Space Innovations So Incredible, They Just Might Work – The Planetary Society

The NASA Innovative Advanced Concepts program gathers its fellows each year to share what theyve learned about some of the most fascinating science and engineering imaginable. Mat Kaplan visits with Program Executive Jason Derleth and seven leaders of funded studies. Astronaut Mae Jemison also attended and returns to Planetary Radio. Cosmonaut Alexei Leonov passed away last week at 85. He is remembered and praised by space historian John Logsdon. All this, headlines from The Downlink, and Bruce Betts!

A classy NIAC pin, a Planetary Society KickAsteroid rubber asteroid, and a 200-point astronomy account.

What was the first star system besides our own that was discovered to have eight planets?

The winner will be revealed next week.

The two missions that are still active on the surface of the Moon are Change 3 and 4.

NOTE: This automated transcript is currently being edited by a human. Check back soon for updates.

[00:00:00] Space Innovation so crazy they just might work this week on planetary radio.

Welcome. I'm at Kaplan of the planetary Society with more of the Human Adventure across our solar system and beyond. I exaggerated not all of the concepts studies and projects presented at this year's Nayak Symposium were on the bleeding edge, but there wasn't one of them that board this Gearhead will share a sampling in minutes and you'll hear a conversation with the leader of the NASA Innovative and advanced concepts program Jason derleth.

I'll also talk with Nayak keynoter astronaut engineer and MD Mae. Cosmonaut artist and World citizen Alexei leonov passed away last week space historian and policy expert John logsdon met him a couple of times and wrote about his front and center role in the Soviet space program. John will look [00:01:00] back with us right after a few headlines from around the solar system courtesy of the downlink.

October 11th brought only the second edition of this planetary science and exploration digest courtesy of my colleague planetary Society editorial director Jason Davis, here are three of Jason's capsule stories scientists have announced the discovery of 20 new moons around Saturn the wide ringed gas giant now officially has 82 surpassing Jupiter 79 to become the Solar System's current champion.

Okay, it's not a contest both are likely to have more and Jupiter probably has more in total. Want to help name Saturn's new Moon's there's a link what else in the downlink at planetary dot-org. In other Saturn news the Hubble Space Telescope has now been in space for an entire Saturn year ten thousand seven hundred sixty four Earth days as I record this or roughly [00:02:00] 30 Earth years, you can see how Hubble's view of Saturn has changed over that time in the planetary Society image Library.

NASA's latest efforts to save the heat flow experiment on the Insight Mission appear promising that self hammering mole was supposed to bury itself in the Martian soil to record changes in temperature, but it's still stuck near the surface Engineers are now using insights scoop to apply pressure on the mole while it digs.

The rest of the downlink is online at planetary dot-org in the blog where all the stories have links for further exploration. Thanks, Jason. John logsdon was at home in Washington DC when I caught him on the morning of October 15. John I wasn't a bit surprised to hear that you had run into Alexei Lan off a couple of times at least a couple of times I and I already knew because of course I've read so a lot of your writing that you have things to say about his significance in the [00:03:00] history of space exploration.

So I thank you for taking a couple of minutes to help us pay tribute to him this morning happy to do it. Was he among the greatest of the Great's was he up there with you know, Glenn and and Armstrong and and Gagarin. Oh, I think so. I mean, he was a world citizen. He was the first first person to do an Eva of course and nearly died in the.

Process trained to be the first Russian on the moon if the Soviet Union had ever gotten the chance to attempt a landing, but they couldn't get their big N1 rocket to work and then he was selected to command the apollo-soyuz and shaken steaks mission. And I think he was regarded by the space fires of the world is kind of one of the Granddaddy's of the space Community.

He was outgoing he was easy to get along with he liked everybody [00:04:00] almost everybody. And I think he was indeed one of the great. So how did you cross paths with him? Well one incidentally was through the planetary Society. It was a meeting at the US National Academy of Sciences sometime in the 80s.

