Breakthrough shows how DNA is 'edited' to correct genetic diseases

PUBLIC RELEASE DATE:

26-May-2014

Contact: Philippa Walker 44-117-928-8086 University of Bristol

An international team of scientists has made a major step forward in our understanding of how enzymes 'edit' genes, paving the way for correcting genetic diseases in patients.

Researchers at the Universities of Bristol, Mnster and the Lithuanian Institute of Biotechnology have observed the process by which a class of enzymes called CRISPR pronounced 'crisper' bind and alter the structure of DNA.

The results, published in the Proceedings of the National Academy of Sciences (PNAS) today, provide a vital piece of the puzzle if these genome editing tools are ultimately going to be used to correct genetic diseases in humans.

CRISPR enzymes were first discovered in bacteria in the 1980s as an immune defence used by bacteria against invading viruses. Scientists have more recently shown that one type of CRISPR enzyme Cas9 can be used to edit the human genome - the complete set of genetic information for humans.

These enzymes have been tailored to accurately target a single combination of letters within the three billion base pairs of the DNA molecule. This is the equivalent of correcting a single misspelt word in a 23-volume encyclopaedia.

To find this needle in a haystack, CRISPR enzymes use a molecule of RNA - a nucleic acid similar in structure to DNA. The targeting process requires the CRISPR enzymes to pull apart the DNA strands and insert the RNA to form a sequence-specific structure called an 'R-loop'.

The global team tested the R-loop model using specially modified microscopes in which single DNA molecules are stretched in a magnetic field. By altering the twisting force on the DNA, the researchers could directly monitor R-loop formation events by individual CRISPR enzymes.

Read this article:

Breakthrough shows how DNA is 'edited' to correct genetic diseases

Related Posts

Comments are closed.