters. The established neuroscientific consensus is that the human mind is largely an emergent property of the information processing of this neural network.[citation needed]

Neuroscientists have stated that important functions performed by the mind, such as learning, memory, and consciousness, are due to purely physical and electrochemical processes in the brain and are governed by applicable laws. For example, Christof Koch and Giulio Tononi wrote in IEEE Spectrum:

“Consciousness is part of the natural world. It depends, we believe, only on mathematics and logic and on the imperfectly known laws of physics, chemistry, and biology; it does not arise from some magical or otherworldly quality.”[7]

The concept of mind uploading is based on this mechanistic view of the mind, and denies the vitalist view of human life and consciousness.[citation needed]

Eminent computer scientists and neuroscientists have predicted that specially programmed computers will be capable of thought and even attain consciousness, including Koch and Tononi,[7] Douglas Hofstadter,[8] Jeff Hawkins,[8] Marvin Minsky,[9] Randal A. Koene, and Rodolfo Llinas.[10]

Such an artificial intelligence capability might provide a computational substrate necessary for uploading.

However, even though uploading is dependent upon such a general capability, it is conceptually distinct from general forms of AI in that it results from dynamic reanimation of information derived from a specific human mind so that the mind retains a sense of historical identity (other forms are possible but would compromise or eliminate the life-extension feature generally associated with uploading). The transferred and reanimated information would become a form of artificial intelligence, sometimes called an infomorph or “nomorph”.[citation needed]

Many theorists have presented models of the brain and have established a range of estimates of the amount of computing power needed for partial and complete simulations.[4][citation needed] Using these models, some have estimated that uploading may become possible within decades if trends such as Moore’s law continue.[11]

In theory, if the information and processes of the mind can be disassociated from the biological body, they are no longer tied to the individual limits and lifespan of that body. Furthermore, information within a brain could be partly or wholly copied or transferred to one or more other substrates (including digital storage or another brain), thereby from a purely mechanistic perspective reducing or eliminating “mortality risk” of such information. This general proposal was discussed in 1971 by biogerontologist George M. Martin of the University of Washington.[12]

An uploaded astronaut would be the application of mind uploading to human spaceflight. This would eliminate the harms caused by a zero gravity environment, the vacuum of space, and cosmic radiation to the human body. It would allow for the use of smaller spacecraft, such as the proposed StarChip, and it would enable virtually unlimited interstellar travel distances.[13][14]

The focus of mind uploading, in the case of copy-and-transfer, is on data acquisition, rather than data maintenance of the brain. A set of approaches known as loosely coupled off-loading (LCOL) may be used in the attempt to characterize and copy the mental contents of a brain.[15] The LCOL approach may take advantage of self-reports, life-logs and video recordings that can be analyzed by artificial intelligence. A bottom-up approach may focus on the specific resolution and morphology of neurons, the spike times of neurons, the times at which neurons produce action potential responses.

Advocates of mind uploading point to Moore’s law to support the notion that the necessary computing power is expected to become available within a few decades. However, the actual computational requirements for running an uploaded human mind are very difficult to quantify, potentially rendering such an argument specious.

Regardless of the techniques used to capture or recreate the function of a human mind, the processing demands are likely to be immense, due to the large number of neurons in the human brain along with the considerable complexity of each neuron.

In 2004, Henry Markram, lead researcher of the “Blue Brain Project”, stated that “it is not [their] goal to build an intelligent neural network”, based solely on the computational demands such a project would have.[17]

It will be very difficult because, in the brain, every molecule is a powerful computer and we would need to simulate the structure and function of trillions upon trillions of molecules as well as all the rules that govern how they interact. You would literally need computers that are trillions of times bigger and faster than anything existing today.[18]

Five years later, after successful simulation of part of a rat brain, Markram was much more bold and optimistic. In 2009, as director of the Blue Brain Project, he claimed that A detailed, functional artificial human brain can be built within the next 10 years.[19]

Required computational capacity strongly depend on the chosen level of simulation model scale:[4]