Probably the tenth anniversary of us apollo-soyuz. I showed him the US intelligence satellite pictures of the N1 launch site. So that was that was interesting. I mean, I I never had an extended. Conversation with Lee and have unfortunately, but but and then I know in Moscow in 1987, I was part of a planetary Society group that went to the 30th anniversary of Sputnik and ran into him telling him that Buzz Aldrin was looking for him.

And he had the other way now there's an interesting Insight. I he's one of these [00:05:00] guys who apparently was changed by space travel. I mean he became an artist and I just read it is it not become an artist. He was an artist first. Oh, I didn't know that he went to art school before he went to flight school.

Wow. Okay. He brought his art to space. And did some very beautiful work and I just read in his updated Wikipedia biography about some of the things he said toward the end of his life about how he thought that we had missed an opportunity the United States and the Soviet Union to to collaborate to cooperate in space.

I think that's right. I mean again little-known factoid. The US and the Soviet Union had agreed after apollo-soyuz to work together with the shuttle rendezvousing with the Soviet space station and work together on planning a space station in the 80s and then [00:06:00] we didn't follow through on that agreement.

First of all because of the Soviet invasion of Afghanistan and then. The early years of the Reagan Administration so there were missed opportunities along the way to do than what we ended up doing 20 30 years. Later. John I knew you'd be the right person to call thank you for this helping us Mark the passing of one of the greats in space exploration.

Yes, he will be missed John logsdon full disclosure a board member of a member of the board of directors of the planetary Society is also the founder. And ran the space policy Institute at George Washington University and the author of several books including John F Kennedy and the race to the moon.

The Nayak Symposium spread across three days early this month we met in Huntsville, Alabama not far from the Marshall space flight center Nayak began in [00:07:00] 1998 as the NASA Institute for advanced concepts. It went away for a few years and then returned as the NASA Innovative advanced concepts program.

Jason derleth is its program executive working out of the agency's space technology mission directorate in Washington. He joined me online a few days after the symposium. Jason thanks for joining me. And what a pleasure it was. Thank you for allowing me to be a fly on the wall at this Nayak Symposium at which we heard all of these fascinating and very exciting proposals.

Maybe some more likely to become reality than others, but. That's why you're out there doing this stuff. Right? Yes. It's wonderful that you were able to come. We really appreciated having you there. I think it adds a lot when we have folks who are generalists like yourself with a large amount of experience talking to people coming and you can ask.

Questions to the fellows and questions like that just make the the [00:08:00] studies stronger. We're really excited to have everybody there. Anyone who can come as welcome. Of course if that is pretty special as well that it is open to the public and you had some interesting members of the public there Frank Drake one of the inventors.

Talk about radically or entirely new Concepts one of the inventors of the search for extraterrestrial intelligence. He wasn't a fellow he was just there to listen to your fellows make their presentations. And I know that he was very happy to be there. Yeah, Frank is a wonderful friend of the program.

He's been on our external counsel for a little while. But this was his last meeting with us so he may or may not come in the future. But if we have one nearby, I think he would just love to come he's always been able to provide helpful thoughts on astronomy and radio astronomy some Concepts in our program.

Give me give us please. The thumbnail description of of what Nayak is about and what NASA hopes to accomplish if that's not already obvious from what we've said so far [00:09:00] Nayak is. A technology development program that looks at new technologies that are 10 or more years out from final use some of these concepts are a little farther out than others, but it's amazing how excited and enthusiastic people are about their Concepts and about other people's Concepts as well.

So the basic gist of it is we provide a small amount of money in a small amount of time. Our Phase 1 studies are only a hundred and twenty-five thousand dollars over nine months to do a quick turn of the analysis crank to find out if a really interesting idea that someone's had is rooted in reality.

I mean, we try and weed out anything that's beyond the laws of physics before they ever get funding but the job of the phase one fellow we call all of our winners fellows not-p eyes is to show that not only is this idea. Within the realm of feasibility, but that it's a good idea to do. [00:10:00] And that's what they have nine months and $125,000 to to show NASA that this idea is so good that we ought to implement it.

