NY Stem Cell Treatment | Stem Cell Therapy Clinics …

Welcome to the New York Stem Cell Treatment Center. I am David Borenstein, MD, founder of the center, which is part of my practice, Manhattan Integrative Medicine.

Whether we are treating patients from New York City, Montreal or Toronto, we are dedicated to the advancement of quality care in the area of adult stem cell regenerative medicine. Our mission is to use advanced stem cell technology in order to improve the bodys ability to regenerate, heal and overcome a variety of inflammatory and degenerative conditions.

Therapies are provided at our stem cell clinic for patientsfrom all over the U.S. and around the world. Locations we serve includethe surrounding areas of Manhattan, Brooklyn, Queens, the Bronx, Staten Island, Nassau County, Suffolk County, Long Island, Westchester, New Jersey, Connecticut and Pennsylvania. We treat patientswho visit us from Canada as well, from cities such as Montreal and Toronto.

Feel free to learn more about our stem cell treatments and our stem cell clinic. If you have further questions please go ahead andcontact us, and if you would like to schedule an initial consultation, please fill out acandidate application.

Financing and banking options for stem cell therapy procedures with the New York Stem Cell Treatment Center are available through United Medical Credit. Thousands of patients have trusted United Medical Credit to secure affordable payment plans for their procedures. United Medical Credit can do the same for you!

Below are some of the benefits of choosing United Medical Credit to finance your stem cell therapy:

Dr. David Borenstein obtained his medical degree from the Technion Faculty of Medicine in Haifa, Israel and completed his internship at Staten Island University Hospital. He has completed residencies at: University Hospital at Stony Brook; Westchester County Medical Center; and St. Charles Hospital and Rehabilitation Center.

During the course of his career he has attended numerous specialized training courses in order to expand the scope of his medical expertise that he uses every day at his stem cell treatment center. He is board certified in Physical Medicine and Rehabilitation, certified in Medical Acupuncture, and is a member of numerous professional societies.

Dr. Borenstein has held many prestigious clinical appointments and positions in leading medical facilities. He has been published in the European Journal of Ultrasound and has been the Chief Investigator on a research project on Spinal Cord Injuries. He has conducted medical missions in North Korea, Ghana, Cuba, and other countries.

Read more here:
NY Stem Cell Treatment | Stem Cell Therapy Clinics ...

Stem Cell Therapy | Adult Stem Cell Treatments

In order to self-repair, living organisms have stem cells in central andperipheral locations which can be attracted to sites of injured tissues by alarm signals. In this way, these cells proliferate, migrate, and accumulate in those damaged sites. If this situation of alarm perpetuates, stem cells could be permanently exhausted from their original locations leading to irreversible disease.

Basically, it could be a matter of stem cell quantity and effective availability at a certain time point when active regeneration is needed. The expectedconsequences of this situation could be the lack of an appropriate number of stem cells for further tissue replacement and regeneration and eventually the development of disease and aging.

For example, we could think that any alteration of this stem cell homeostasis by constant and repetitive trauma, physical hyperactivity, chronic inflammation and chronic disease could provoke a persistent disequilibrium inside all these reserve locations. This could promote an irreversible and premature stem cell exhaustion, being impossible then for the organism to self-repair and survive.

As we age we have less circulating stem cells. Introduction of new stem cells to our bodies circulation can improve health and repopulate our stem cell pool.

See more here:
Stem Cell Therapy | Adult Stem Cell Treatments

Stem Cell Therapy || Spinal Cord Injury || Stem Cell …

Spinal Cord Injury

Damage to the spinal cord usually results in impairments or loss of muscle movement, muscle control, sensation and body system control.

Presently, post-accident care for spinal cord injury patients focuses on extensive physical therapy, occupational therapy, and other rehabilitation therapies; teaching the injured person how to cope with their disability.

A number of published papers and case studies support the feasibility of treating spinal cord injury with allogeneic human umbilical cord tissue-derived stem cells and autologous bone marrow-derived stem cells.

Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report co-authored by Stem Cell Institute Founder Dr. Neil Riordan references many of them. Published improvements include improved ASIA scores, improved bladder and/or bowel function, recovered sexual function, and increased muscle control.

The adult stem cells used to treat spinal cord injuries at the Stem Cell Institute come from two sources: the patients own bone marrow (autologous mesenchymal and CD34+) and human umbilical cord tissue(allogeneic mesenchymal). Umbilical cords are donated by mothers after normal, healthy births.

A licensed anesthesiologist harvests bone marrow from both hips under light general anesthesia in a hospital operating room. This procedure takes about 1 1/2 2 hours. Before they are administered to the patient, these bone marrow-derived stem cells must pass testing for quality, bacterial contamination (aerobic and anaerobic) and endotoxin.

All donated umbilical cords are screened for viruses and bacteria to International Blood Bank Standards.

Only about 1 in 10 donated umbilical cords pass our rigorous screening process.

Through retrospective analysis of our cases, weve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them golden cells.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.