Since the function of the human mind and how it might arise from the working of the brain’s neural network, are poorly understood issues, mind uploading relies on the idea of neural network emulation. Rather than having to understand the high-level psychological processes and large-scale structures of the brain, and model them using classical artificial intelligence methods and cognitive psychology models, the low-level structure of the underlying neural network is captured, mapped and emulated with a computer system. In computer science terminology,[dubious discuss] rather than analyzing and reverse engineering the behavior of the algorithms and data structures that resides in the brain, a blueprint of its source code is translated to another programming language. The human mind and the personal identity then, theoretically, is generated by the emulated neural network in an identical fashion to it being generated by the biological neural network.

On the other hand, a molecule-scale simulation of the brain is not expected to be required, provided that the functioning of the neurons is not affected by quantum mechanical processes. The neural network emulation approach only requires that the functioning and interaction of neurons and synapses are understood. It is expected that it is sufficient with a black-box signal processing model of how the neurons respond to nerve impulses (electrical as well as chemical synaptic transmission).

A sufficiently complex and accurate model of the neurons is required. A traditional artificial neural network model, for example multi-layer perceptron network model, is not considered as sufficient. A dynamic spiking neural network model is required, which reflects that the neuron fires only when a membrane potential reaches a certain level. It is likely that the model must include delays, non-linear functions and differential equations describing the relation between electrophysical parameters such as electrical currents, voltages, membrane states (ion channel states) and neuromodulators.

Since learning and long-term memory are believed to result from strengthening or weakening the synapses via a mechanism known as synaptic plasticity or synaptic adaptation, the model should include this mechanism. The response of sensory receptors to various stimuli must also be modelled.

Furthermore, the model may have to include metabolism, i.e. how the neurons are affected by hormones and other chemical substances that may cross the bloodbrain barrier. It is considered likely that the model must include currently unknown neuromodulators, neurotransmitters and ion channels. It is considered unlikely that the simulation model has to include protein interaction, which would make it computationally complex.[4]

A digital computer simulation model of an analog system such as the brain is an approximation that introduces random quantization errors and distortion. However, the biological neurons also suffer from randomness and limited precision, for example due to background noise. The errors of the discrete model can be made smaller than the randomness of the biological brain by choosing a sufficiently high variable resolution and sample rate, and sufficiently accurate models of non-linearities. The computational power and computer memory must however be sufficient to run such large simulations, preferably in real time.

When modelling and simulating the brain of a specific individual, a brain map or connectivity database showing the connections between the neurons must be extracted from an anatomic model of the brain. For whole brain simulation, this network map should show the connectivity of the whole nervous system, including the spinal cord, sensory receptors, and muscle cells. Destructive scanning of a small sample of tissue from a mouse brain including synaptic details is possible as of 2010.[20]

However, if short-term memory and working memory include prolonged or repeated firing of neurons, as well as intra-neural dynamic processes, the electrical and chemical signal state of the synapses and neurons may be hard to extract. The uploaded mind may then perceive a memory loss of the events and mental processes immediately before the time of brain scanning.[4]

A full brain map has been estimated to occupy less than 2 x 1016 bytes (20,000 TB) and would store the addresses of the connected neurons, the synapse type and the synapse “weight” for each of the brains’ 1015 synapses.[4][not in citation given] However, the biological complexities of true brain function (e.g. the epigenetic states of neurons, protein components with multiple functional states, etc.) may preclude an accurate prediction of the volume of binary data required to faithfully represent a functioning human mind.

A possible method for mind uploading is serial sectioning, in which the brain tissue and perhaps other parts of the nervous system are frozen and then scanned and analyzed layer by layer, which for frozen samples at nano-scale requires a cryo-ultramicrotome, thus capturing the structure of the neurons and their interconnections.[21] The exposed surface of frozen nerve tissue would be scanned and recorded, and then the surface layer of tissue removed. While this would be a very slow and labor-intensive process, research is currently underway to automate the collection and microscopy of serial sections.[22] The scans would then be analyzed, and a model of the neural net recreated in the system that the mind was being uploaded into.