The best ones go on to a phase 2 of study phase twos are two years long and 500 thousand dollars. And we have had some people show up to the midterm review of their faith to with multiple robots ready to go that in string. These people have often students working for them and sometimes volunteering their spare time just to work for NASA.

It's really exciting to some students to be able to do. So the products that come out of the phase 2 are usually really solid. Mission analysis with sometimes some bread board brass board or or prototype robots to show that what they are thinking about doing is feasible and a full technology implementation roadmap.

So what would need to happen before something could fly in space or [00:11:00] fly in the air if it's an aeronautics? Then you have this newest phase for very few proposals make it to this but your phase 3, which I guess we heard some of the first presentations about some of these projects this year. Yes.

That's correct our phase 3 we intend to fund one per year and it's for the concepts that after a phase 2 still have too much risk left in them for a traditional. Spaceflight engineering system to accept them as a new technology. So you can't imagine for instance a new Mission a mission manager choosing to do asteroid mining for instance at the moment that's going to take a little bit more work and a little bit more investment and the idea of the phase 3 is to go all the way to a.

Stage of development or development [00:12:00] stage in software where a future Mission could pick that up and start funding it after that and and one of the requirements for a phase three is to have a customer that's interested before we would consider funding it. How many people did we hear from and how many current fellows are.

Well, there's 12 phase ones from last year. We have six phase 2's and there were eight phase twos from the year before and two phase threes. You were telling me just before we started recording that you were going through some of the new proposals that that you've got there. You must get far more than you can possibly fund.

Yes, and we get a lot of fundable. Proposals as well, but Nayak is a little bit funny and NASA. It's not your average everyday NASA program in a lot of ways and one of those is that we take proposals from non traditional Aerospace folks and from in fact non [00:13:00] Aerospace folks. We have had quite literally garage inventors in Nyack.

One of them has an Optics bench in his. Detached garage up in New York state another one was a physical therapist that came up with a method of moving people in space to create artificial gravity that was in line. We've always heard about artificial Gravity by rotating your spacecraft and you put the astronauts on the inside surface and they rotate around and have artificial Gravity from that rotation.

This gentleman came up with a sled that could be slid back and forth with a Twist in the middle. And every person that I've ever shown this concept to says that is not going to work, but I want to see the results of the study because it really interesting and it turns out in fact that well it might could work.

I'm not sure that we would do it but it's actually a reasonable idea and it provides no [00:14:00] Coriolis effect on the body when you're doing the artificial gravity, it's quite interesting. Of course, you can find that study up on. On the website which will provide a link to as well because you can find out about all of these projects that that we're hearing about from Jason.

I'm also thinking of the ones that won't become reality. And there is still value in these isn't there if they explore something that no one has ever thought about before and discover doesn't look like this will work at least with our current understanding of the challenge. That's still valuable to know I fully agree.

In fact, I've often said that Nayak and other early stage technology development programs ought to be looking at our failures as successes because we're still adding. To human knowledge and making it publicly available. I can think of one in the new program that didn't work at least as currently envisioned.

The basic idea was to [00:15:00] have a spacecraft that was in very low earth orbit deep in the atmosphere or perhaps even a plane that caused a small explosion. Up in the upper atmosphere which would then push that upper atmosphere up into space for a short period of time where orbital debris would run into the atmosphere that was suddenly thicker and it would slow the debris down because the atmosphere was thicker than it what had been before and you might be able to do our but quite a bit of debris that way and after running the analysis unfortunately it showed that.

It really didn't slow things down very much. Unless you had a very large explosion and you'd have to do it multiple times. And so that very creative and intriguing idea didn't pan out but we only spent $100,000 to find out that that wouldn't work. That wasn't very much money in the NASA world. Of course, I think it was a good use of the taxpayer dollar since the research was able to [00:16:00] be put up online for anyone to see hey.

Don't go down this path right now because it's probably not going to work unless there's something substantially different than the future. What are some of your favorites or if you don't want to favor some of your children over others. So what are what are a couple more that you know demonstrate the diversity of projects that get funded.

