What Is Aerospace? Aerospace Industry & Engineering. | Built In

Image: Shutterstock / Built InWhat Is Aerospace Engineering?

Aerospace engineering is the branch of engineering that works in the design, development, testing and production of airborne objects such as aircraft, missiles, spacecraft, rocket propulsion systems and other related systems. Aerospace engineering can either fall into the categories of aeronautical engineering or astronautical engineering.

Early aerospace engineering and its concepts can be traced back to the late 19th century. The true birth of the aerospace industry, however, took place in 1903, when Wilbur and Orville Wright demonstrated the first example of an airplane capable of sustained flight. The brothers conducted extensive research and development, which led to a breakthrough in developing an onboard system that would allow pilots to control the warping of the planes wings for altitude control. The Wright brothers began licensing their technology to governments and military contractors, and by 1909, they were able to develop the first plane capable of flying faster than 40 miles per hour.

Fast forward through several years of development bolstered by the emergence of both World War I and World War II, plus the introduction of commercial airliners in the 1930s and the aerospace industry would continue to take shape well into the 1950s. Along the way, superpowered jets were produced as well as missile defense systems that would further revolutionize combat. During the late 1950s, a new goal of reaching yet another frontier space became increasingly realistic.

The Space Age was marked by fierce competition between the Americans and the Soviets, both aspiring to become the first to explore beyond the sky. The Soviets were the first to succeed with the launch of a small satellite, Sputnik, first entering orbit in 1957. Sputniks achievement was a result of the evolution of missile systems and used rockets of similar construction to boost small payloads past the atmosphere. The United States completed its first successful launch in 1958 with Project SCORE, successfully placing the first low-orbit communications satellite into orbit.

Several additional satellites were launched and followed by the launch of the first successful human-piloted spacecraft to enter orbit, accomplished by Yury A. Gagarin aboard the Soviet Unions Vostok 1. Since Gagarins orbit, there have been hundreds of successful missions to space completed by both manned and autonomous aircraft.

Modern successes of the aerospace industry include manned missions to the moon, the exploration of Mars by rovers, an intricate system of navigational satellites launched into space and the permanent installation of an International Space Station in orbit.

Modern aerospace developments and breakthroughs often fall into one of two categories: Aeronautical Engineering and Astronautical Engineering.

Aeronautical engineering refers to the science, theory, technology, practices and advancements that make flight possible within the earths atmosphere, while astronautical engineering focuses on enabling space exploration, which includes the construction of spacecrafts and launch vehicles.

Enabling flight both above and below the atmosphere requires the cooperation and collaboration of engineering experts across multiple fields. Organizations within these fields are responsible for designing systems that are both compatible with existing technology and sustainable enough to remain in use without the need for constant redesigns. These systems are designed through rigorous research and development and built around several key aerospace engineering concepts. By studying these concepts, aerospace engineers can choose the field that they would most like to specialize in and take on a role in some of the most critical jobs.

Aerodynamics refer to how air moves and the interaction between the air and any solid masses passing through it. This is the foundation of aerospace engineering and provides a baseline for sustained flight.

Thermodynamics is the science of the relationship between heat, temperature, energy and output. This concept is key to mechanical engineering as it defines how heat is transformed into energy and creates mechanical output.

Read MoreWhat Is a Drone? Drone Definition and Uses.

Celestial mechanics applies principles of physics to astronomical objects, including stars, planets, asteroids, and other organic material in order to project the motion of objects throughout outer space. Astronautical engineering relies on celestial mechanics to propel engines and avoid contact with objects in orbit.

There are four forces that play into successful flight: thrust, drag, weight and lift. All of these forces must be balanced and react to changes in any of the other forces to sustain flight. Thrust is the result of propulsion and is controlled by engines, propellers, or rockets; drag slows a flying object down; weight is the effect gravity has on an object; and lift suspends flying objects in the air, often through the use of wings.

Propulsion is the use of a system to drive or push an object forward. Thrust is a result of propulsion, crucial to acceleration and maintaining speed in any craft.

Acoustics principles within aerospace are applied when evaluating and addressing aeroacoustic noise in spacecraft, launch environments, engines, and propulsion systems due to aerodynamic flow. Proper acoustics are crucial to maintaining a safe and manageable environment for those near a flying craft and require careful consideration due to changing pressures that can create catastrophic failure.

All aerospace engineering concepts come into play when designing guidance and control systems, allowing pilots and controllers to adjust systems as needed to maintain flight. Guidance and control systems also utilize GPS navigation to ensure safe travel through low visibility environments.

Best Aerospace CompaniesView Top Aerospace Companies Hiring Now

Aerospace engineers should possess a deep understanding of several elements crucial to success in any aerospace field. These concepts, plus several others, are imperative to building successful systems and playing a role in the future of aerospace capabilities:

Excerpt from:

What Is Aerospace? Aerospace Industry & Engineering. | Built In

Related Posts

Comments are closed.