There are uncertainties with this approach using current microscopy techniques. If it is possible to replicate neuron function from its visible structure alone, then the resolution afforded by a scanning electron microscope would suffice for such a technique.[22] However, as the function of brain tissue is partially determined by molecular events (particularly at synapses, but also at other places on the neuron’s cell membrane), this may not suffice for capturing and simulating neuron functions. It may be possible to extend the techniques of serial sectioning and to capture the internal molecular makeup of neurons, through the use of sophisticated immunohistochemistry staining methods that could then be read via confocal laser scanning microscopy. However, as the physiological genesis of ‘mind’ is not currently known, this method may not be able to access all of the necessary biochemical information to recreate a human brain with sufficient fidelity.

It may be possible to create functional 3D maps of the brain activity, using advanced neuroimaging technology, such as functional MRI (fMRI, for mapping change in blood flow), magnetoencephalography (MEG, for mapping of electrical currents), or combinations of multiple methods, to build a detailed three-dimensional model of the brain using non-invasive and non-destructive methods. Today, fMRI is often combined with MEG for creating functional maps of human cortex during more complex cognitive tasks, as the methods complement each other. Even though current imaging technology lacks the spatial resolution needed to gather the information needed for such a scan, important recent and future developments are predicted to substantially improve both spatial and temporal resolutions of existing technologies.[24]

There is ongoing work in the field of brain simulation, including partial and whole simulations of some animals. For example, the C. elegans roundworm, Drosophila fruit fly, and mouse have all been simulated to various degrees.[citation needed]

The Blue Brain Project by the Brain and Mind Institute of the cole Polytechnique Fdrale de Lausanne, Switzerland is an attempt to create a synthetic brain by reverse-engineering mammalian brain circuitry.

Underlying the concept of “mind uploading” (more accurately “mind transferring”) is the broad philosophy that consciousness lies within the brain’s information processing and is in essence an emergent feature that arises from large neural network high-level patterns of organization, and that the same patterns of organization can be realized in other processing devices. Mind uploading also relies on the idea that the human mind (the “self” and the long-term memory), just like non-human minds, is represented by the current neural network paths and the weights of the brain synapses rather than by a dualistic and mystic soul and spirit. The mind or “soul” can be defined as the information state of the brain, and is immaterial only in the same sense as the information content of a data file or the state of a computer software currently residing in the work-space memory of the computer. Data specifying the information state of the neural network can be captured and copied as a “computer file” from the brain and re-implemented into a different physical form.[25] This is not to deny that minds are richly adapted to their substrates.[26] An analogy to the idea of mind uploading is to copy the temporary information state (the variable values) of a computer program from the computer memory to another computer and continue its execution. The other computer may perhaps have different hardware architecture but emulates the hardware of the first computer.

These issues have a long history. In 1775 Thomas Reid wrote:[27] I would be glad to know… whether when my brain has lost its original structure, and when some hundred years after the same materials are fabricated so curiously as to become an intelligent being, whether, I say that being will be me; or, if, two or three such beings should be formed out of my brain; whether they will all be me, and consequently one and the same intelligent being.

A considerable portion of transhumanists and singularitarians place great hope into the belief that they may become immortal, by creating one or many non-biological functional copies of their brains, thereby leaving their “biological shell”. However, the philosopher and transhumanist Susan Schneider claims that at best, uploading would create a copy of the original person’s mind.[28] Susan Schneider agrees that consciousness has a computational basis, but this does not mean we can upload and survive. According to her views, “uploading” would probably result in the death of the original person’s brain, while only outside observers can maintain the illusion of the original person still being alive. For it is implausible to think that one’s consciousness would leave one’s brain and travel to a remote location; ordinary physical objects do not behave this way. Ordinary objects (rocks, tables, etc.) are not simultaneously here, and somewhere else. At best, a copy of the original mind is created.[28] Others have argued against such conclusions. For example, Buddhist transhumanist James Hughes has pointed out that this consideration only goes so far: if one believes the self is an illusion, worries about survival are not reasons to avoid uploading,[29] and Keith Wiley has presented an argument wherein all resulting minds of an uploading procedure are granted equal primacy in their claim to the original identity, such that survival of the self is determined retroactively from a strictly subjective position.[30][31]