The bodys immune system is unable to recognize umbilical cord-derived mesenchmyal stem cells as foreign and therefore they are not rejected. HUCT stem cells have been administered thousands of times at the Stem Cell Institute and there has never been a single instance rejection (graft vs. host disease). Umbilical cord-derived mesenchymal stem cells also proliferate/differentiate more efficiently than older cells, such as those found in the fat and therefore, they are considered to be more potent.

VIDEO Watch Professor Arnold Caplan explain how this works.

Our stem cell treatment protocol for spinal cord injury calls for a total of 16 injections over the course of 4 weeks.

The bone marrow-derived and umbilical cord tissue-derived stem cells are both administered intravenously by a licensed physician.

They are also injected intrathecally (into the spinal fluid) by an experienced anesthesiologist. Intrathecal injection enables the stem cells to bypass the blood-brain barrier and migrate to the injury site within the spinal canal.

*Upon availability

Proper follow-up is essential for us to monitor your condition after treatment. It also helps us evaluate treatment efficacy and improve our protocols based on reported outcomes over time.

Therefore, one of our medical staff will be contacting you at the following intervals: 1 month, 3 months, 4 months, and 1 year.

Yes, we do. Several of our spinal cord injury patients currently volunteer to speak with prospective patients. Your patient coordinator will be happy to put you in touch with them once your treatment evaluation has been completed.

Weve also published written testimonials, news articles and videos from our spinal cord injury patients. Please take a look!

You may contact us by telephone 1 (800) 980-STEM (toll-free in US) and 1 (954) 358-3382.

To apply for stem cell treatment, please complete this stem cell therapy patient application form.

*Please not that the above treatment outline is typical. However, actual treatment scheduling might vary slightly.

Read more:

Stem Cell Therapy || Spinal Cord Injury || Stem Cell ...

Overview of Stem Cell Therapy

By: Ian Murnaghan BSc (hons), MSc - Updated: 24 Dec 2015 | *Discuss

With the wealth of information available on stem cell therapy, it can be overwhelming to read through what is often complex and confusing material. A quick fact sheet on stem cell therapy is a good way to familiarise yourself with the subject and decide if further reading is of interest or benefit.

Finally, there are additional issues even when cells are identified, isolated and grown. The new cells require implantation in a person and they must then essentially learn how to effectively function alongside a person's own tissues. For instance, if you imagine a cardiac cell being implanted, think about the fact that it may not beat with the same rhythm of a person's heart cells and is thus ineffective. A person's immune system may also recognise the transplanted cells as foreign bodies and this can trigger an immune reaction that results in rejection of the new cells.

The potential of stem cell therapy to ease human suffering and dramatically affect disease has motivated scientists to research ways of enhancing current stem cell therapies and develop new ones. Stem cell therapy remains a new science but the results have thus far been impressive enough that scientists are eagerly studying ways to treat the many diseases that you or a loved one may suffer from one day.

You might also like...

Share Your Story, Join the Discussion or Seek Advice..

Mona - 24-Dec-15 @ 9:57 AM

Maureen - 16-Oct-15 @ 3:40 AM

Dr. Lawrence - 16-Apr-15 @ 11:53 AM

ExploreStemCells - 31-Mar-15 @ 11:56 AM

Abdul Bashir - 28-Mar-15 @ 8:26 PM

mahendra - 22-Jan-15 @ 3:48 PM

mahendra - 22-Jan-15 @ 3:32 PM

Bala - 8-Oct-14 @ 8:34 AM

R - 28-Sep-14 @ 9:52 AM

Nivia Gomez - 23-Sep-14 @ 11:11 PM

Vivek - 7-Sep-14 @ 7:30 AM

mahen - 28-Aug-14 @ 9:49 AM

DOLLY - 24-Oct-11 @ 3:09 AM

monica - 23-Oct-11 @ 6:25 PM

Title:

(never shown)

See original here:

Overview of Stem Cell Therapy

Stem Cells – Learn Genetics

explore

Stem cells play many important roles in our bodies from embryonic development through adulthood.

learn more

Stem cells can now be created from differentiated cells.

learn more

Learn about some different types of stem cells and their potential for treating diseases.

interactive explore

Send activating signals to stem cells and watch them get to work!

learn more

Stem cell therapies have been curing diseases for decades.

explore

Researchers are working on new ways to use stem cells in medicine.

learn more

New developments in research are changing the conversation about stem cells.

Supported by a Science Education Partnership Award (SEPA) Grant No. R25RR023288 from the National Center for Research Resources, a component of the NIH. The contents provided here are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

APA format: Genetic Science Learning Center (2014, June 22) Stem Cells. Learn.Genetics. Retrieved March 28, 2016, from http://learn.genetics.utah.edu/content/stemcells/ MLA format: Genetic Science Learning Center. "Stem Cells." Learn.Genetics 28 March 2016 <http://learn.genetics.utah.edu/content/stemcells/> Chicago format: Genetic Science Learning Center, "Stem Cells," Learn.Genetics, 22 June 2014, <http://learn.genetics.utah.edu/content/stemcells/> (28 March 2016)

Read the original post:

Stem Cells - Learn Genetics

Miami Stem Cell Treatment Center

The Advancement of Stem Cell Technology

At the Miami Stem Cell Treatment Center we provide consultation relating to clinical research and deployment of stem cell therapy for patients suffering from diseases that may have limited treatment options. Stem cell therapy is not for everyone but under the right circumstances and under the right conditions there may be an opportunity for stem cell therapy to be effective. But stem cell therapy is not, at present time, is not the holy grail we all would like it to be.