Let me think carefully. We had a study from Ames Research Center that took a look at what would it take to take a human spacecraft and. Line the walls with bags bags of water at first as the astronauts drank the water and made waste the bags were designed to take the waste in and chemically treat that waste to purify it back into water the obvious benefit of this is that you're increasing your radiation shielding.

Well using these bags to purify [00:17:00] waste which will reduce the amount of water that you need to bring along with you. That was a fascinating study that that showed real benefits to doing so we had a study on what would it take to reach Alpha Centauri with a spacecraft for real you take a very small spacecraft perhaps even smaller than a phone no more than a chipset you put a.

Light sail around it something that could solar sail but then instead of using the solar photons you would shine lasers at it as brightly as you could maybe 50 very high power lasers. Well, the mathematic show that you can accelerate something from essentially zero velocity to approximately 2 tenths the speed of light in about 10 minutes at to tends to the speed of light.

You reach Alpha Centauri in only 20 years and it takes about five years to get the data back which [00:18:00] would be done through miniscule lasers pointing back at the Earth. But it turns out that the laser array that you used to push. The solar sail at the beginning can be used in coherent receive mode and might in fact be able to receive a direct laser signal from five light-years away.

The mathematics works out implementing that system will of course provide many challenges what you're describing there certainly sounds like it's the Breakthrough starshot project which we have talked about before on this show. If you watch the initial Breakthrough starshot video where Pete Worden got up and introduced the three luminaries that were on the stage Mark Zuckerberg and.

Stephen Hawking and Yuri Milner the Russian. Yes, millionaire who funded it Pete Worden about 35 minutes in mentions that this was an outgrowth from in fact the Nayak study that I just mentioned so breakthrough starshot was [00:19:00] was created because of a Nayak. Every one of the projects that I heard about is deserving of some conversation of sharing with our audience.

We won't be able to do all of them, but I said we will hear from some and we may hear from more over the coming weeks and months as I follow up with some others of your fellows. I'm going to bet that there are some people out there. Whether they are academics for people in a garage or people at a NASA Center or maybe with a big company who'd like to know, how do you get into this?

I mean, I already ran into one person from a University at the Starship Congress here in San Diego a few weeks ago who had never heard of Nayak and yet he is working on something that seemed like it was well within the kind of project that Nayak would consider. That's a great Point Nayak is a challenging program to get into because we are open to the public.

We receive between two and three hundred proposals every year and we're very aware [00:20:00] that we don't want to have people spending a lot of time proposing if they have only a. Five percent chance of winning and so what we do to make that a little bit better as we do a step proposal system where you provide us with a three-page white paper, and if you are in scope for our program and exciting enough, then we will invite you to provide us with an eight page proposal that will have a full peer review of expert panel review technical panel review.

We open that solicitation. Every year in August, but we're about to change the date to mesh a little bit better with the grand processing folks that work down at the NASA shared services Center. We're expecting the solicitation to come out in early June next year. But now what a lot of people don't know is that they can email us.

We have an email address that Matt can provide on the show page for any interested that [00:21:00] email address. You can send us a white paper to quickly review as long as we're not in an open competition. If we're in an open competition, we are not allowed to review somebody's white paper and give. Give them any feedback if we're not we are allowed to and so if you send an email to us with a three-page white paper, we can tell you.

Yeah, that's in scope or no. It's not in scope. It would be better. If you did the following thing the main thing that we find people doing when they proposed to Nayak as they don't understand what the c means and NASA Innovative advanced concepts because we're open to any and all technology areas.

We need a little bit of help from the proposers to tell us how good their concept is. Otherwise, we would be looking at let's just say a new material that could really revolutionize the way that we do space and we'd be comparing that to a. A new [00:22:00] architecture for just again, for example how you might get a large human-sized Lander down to the surface of Mars and we might be comparing that to a new space suit and we might be comparing that to a new instrument that could measure.