Another potential consequence of mind uploading is that the decision to “upload” may then create a mindless symbol manipulator instead of a conscious mind (see philosophical zombie).[32][33] Are we to assume that an upload is conscious if it displays behaviors that are highly indicative of consciousness? Are we to assume that an upload is conscious if it verbally insists that it is conscious?[34] Could there be an absolute upper limit in processing speed above which consciousness cannot be sustained? The mystery of consciousness precludes a definitive answer to this question.[35] Numerous scientists, including Kurzweil, strongly believe that determining whether a separate entity is conscious (with 100% confidence) is fundamentally unknowable, since consciousness is inherently subjective (see solipsism). Regardless, some scientists strongly believe consciousness is the consequence of computational processes which are substrate-neutral. On the contrary, numerous scientists believe consciousness may be the result of some form of quantum computation dependent on substrate (see quantum mind).[36][37][38]

In light of uncertainty on whether to regard uploads as conscious, Sandberg proposes a cautious approach:[39]

Principle of assuming the most (PAM): Assume that any emulated system could have the same mental properties as the original system and treat it correspondingly.

It is argued that if a computational copy of one’s mind did exist, it would be impossible for one to recognize it as their own mind.[40] The argument for this stance is the following: for a computational mind to recognize an emulation of itself, it must be capable of deciding whether two Turing machines (namely, itself and the proposed emulation) are functionally equivalent. This task is uncomputable due to the undecidability of equivalence, thus there cannot exist a computational procedure in the mind that is capable of recognizing an emulation of itself.

The process of developing emulation technology raises ethical issues related to animal welfare and artificial consciousness.[39] The neuroscience required to develop brain emulation would require animal experimentation, first on invertebrates and then on small mammals before moving on to humans. Sometimes the animals would just need to be euthanized in order to extract, slice, and scan their brains, but sometimes behavioral and in vivo measures would be required, which might cause pain to living animals.[39]

In addition, the resulting animal emulations themselves might suffer, depending on one’s views about consciousness.[39] Bancroft argues for the plausibility of consciousness in brain simulations on the basis of the “fading qualia” thought experiment of David Chalmers. He then concludes:[41] If, as I argue above, a sufficiently detailed computational simulation of the brain is potentially operationally equivalent to an organic brain, it follows that we must consider extending protections against suffering to simulations.

It might help reduce emulation suffering to develop virtual equivalents of anaesthesia, as well as to omit processing related to pain and/or consciousness. However, some experiments might require a fully functioning and suffering animal emulation. Animals might also suffer by accident due to flaws and lack of insight into what parts of their brains are suffering.[39] Questions also arise regarding the moral status of partial brain emulations, as well as creating neuromorphic emulations that draw inspiration from biological brains but are built somewhat differently.[41]

Brain emulations could be erased by computer viruses or malware, without need to destroy the underlying hardware. This may make assassination easier than for physical humans. The attacker might take the computing power for its own use.[42]

Many questions arise regarding the legal personhood of emulations.[43] Would they be given the rights of biological humans? If a person makes an emulated copy of himself and then dies, does the emulation inherit his property and official positions? Could the emulation ask to “pull the plug” when its biological version was terminally ill or in a coma? Would it help to treat emulations as adolescents for a few years so that the biological creator would maintain temporary control? Would criminal emulations receive the death penalty, or would they be given forced data modification as a form of “rehabilitation”? Could an upload have marriage and child-care rights?[43]