Our expertise involves a deep commitment and long-term understanding, knowledge and experience in clinical research and the advancement of regenerative medicine.

We firmly support respected guidance regarding stem cell therapy indicating that it should be autologous, include ONLY minimal manipulation of regenerative cells, and be consistent with homologous use.

We do NOT advise the addition of chemicals or enzymes to produce the stromal vascular fraction (SVF).

We believe that treatment protocols ought to be reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP) or United States F.D.A, or both.

Because we are committed to the principles and ideals of regenerative medicine, we are continuously updating, researching, and learning more on how to help patients and advance the state of the art of regenerative medicine. Accordingly we provide all patients who are interested in considering stem cell therapy an honest opinion as to the potential benefits and risks of stem cell therapy for their presenting condition.

At the Miami Stem Cell Treatment Center we will review your medical records and condition, and then consider an array of ongoing IRB-approved protocols, registered with Clnicaltrials.gov, a service of the National Institute of Health and the National Library of Congress, to provide patients with a wide variety of treatment options and considerations for medical disorders that may benefit from adult stem cell-based regenerative therapy.

Read more:

Miami Stem Cell Treatment Center

Stem Cell Treatment, Non-Surgical Stem Cell Therapy

PROVIDING NON-SURGICAL ALTERNATIVE TO JOINT AND BACK PROBLEMS

Experience Counts- Located in Jacksonville, Florida, we are the leader in Adult Stem Cell and Platelet-Rich Plasma (PRP) Procedures. We have performed these procedures for more than ten years with over 90 % results and ZERO side effects.

Top Stem Cell Center in the World:Unique Proven Clinical Protocols, over ten years of experience and hundreds of satisfied patients is why people from around the world come to us for their adult stem cell and Platelet-Rich Plasma Procedures.

FIVE reasons you need to know before you decide. You will see why people around the world choose us over other Clinics.

Glaring Differences

SmartChoice

Clinic

Other Leading Stem Cell Clinics (including Regenexx, Cell surgical Networks and others)

1. Gene and Cellular tests to evaluate your stem cell functions.

YES

NO

2. Use BOTH Bone Marrow and Fat Stem Cells, along with PRP.

YES

NO

3. Process Your Stem Cells with safety and use no dangerous chemicals like collagenase.

YES

NO

4. Use Dynamic Ultrasound Guided Injections for Precision and safety (and NOT use X-Rays that can damage your cells).

YES

NO

5. Improve body functions with proprietary Hormones and Supplements, so you get the best possible clinical outcome.

YES

NO

After successfully using SmartChoice Procedures over the past five years to treat many patients with various orthopedic and sports medicine conditions from around the country, we truly believe that Adult Stem cells are making a seismic change in the science of medicine.

We hope the information provided in this website regarding our innovative, non-surgical SmartChoice Joint Procedures will help guide you in your decision to find alternatives to surgery for your spineand joints.

Learn More

And if you are considering a knee, hip or other joint replacement, you might want to learn about how the adult stem cells and PRP procedures stack up against these risky orthopedic surgeries.

For many patients, the Knee or Hip Joint Replacement may not be an option due to their younger age, especially considering the fact that we are living longer and more active lifestyle and the Joint Replacement may not last for more than 10 to 15 years. Also, the injuries may not be serious enough to require any surgery in first place.

As an alternative to the knee and hip (and other joints) surgery or replacement, SmartChoice Joint Procedures may help alleviate joint pain and the medical condition that causes it with a simple office injection procedure. We encourage the patients to walk the same day and most experience almost no downtime after our procedures.

Learn More

Got a question for Dr Garg, M.D. about Stem Cell and PRP Procedures?

Please fill out the form below and Stem Cell Expert Dr Garg will answer your question. Thank You.

Patient Stories

"What a difference it has made"

We are in Kissimmee just now and am managing to play golf without any pain. We were over in Kissimmee in October 2014 and played golf for the first time since I had the stem cell replacement and couldn't believe that I had no pain at all. This is great. Please pass on my appreciation to Dr Garg for the great work he did on my knees. What a difference it has made.

Thanks

Marion C., Lives in Scotland

More Testimonials

Disclaimer: Platelet Rich Plasma, Stem Cells from fat or bone marrow, and other treatments and modalities mentioned in this web site are medical techniques that may or may not be considered mainstream. As with any medical treatment, results will vary among individuals, and there is no implication that you will heal or receive the same outcome as patients herein. There could be pain or other substantial risks involved. These concerns should be discussed with your health care provider prior to any treatment so that you have proper informed consent and understand that there are no guarantees to healing.