The quantities of dark matter in the universe. How do we do that? Well, we asked the proposers to put their new technologies into a mission context and we don't mean hey, this is something that's relatable to human spaceflight and so any future human space flight that's extended will use this technology know what we mean is you tell us a mission that you might do.

It doesn't have to be on NASA's books. Just a potential future mission. And then show what the impact of your technology is explain to us why your technology is better than sliced bread, right and on a good example of that might be the fusion propelled Pluto [00:23:00] Orbiter and Lander which we hold up quite frequently to talk about.

This Fusion is a very difficult concept and some people think that. We shouldn't be funding any Fusion at Nyack. The dollars are far too small to make any progress. Well, that might be true unless we're talking about a new method of fusion or a new way of doing it where $125,000 and nine months might actually show people.

Hey, this could be feasible sometime in the future. And that's what Stephanie Thomas did with this study of the Pluto Fusion Orbiter and Lander might be able to reach Pluto in five years orbit Pluto in five years and beam power to a Lander that could then be power rich and have more instruments on it.

That is a really exciting Mission analysis that can only be done. By her Fusion engine. Now the [00:24:00] reason why she chose Pluto is well by golly the farther you go with a Fusion engine the better it's going to look and we had just flown by Pluto and NASA had and so it was hot in the news and it was topical but it also really showed off the benefits of her technology and that's really the key if you can show us in a step a white paper that you have done a back of the envelope calculation.

And put that back of the envelope calculation into your proposal and show us that this is going to really make an impact. That's how you get into Nayak. It is a terrific opportunity and I won't be surprised if a few of our listeners out there many of them bleeding edge thinkers. If you don't hear from them at some point at least I would be wonderful.

I'd like to hear about that if anybody has those ideas Jason, I know it's a lot of work but. You seem to have an exciting job. Well, thank you. I work at NASA headquarters. And so a lot of it is paper [00:25:00] pushing, but I do get to interact with these really smart people that are doing really creative things all across all technology areas for space and that's just exciting everyday.

And it occurs to me not just the people who make the proposals but the people who help you evaluate them or are a pretty interesting group. Actually everybody who works in the program office at Nyack is a spectacular human being both professionally. And personally, I'm really fortunate to have these folks working with me.

Thanks Jason. I can't wait to see what the next batch of Nayak funded projects will put on the table for the rest of us to Marvel. I can't wait myself. It'll be a fun about eight months before we learn. Thanks. Jason dear life is the program executive. For Nayak the NASA Innovative advanced concepts program when we return we'll meet seven Nayak fellows including science fiction writer and physicist Geoffrey a Landis and we'll wrap up our Symposium coverage with the great Mae Jemison.

Bruce is [00:26:00] still ahead to this is planetary radio. Taking a minute to talk again about the Great Courses plus and about exoplanets. You know, how often we talk about exoplanets on this show. It's one of the courses not surprisingly offered by the Great Courses. Plus it's the search for exoplanets.

What astronomers know and it really could not be taught by anybody better Joshua win physicist at MIT. He's on the Kepler team and he is the Deputy science director for Tess the transiting exoplanet survey satellite another great course presented by great professor and they've got everything the human brain nuclear energy.

Greek mythology Stress Management playing guitar you name it all kinds of personal Improvement stuff that they've wrapped into their lineup as well. Now you can expand your mind by signing up for the Great Courses plus and right now listeners to plan a to a radio get this deal. An [00:27:00] entire month for free to start your free month sign up today using my special URL.

The great course is / planetary the Great Courses / planetary. I wish I could bring you conversations about all 28 of the presentations. I enjoyed at this year's Nyack Symposium. Here are short explorations of just seven. I think they represent a pretty good range of both topics and Nayak fellows.

By the way, what deal here are mostly excerpts from the live streaming videos? I hosted on behalf of Nayak during breaks in the Symposium action will start our warp speed tour with a concept that reminds me just a little bit of the Star Trek transporter good trekkies know that the transporter scans and breaks down matter sending Ross stuff and information from the Enterprise.