If simulated minds would come true and if they were assigned rights of their own, it may be difficult to ensure the protection of “digital human rights”. For example, social science researchers might be tempted to secretly expose simulated minds, or whole isolated societies of simulated minds, to controlled experiments in which many copies of the same minds are exposed (serially or simultaneously) to different test conditions.[citation needed]

Emulations could create a number of conditions that might increase risk of war, including inequality, changes of power dynamics, a possible technological arms race to build emulations first, first-strike advantages, strong loyalty and willingness to “die” among emulations, and triggers for racist, xenophobic, and religious prejudice.[42] If emulations run much faster than humans, there might not be enough time for human leaders to make wise decisions or negotiate. It is possible that humans would react violently against growing power of emulations, especially if they depress human wages. Emulations may not trust each other, and even well-intentioned defensive measures might be interpreted as offense.[42]

There are very few feasible technologies that humans have refrained from developing. The neuroscience and computer-hardware technologies that may make brain emulation possible are widely desired for other reasons, and logically their development will continue into the future. Assuming that emulation technology will arrive, a question becomes whether we should accelerate or slow its advance.[42]

Arguments for speeding up brain-emulation research:

Arguments for slowing down brain-emulation research:

Emulation research would also speed up neuroscience as a whole, which might accelerate medical advances, cognitive enhancement, lie detectors, and capability for psychological manipulation.[48]

Emulations might be easier to control than de novo AI because

As counterpoint to these considerations, Bostrom notes some downsides:

Ray Kurzweil, director of engineering at Google, claims to know and foresee that people will be able to “upload” their entire brains to computers and become “digitally immortal” by 2045. Kurzweil made this claim for many years, e.g. during his speech in 2013 at the Global Futures 2045 International Congress in New York, which claims to subscribe to a similar set of beliefs.[49] Mind uploading is also advocated by a number of researchers in neuroscience and artificial intelligence, such as Marvin Minsky[citation needed] while he was still alive. In 1993, Joe Strout created a small web site called the Mind Uploading Home Page, and began advocating the idea in cryonics circles and elsewhere on the net. That site has not been actively updated in recent years, but it has spawned other sites including MindUploading.org, run by Randal A. Koene, who also moderates a mailing list on the topic. These advocates see mind uploading as a medical procedure which could eventually save countless lives.

Many transhumanists look forward to the development and deployment of mind uploading technology, with transhumanists such as Nick Bostrom predicting that it will become possible within the 21st century due to technological trends such as Moore’s law.[4]

Michio Kaku, in collaboration with Science, hosted a documentary, Sci Fi Science: Physics of the Impossible, based on his book Physics of the Impossible. Episode four, titled “How to Teleport”, mentions that mind uploading via techniques such as quantum entanglement and whole brain emulation using an advanced MRI machine may enable people to be transported to vast distances at near light-speed.

The book Beyond Humanity: CyberEvolution and Future Minds by Gregory S. Paul & Earl D. Cox, is about the eventual (and, to the authors, almost inevitable) evolution of computers into sentient beings, but also deals with human mind transfer. Richard Doyle’s Wetwares: Experiments in PostVital Living deals extensively with uploading from the perspective of distributed embodiment, arguing for example that humans are currently part of the “artificial life phenotype”. Doyle’s vision reverses the polarity on uploading, with artificial life forms such as uploads actively seeking out biological embodiment as part of their reproductive strategy.

Kenneth D. Miller, a professor of neuroscience at Columbia and a co-director of the Center for Theoretical Neuroscience, raised doubts about the practicality of mind uploading. His major argument is that reconstructing neurons and their connections is in itself a formidable task, but it is far from being sufficient. Operation of the brain depends on the dynamics of electrical and biochemical signal exchange between neurons; therefore, capturing them in a single “frozen” state may prove insufficient. In addition, the nature of these signals may require modeling down to the molecular level and beyond. Therefore, while not rejecting the idea in principle, Miller believes that the complexity of the “absolute” duplication of an individual mind is insurmountable for the nearest hundreds of years.[50]

See the original post here:

Mind uploading – Wikipedia