THE INFORMATION IN THIS WEBSITE IS OFFERED FOR EDUCATIONAL PURPOSES ONLY AND DOES NOT IMPLY OR GIVE MEDICAL ADVICE. THE PHOTOS USED MAY BE MODELS AND NOT PATIENTS.

See the rest here:

Stem Cell Treatment, Non-Surgical Stem Cell Therapy

Stem Cell Therapy | Cellular Prolotherapy | Caring Medical

Home Stem Cell Therapy | Cellular Prolotherapy

Ross Hauser, MD

Ross Hauser, MD: the use of Stem Cell Therapy in the treatment of joint and spine degeneration.

Stem cell therapy is exploding in the medical field, and for good reason. Stem cells have the potential to regenerate into any type of body tissue. The amazing thing about stem cells is that when you inject them into the body, they know what kinds of cells your body needs for example, meniscus cells or cartilage cells. It is a very exciting time for medicine, especially in the field of regenerative medicine. In our office we often refer to this as Cellular Prolotherapy.

In Stem Cell Therapy we use a persons own healing cells from bone marrow, fat, and blood (alone or in various combinations) and inject them straight to the area which has a cellular deficiency.

The goal is the same: to stimulate the repair of injured tissues. Stem cells aid in fibroblastic proliferation where cell growth, proteosynthesis, reparation, the remodeling of tissues, and chondrocyte proliferation occurs. Our bone marrow contains stem cells,also termed mesenchymal stem cells and progenitor cells, among other names. These immature cells have the ability to become tissues like cartilage, bone, and ligaments.

Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently,cell-basedtherapyhas become a key focus of tissue engineering research to achieve functional replacement of articular cartilage.1

Not all injuries require stem cells to heal. For many patients the success rate with traditionalProlotherapyin this office is in the 90%+ range for all patients. However, for those cases of advanced arthritis, meniscus tears, labral tears, bone-on-bone, or aggressive injuries, our Prolotherapy practitioners may choose to use stem cell injections to enhance the healing, in combination with dextrose Prolotherapy to strengthen and stabilize the surrounding support structures formeniscus repair.

In our research published inThe Open Stem Cell Journal,Rationale for Using Direct Bone Marrow Aspirate as a Proliferant for Regenerative Injection Therapy(Prolotherapy). We not only showed the benefit of bone marrow derived stem cells as a Prolotherapy proliferant solution, but also that this exciting field of medicine needs doctors and scientisists working together to expand research and technique guidelines.

Typically the tissue that we are trying to stimulate to repair with Stem Cell Therapy or Cellular Prolotherapy is articular cartilage, but we can also proliferate soft tissues structures such as ligament and tendons. This is new technology so we are studying it as we use it to treat patients.

Recent research conducted, Transplanted bone marrow mesenchymalstem cellswith platelet-rich fibrin glue scaffoldstimulates full-thickness cartilage defects to heal.

We chose to review this study to support our research and to inform people about the human studies usingbone marrow stem cellsfor articular cartilage lesions. Articular cartilage is a type of cartilage that covers joint surfaces and is most susceptible to injury compared to other types of cartilage.

Researchers at Cairo University School of Medicine and the University of Pittsburgh School of Medicine reported on the use of bone marrow mesenchymal stem cells and aplatelet-richfibrin scaffold to heal full-thickness cartilage defects in five patients. The researchers studied the treatment results from the bone marrow mesenchymal stem cells which were used in a platelet rich fibrin glue, placed on the tear and covered with a flap of the patients cartilage.

Articular Cartilagehas limited repair capacity and marrow-stimulation procedures such as microfracture, osteochondral grafts andautologouscartilage implantations have had limited success in articular cartilage defects.4The researchers from this study chose mesenchymal stem cells from bone marrow because these have the ability to differentiate into cartilage cells. In the case of these five patients the bone marrow was harvested from the iliac crest (hip bone).

Platelets were used as a scaffold because platelets contain various growth factors that stimulate cartilage regeneration. The researchers expected that the biological effect of multiplegrowth factorson tissue regeneration is greater that of a single growth factor.

Results

The patients showed significant functional improvement. Two of the patients underwent arthroscopy after the transplantation and showed near normal articular cartilage. Three postoperative MRIs revealed complete healing and congruent cartilage tissue, whereas two patient MRIs showed incomplete congruity in the cartilage tissue.

Conclusion

The researchers concluded that the transplantation of autologous culture-expanded bone marrow-mesenchymal stem cells in platelet rich-fibrin glue shows great promise in the treatment of full-thickness articular cartilage defects, particularly large-sized defects (>4 cm). The positive 1 year clinical outcomes support further randomized controlled clinical trials of this treatment modality with larger numbers of patients and longer follow-up periods.

Bone MarrowProlotherapy involves direct bone marrow aspiration (or also concentrated) to get the stem cells to the site of the injury. Does the study above suggest that direct bone marrow injections without culture expanded and without the scaffold would work? Possibly, but only time will tell as research progresses. But in our experience we have discovered that these stem cells act as great proliferant solutions forProlotherapy. We use bonemarrow stem cellsin conjunction with other Prolotherapy solutions to treat large articular defects in thelabrum and meniscusareas. Typically, patients are seen every two months. Most patients need 3-6 visits. The good news is during the time of healing, the patient can exercise and start getting back into great shape! Bone marrow and adipose-derived stem cell therapies are gaining in recognition and we are happy to offer them as an option for treating chronic injuries and sports injuries.