To the surface of a planet and a stream of both particles and energy [00:28:00] that beam somehow stays coherent. It doesn't spread out sound crazy. Well, it turns out that particles of matter and photons may actually be able to interact with each other to do exactly this. Not to send Captain Kirk to the rescue, but just possibly to someday drive a light sail across the solar system or to the Stars Chris limbach from Texas A&M University.

Two things come to mind which set your work apart a little bit. I think this is Nayak. So we've heard from a whole bunch of fellows who are out there at the bleeding edge pushing what we understand about what is possible with technology and science. But I don't think anybody has come as close to seeming like magic as yours, except of course that it's Nobel Prize in science backed science.

Yeah, I mean you think about the the optical trapping right? That was Nobel Prize was [00:29:00] awarded recently, but that technology was actually developed by, you know, Arthur ashkan at Bell Labs back in the 1980s. They started trapping particles using that type of force and you know, Optical guiding has been around, you know, people have known of that and mirages for a long time.

So, you know, that's one of the major things to me is that the the ingredients that go into this self-guiding and the beam are actually pretty well-known and I think that the thing that gets me excited is the novelty of combining that together and then using that for propulsion and you know, it's just really exciting to be part of the night program.

And the second thing that I think May set your work apart a little bit is that unlike so many of the other projects here very worthy projects that deserve more attention generally yours has gotten some popular media coverage and I can't for the life of me remember where but I know I'd read about it before coming here to to Nayak.

It does seem to be exciting the imaginations of a lot of. Yeah, I hope so. I mean, it's one of those things that you know, you see [00:30:00] some of these the concept that we propose and you know, I think I couldn't have come up with that just as a science fiction type of concept because it came about by trying to understand the physics of how do you build a beam which does not diffract in the vacuum of space.

Just let us to something which is just so unusual. But at the same time. You know, we understand I think now after the phase 1, you know, how it's actually going to be working and I'm just so excited to get in the lab. I'm experimentalists. Oh actually building some of these things in the lab and and testing out our theories of how this is working is really going to be so exciting in the next two years and your slides gave some examples of where you're headed with this experimental work proving out this technology, but certainly from the modeling that you've done and other efforts it looks pretty good.

Well, it does look good. And you know, we didn't always think it was going to all work out. So so the modeling it actually turned out to be I think a little bit better at least the preliminary modeling then I expect it because when we started out we weren't sure whether or not these forces The [00:31:00] Guiding and then the particle trapping.

Whether that needed to be a precise balance where you're kind of, you know, standing on the tip of a needle and and if that was the case, it would be easy for some kind of perturbation to cause that to Decay but what the modeling I think is shown at least preliminarily is that the guiding is more robust under the conditions we've modeled then than I had expected.

And so that was one of those areas where you're a little surprised at a good result doesn't always happen. No fact, it's more rare the other way. Yeah usually act on the way. Do you see this as something I'm certainly not a mature technology not yet. But you can see this is reaching those higher limits of TRL as we say Readiness level.

Do you see this? Maybe someday reaching the level where it could be pushing something across our little. Neighborhood of the Galaxy. Yeah, absolutely. And you know, it's not I think you're not going to go directly from where we are now to the [00:32:00] Proxima be Mission. You're going to start using it for travel around the solar system.

And so we have the tools now from The Phase 1 to scope out what the parameters would be. For example a 5-megawatt. Total power budget and what we can do with that and there's a lot of interesting things you can do even with a lower power something more achievable in the next 10 20 years. And so and so I think that there's there's a lot of opportunities but then again I see all of the challenges have you thought about other uses of this self-correcting Beam for things like communication across distances, that would have been unimaginable.

We thought about it a little bit. I think that one of the things I can say is that the propagation distance of the beam. I mentioned was only about half of an AAU because of the collisions with solar wind particles actually so that attenuates the particle beam and then you lose the self-guiding. So I think that you know, we can do Communications over that distance.

