Astronomers harness the galaxy's biggest telescope

PUBLIC RELEASE DATE:

5-May-2014

Contact: Kirsten Gottschalk kirsten.gottschalk@icrar.org 61-438-361-876 International Centre for Radio Astronomy Research

An international team of astronomers has made a measurement of a distant neutron star that is one million times more precise than the previous world's best.

The researchers were able to use the interstellar medium, the 'empty' space between stars and galaxies that is made up of sparsely spread charged particles, as a giant lens to magnify and look closely at the radio wave emission from a small rotating neutron star.

This technique yielded the highest resolution measurement ever achieved, equivalent to being able to see the double-helix structure of our genes from the Moon!

"Compared to other objects in space, neutron stars are tiny only tens of kilometres in diameter so we need extremely high resolution to observe them and understand their physics," Dr Jean-Pierre Macquart from the Curtin University node of the International Centre for Radio Astronomy Research (ICRAR) in Perth said.

Dr Macquart, a member of the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), said neutron stars were particularly interesting objects to study, as some of them called pulsars gave off pulsed radio waves whose beams swept across telescopes at regular intervals.

"More than 45 years since astronomers discovered pulsars, we still don't understand the mechanism by which they emit radio wave pulses," he said.

The researchers found they could use the distortions of these pulse signals as they passed through the turbulent interstellar medium to reconstruct a close in view of the pulsar from thousands of individual sub-images of the pulsar.

View post:

Astronomers harness the galaxy's biggest telescope

Related Posts

Comments are closed.