There is always conflicting research into the efficacy of any treatment protocol and stem cell injection therapyis no different. Many times a patient will point to his or her own clinical dissatisfaction or research and say, stem cell therapy does not work as well as advertised. Lets look at some of that research:

Osteoarthritis is a cartilage degenerative processNo treatment is still available to improve or reverse the process. Stem cell therapy opened new horizons for treatment of many incurable diseasesIn this research four patients with knee osteoarthritis were selected for the study. They were aged 55, 57, 65 and 54 years, and had moderate to severe knee Osteoarthritis. After their signed written consent, 30 mL of bone marrow were taken and cultured for MSC growth. After having enough MSCs in culture (4-5 weeks) and taking in consideration all safety measures, cells were injected in one knee of each patient.

The walking time for the pain to appear improved for three patients and remained unchanged for one. On physical examination, the improvement was mainly for crepitus. It was minor for the improvement of the range of motion.

Results were encouraging, but not excellent. Improvement of the technique may improve the results.4

We agree that stem cell therapy has benefits but may not provide a full cure. This is why we recommend the use of Platelet Rich Plasma Therapy in conjunction with stem cell therapy. The study above involved cultured stem cells. In our opinion Stem cell therapy is more effective if the stem cells are given better direction. This is where the growth factors in blood platelets can be very effective. Platelets aid the stem cells in their various jobs including differentiation and then aid in the differentiated cells making the extracellular matrix to repair the injured tissue.

Platelet Rich Plasma contains a myriad of substances that stimulate healing:

Numerous studies have shown that PRP enhances the effects of Stem Cell Therapy5,6As the study above notes Results were encouraging, but not excellent. Improvement of the technique may improve the results. Platelet Rich Plasma therapy improves the technique and improves the results.

Our ultimate goal withallforms of Prolotherapy is to get the patients back to doing the things that they want to do without pain. It is our hope that the Stem Cell Therapy (Cellular Prolotherapy) treatments will form functionally, structurally, and mechanically equal to, if not better than, living tissue which has been designed to replace (or work alongside of) damaged tissue. It is hard to prove the above statement because we cannot sacrifice human beingsafterProlotherapy to see if the tissue looks and acts normally. Wecan, however, report that the majority of our patients who receive Stem Cell Therapy along with traditional Hackett-Hemwall Prolotherapy get back to activities and have dramatically decreased pain levels using this comprehensive approach.

Links to our other articles for your specific conditions

A page with more information on stem cell injection treatments combined with Prolotherapy and PRP Treatments for back pain.

In this article wediscusses research that showsthatstem cell injection therapywill aid in the repair ofarticular cartilageandmeniscus tears. The treatment relieves symptoms of stiffness,pain, disability, and inability to walk as commonly reported by our patients diagnosed with knee osteoarthritis.

Many patients have many questions about stem cell tretament for knee osteoarthritis, lets hear yours.

References for this article

1.Mazor M, Lespessailles E, Coursier R, et al.Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med. 2014 Oct 29. doi: 10.1111/jcmm.12378. 2. Diekman BO, Guilak F.Stem cell-based therapies for osteoarthritis: challenges and opportunities. Curr Opin Rheumatol. 2013 Jan;25(1):119-26. doi: 10.1097/BOR.0b013e32835aa28d. 3. Hauser RA, Orlofsky A.Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series.Clin Med Insights Arthritis Musculoskelet Disord. 2013 Sep 4;6:65-72. doi: 10.4137/CMAMD.S10951. eCollection 2013. 4. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2):211-5. doi: 10.1111/j.1756-185X.2011.01599.x. Epub 2011 5. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. 2009 Sep;15(3):431-5. 6. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Lginbuhl R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl. 2008 Sep;23(2):169-88. Epub 2008 Jul 16.

See original here:

Stem Cell Therapy | Cellular Prolotherapy | Caring Medical

Arthritic Dogs Healed With New Stem Cell Therapy – ABC News

A couple of years ago, Brad Perry's dogs started having joint problems. Cowboy, the golden retriever, developed a severe case of arthritis, while Mr. Jones, the mutt, tore the ligaments in both of his knees during some overenthusiastic play.

"It was so sad. They wouldn't even come to the door to greet me they were in so much pain. It just broke my heart," recalled Perry, a tractor-trailer driver from Alexandria, Ky.

Perry gave the dogs all sorts of medications, but nothing worked, and he knew such medications could result in kidney and liver damage. The dogs' suffering became so great, Perry considered putting the pets down. But late last year he heard about a veterinarian in his area who performed stem cell therapy on dogs to regenerate and repair their joints and figured it was worth a try.

Cowboy underwent the procedure first. Mr. Jones followed a few months later. Perry said that within 10 days of receiving treatment the dogs were like puppies again, chasing his kids, running around in the park and swimming in the lake.