Of course, you need the power to actually. Fill the whole system and so I'm I'm not sure I agree that [00:33:00] there's a case there in terms of the seti implications after that half an AAU of propagation. Then you have a you know, 1 meter. Laser beam and that then diffracts out into space and so I'm not sure that gives you a tighter Beam at the next star system than anything else.

So, okay, so we're not ready to say hello to the centurions quite quite yet. We can send something there get back. We'll send them a gift. Yeah, right. Well FedEx speaking of light sales and we do Grover Schwarzenegger of the Rochester Institute of Technology. Welcome Grover. Thank you. Nice to be here.

You know, I'm with the planetary Society. So I'm a little partial to solar sails. I also bring you greetings from our chief scientist Bruce Betts. Thanks for that. And you attended our he attended a conference you did about meta materials for solar sails. That's right. We're trying to develop the next generation of solar cells based on metamaterials.

And so I had an incubator meeting in Washington DC and Bruce was one of our invited guests for that and he enjoyed it enormously [00:34:00] and we're going to meet a couple of your students but first. We won't fully review what you presented here. But you talked about making sales out of basically diffraction gratings.

Now what? So great about a diffraction grating compared to a nice shiny piece of mylar. Well diffraction gratings are have come a long ways the last decade or so because of metamaterials. There's new ways of engineering them make them highly efficient and functional you can basically design them to accomplish things that have not been imagined before because of material constraints.

So metal is a metal it reflects and that's about it. You can put coatings on it, but it can't achieve the functionality you can with. How does this compare to the great Japanese solar sail Icarus wasn't diffraction grating, but it had those LCD panels built into it. That's right. So it grows had an ingenious approach of having a electro-optic diffuser.

So rather than diffracting their light, they just scattered it all over the place that changed the amount of force [00:35:00] on that area of the cell ours will be I think more efficient and a little bit more functional. By their they follow similar approaches. They both involve Advanced metamaterial diffraction materials and advanced look a crystal material.

And you'd like to send maybe 12 of these circling the Sun but at high inclination so we could see as you demonstrated that the poles of the sun which we've had more difficult Imaging than we can say this now since last spring then a black hole. That's right. It amazes me that no one's ever had a good picture of the North or South Pole the sun before because it's so hard to get up there takes a lot of energy Rockets won't do it.

So we need to know what kind of propulsion and a solar sailing provides us that opportunity. Hide another constant theme from many of the fellows that we've been hearing from across these three days has been not just the technology accomplishments that they're making in the exciting Concepts, but how they have been using this research.

And spreading it out to young people like the [00:36:00] two who are standing here next to you. You want to introduce them. Now? This is Lucy Choo. She's from Taiwan. She's by PhD student. And this is Amber do Bill. She's undergraduate msbs student in chemical engineering at RIT. She's my mission specialist and I'm going to cross in front of you here and I'll start with you Amber.

How's it been to be involved as an undergraduate with a project like this? Honestly, I've been very lucky with the opportunities that I've been given and people like doctor SportsCenter come up with fantastic ideas. And I just want excited people who want to do the work and there's a lot of students and young people out there that are willing to do that.

I myself am one of them. So you're a little bit ahead of Amber here. But still I'm sure an exciting opportunity. It is our starting from you know, just investigating an Optics, but it's really cool opportunity that I'm involved in the Solar sails and then also like hearing all these Faith cool Symposium in these three days.

Best of luck to both of you particularly with this [00:37:00] great start in doing real space research. It must be rewarding to be able to offer these opportunities. And as that's what makes being a professor gratifying grading exams are proposals hard, but when you see these kids get excited and take jobs and the real world following their passions.

There's nothing like it in the world. Thank you Grover very much and look forward to license for lightsail to way to go. Fantastic. I'll pass that along to my colleagues who had a lot more to do with it. But thank you so much. I look forward to seeing that diffraction grating up their grazing the sun.

Read the rest here:

Space Innovations So Incredible, They Just Might Work - The Planetary Society

Related Post

Comments are closed.