The treatment Perry's dogs received was developed by MediVet America of Lexington, Ky., one of several companies that sell equipment and training to veterinary clinics around the world. MediVet has more than a thousand clinics. Participating vets have performed more than 10,000 stem cell procedures about 7,000 of them in the past 12 months.

An operation like the one Cowboy and Mr. Jones underwent takes several hours. To start, the vet harvests a few tablespoons of fat cells from the pet's abdomen or shoulder, then spins the cells in a centrifuge to separate out the stem cells that are naturally present in fat. Next, the cells are mixed with special enzymes to "digest" any residual fat and connective tissue, and are then "activated" by mixing them with "plasma rich platelets" extracted from the animal's blood cells. The mixture is stimulated under a LED light for 20 minutes or so to further concentrate the stem cells. Finally, the newly awakened cells are injected back into the damaged joint.

Jeremy Delk, MediVet's chief executive officer, said that the therapy works because stem cells are the only cells in the body that have the ability to transform themselves into other types of specialized cells -- such as cartilage -- making them a potent tool for repairing damaged and deteriorating joints. There are 50 to 1,000 times more stem cells in the fat than bone marrow, a source that was more consistently used in animal and human -- stem cell therapy until the fat method started becoming more popular.

"As we age, humans and animals alike, our stem cells are starting to die off so we have fewer. What we are able to do with these techniques is isolate the cells in very large numbers, wake them up and put them back into the area that needs help," he explained.

While still largely unavailable to their owners, stem cell therapy from fat cells has been offered to our furry friends for several years. With fewer regulatory hoops to jump through in veterinary medicine and no contentious religious debates, experimental procedures are often tested and perfected on animals decades before they're green-lighted for use on humans.

One of the things veterinarians and owners alike praise about the procedure is it can be completed in one day, and all at the vet's office. Stem cells can also be banked for future injection so the animal does not have to endure extraction again.

John Sector, the owner of Shelby St. Veterinarian Hospital in Florence, who performed the surgery on Cowboy and Mr. Jones, had high praise for the therapy.

"This is potentially a game changer. We're seeing incredible results in the joints. We also see some unexpected improvements in other things, like skin conditions," he said.

Stem cell therapy is not just for pets who curl up on couches or ride in the backseat either. Delk said horses, donkeys, zebras and lions are also regular stem cell patients. He and his team recently traveled to the Middle East to perform the therapy on some prized racing camels.

However, stem cell remedies, even for animals, are still considered experimental. Shila Nordone, the chief scientific officer at the AKC Canine Health Foundation, a nonprofit group that funds health research for dogs, said that its use for joint regenerative purposes is exciting, but that the lower regulatory bar in animal medicine is both good and bad.

"It's good because we can do things sooner for our patients without 10 years of expensive clinical trials, but bad because we are still in the process of establishing best practices to ensure the procedures are the safest and most effective possible," she said.

Studies funded by the Health Foundation and others have been promising. One study of more than 150 dogs found improvements in joint stiffness, mobility and other joint health indicators in nearly 95 percent of arthritic cases. In some patients, improvements were seen in as little as a week while others took up to 90 days and required multiple injections.

The cost of a single procedure is $1800-$3,000, depending on the area of the country, the species of animal and severity of joint damage. Even those with pet insurance can expect to pay out of pocket.

Owners like Perry believe it is worth every penny.

"They are completely different dogs. It absolutely changed their lives," he said of Cowboy and Mr. Jones. "It changed mine too -- I got my dogs back."

More:

Arthritic Dogs Healed With New Stem Cell Therapy - ABC News

Knee Stem Cell Therapy – Surgery & Replacement Alternative

Regenexx Knee Stem Cell Therapy for Injuries and ArthritisChris Centeno2015-10-23T08:56:19+00:00

The Regenexx family ofnon-surgical stem cell and blood platelet procedures offer next-generation injection treatments for those who are suffering from knee pain or may be facing knee surgery or knee replacement due to common tendon, ligament and bone injuries, arthritis and other degenerative conditions.

As an alternative to knee surgery or knee replacement, Regenexx procedures may help alleviate knee pain and the conditions that cause it with a same-day office injection procedure. Unlike traditional surgery, Regenexx patients are typically encouraged to walk the same day, and most patients experience very little down time from the procedure.

Knee Patient Results | Regenexx SD Procedure Overview | ACL Injuries | Meniscus Tears

This is not a complete list of conditions treated, but the most common knee conditions we have treated throughout the years. If you are experiencing knee pain, injury, or arthritis, please contact us or complete the candidacy form below to learn more about whether the Regenexx Procedures are right for you.

This Regenexx-SD (same-day) bone marrow derived stem cell treatment outcome data analysis is part of the Regenexx data download of patients who were tracked in the Regenexx advanced patient registry.

This Regenexx-SD (same-day) bone marrow derived stem cell treatment outcome data analysis is part of the Regenexx data download of patients who were tracked in the Regenexx advanced patient registry following treatment for Meniscus Tears.

This data utilizes LEFS (Lower Extremity Functional Scale) data from our knee arthritis patients treated with stem cell injections. Functional questionnaires ask the patients questions such as how well they can walk, run, climb stairs, etc. The improvements following the Regenexx-SD procedure are highly statistically significant.

If you are considering a knee replacement, watch the video in the sidebar of this page and read about how stem cells stack up against knee replacements.

BioMed Research International;Volume 2014, Article ID 370621,.Centeno CJ.

Introduction. We investigated the use of autologous bone marrow concentrate (BMC) with and without an adipose graft, fortreatment of knee osteoarthritis (OA). Methods. Treatment registry data for patients who underwent BMC procedures with andwithout an adipose graft were analyzed. Pre- and posttreatment outcomes of interest included the lower extremity functional scale(LEFS), the numerical pain scale (NPS), and a subjective percentage improvement rating. Multivariate analyses were performedto examine the effects of treatment type adjusting for potential confounding factors. The frequency and type of adverse events(AE) were also examined. Results. 840 procedures were performed, 616 without and 224 with adipose graft. The mean LEFS scoreincreased by 7.9 and 9.8 in the two groups (out of 80), respectively, and the mean NPS score decreased from 4 to 2.6 and from 4.3to 3 in the two groups, respectively. AE rates were 6% and 8.9% in the two groups, respectively. Although pre- and posttreatmentimprovements were statistically significant, the differences between the groups were not. Conclusion. BMC injections for knee OAshowed encouraging outcomes and a low rate of AEs. Addition of an adipose graft to the BMC did not provide a detectible benefitover BMC alone.

Two time Super Bowl Champ Jarvis Greens story. From a young boy struggling to get through a football practice, to a 2X Super Bowl Champion, Jarvis tells his story of pain and struggle following knee surgeries, and his return to form following a Regenexx Stem Cell Procedure.

If you are interested in learning whether you are a good candidate for the Regenexx Procedure, please complete the Regenexx Procedure Candidate Form below or call us at 888-525-3005.

Originally posted here:

Knee Stem Cell Therapy - Surgery & Replacement Alternative

Stem Cell Therapy in Switzerland Life Cell Injections …

Stem Cell Therapy Plus is also called Live Cell Therapy or Regenerative Medicine.

Anecdotal evidence shows that through the usage of Stem Cell Therapy Plus, improvements can be seen in the following cases of degenerative diseases:

Learn More

Stem cells are cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells. Stem cells have the remarkable potential to develop into many different cell types. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells.

When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a nerve cell, or a brain cell.

Stem Cell Supplements are developed based on the merits of stem cells and they are applied for degenerative diseases treatments and to stimulate the formation of all the different tissues of the body: muscle, cartilage, tendon, ligament, bone, blood, nerve, organs, etc.

Stem Cell Supplements bring essential anti-ageing, health & beauty benefits by providing necessary elements to the body to improve cellular regeneration, organ rejuvenation and tissue healing.

Learn More

Read the original post:

Stem Cell Therapy in Switzerland Life Cell Injections ...

Stem Cells News — ScienceDaily

Sep. 3, 2015 In the breast, cancer stem cells and normal stem cells can arise from different cell types and tap into distinct yet related stem cell programs, according to researchers. The differences between ... read more Sep. 3, 2015 A number of illnesses causing blindness can be cured from transplanting cells from the oral cavity. New findings make the treatment accessible to the places where the condition strikes the most ... read more Aug. 31, 2015 A strong physical gene interaction network has been discovered that is responsible for holding genes in a silencing grip during early development. In the same way that people can interact with others ... read more Aug. 27, 2015 Scientists have identified how mutations in the IKZF1 gene contribute to a high-risk leukemia subtype and drugs that may enhance the effectiveness of targeted ... read more Viral Infection in Colon Cancer Stem Cells Mimicked; Druggable Target Identified Aug. 27, 2015 Researchers targeting colorectal cancer stem cells the root cause of disease, resistance to treatment and relapse have discovered a mechanism to mimic a virus and potentially trigger an ... read more Alzheimers Disease Thought to Be Accelerated by an Abnormal Build-Up of Fat in the Brain Aug. 27, 2015 People with Alzheimers disease have fat deposits in the brain. For the first time since the disease was described 109 years ago, researchers have discovered accumulations of fat droplets in the ... read more Aug. 27, 2015 A finding reveals why the transformation process of differentiated cells into stem cells results in significant damage to the DNA. Researchers have managed to rectify this damage using a simple ... read more Aug. 26, 2015 Compounds found in purple potatoes may help kill colon cancer stem cells and limit the spread of the cancer, according to a team of ... read more Aug. 26, 2015 Medical researchers have found a novel nutrient uptake process that maintains the activity of murine chronic myelogenous leukemia (CML) stem cells. Pharmacological inhibition of nutrient uptake ... read more Aug. 25, 2015 A new research study has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or ... read more Study Provides Hope for Some Human Stem Cell Therapies Aug. 20, 2015 An international team of scientists has discovered that an important class of stem cells known as human 'induced pluripotent stem cells,' or iPSCs, which are derived from an ... read more Aug. 20, 2015 Scientists have developed a novel way to engineer the growth and expansion of energy-burning 'good' fat, and then found that this fat helped reduce weight gain and lower blood glucose ... read more How Newts Can Help Osteoarthritis Patients Aug. 20, 2015 Osteoarthritis is the most common form of joint disease worldwide. Now, scientists have taken a leaf out of natures book in an attempt to develop effective stem cell treatment for osteoarthritis, ... read more Regenerating Nerve Tissue in Spinal Cord Injuries Aug. 13, 2015 Researchers are exploring a new therapy using stem cells to treat spinal cord injuries within the first 14 to 30 days of injury. The therapy uses a population of cells derived from human embryonic ... read more Newly Discovered Cells Regenerate Liver Tissue Without Forming Tumors Aug. 13, 2015 The mechanisms that allow the liver to repair and regenerate itself have long been a matter of debate. Now researchers have discovered a population of liver cells that are better at regenerating ... read more Aug. 12, 2015 Scientists have discovered metabolic rejuvenation factors in eggs. This critical finding furthers our understanding of how cellular metabolism changes during aging, and during rejuvenation after egg ... read more Can Stem Cells Cause and Cure Cancer? Aug. 12, 2015 Simply put, cancer is caused by mutations to genes within a cell that lead to abnormal cell growth. Finding out what causes that genetic mutation has been the holy grail of medical science for ... read more Why Statins Should Be Viewed as a Double-Edged Sword Aug. 12, 2015 Statins have significant cardiovascular benefits, but also serious side effects. A new study finds that statin use impairs stem cell function, which helps in slowing atherosclerosis but hinders other ... read more Researcher Studying Advances in Next-Generation Stem Cell Culture Technologies Aug. 10, 2015 A researcher is studying ways to advance the next generation of cell culture technologiesthe removal of stem cells from an organism and the controlled growth of those cells in an engineering ... read more Stem Cells Help Researchers Study the Effects of Pollution on Human Health Aug. 10, 2015 Embryonic stem cells could serve as a model to evaluate the physiological effects of environmental pollutants efficiently and cost-effectively. The use of stem cells has found another facade. In the ... read more

Read the rest here:
Stem Cells News -- ScienceDaily

Bart Starr walking again after stem cell treatment

Bart Starr condition deteriorated after suffering a heart attack, two strokes and a four seizures in September.(Photo: David J. Phillip, AP)

Bart Starr had quite a meal Tuesday morning in Alabama three pancakes and an omelet with three eggs and cheese.

It was made by his wife Cherry, his bride of 61 years. And it didnt take him long to eat it.

He fed himself the entire breakfast, Cherry Starr said. It was great.

It was another small but significant moment for Starr, the legendary former Green Bay Packers quarterback. Before he underwent an experimental stem cell treatment in June, Starr, 81, could barely walk or feed himself. His condition had deteriorated after suffering a heart attack, two strokes and a four seizures in September.

But now he can walk and eat unaided, seemingly sparked back to his feet with the help of this treatment.

Its just been really exciting to witness, Cherry Starr told USA TODAY Sports. Some of it might have been natural. It might have happened without the stem cells to some degree. But theres no question that has absolutely helped him, and some of his cognition has improved rather dramatically really. He can do things like tie his shoes. Hes feeding himself. He can read. I could go on and on about a lot of things that were witnessing that are really, really exciting to us.

She said Starr received an infusion of 90 million stem cells in June, when he traveled to the San Diego area for treatment. During the trip, they also met with two other sports heroes who previously received similar treatments: hockey great Gordie Howe, 87, and former San Francisco 49ers quarterback John Brodie, 79.

USA TODAY

Fetal stem cells and the sports legends they revitalized

Follow this link:

Bart Starr walking again after stem cell treatment

Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

1. Introduction

Neuromuscular disease is a very broad term that encompasses many diseases and aliments that either directly, via intrinsic muscle pathology, or indirectly, via nerve pathology, impair the functioning of the muscles. Neuromuscular diseases affect the muscles and/or their nervous control and lead to problems with movement. Many are genetic; sometimes, an immune system disorder can cause them. As they have no cure, the aim of clinical treatment is to improve symptoms, increase mobility and lengthen life. Some of them affect the anterior horn cell, and are classified as acquired (e.g. poliomyelitis) and hereditary (e.g. spinal muscular atrophy) diseases. SMA is a genetic disease that attacks nerve cells, called motor neurons, in the spinal cord. As a consequence of the lost of the neurons, muscles weakness becomes to be evident, affecting walking, crawling, breathing, swallowing and head and neck control. Neuropathies affect the peripheral nerve and are divided into demyelinating (e.g. leucodystrophies) and axonal (e.g. porphyria) diseases. Charcot-Marie-Tooth (CMT) is the most frequent hereditary form among the neuropathies and its characterized by a wide range of symptoms so that CMT-1a is classified as demyelinating and CMT-2 as axonal (Marchesi & Pareyson, 2010). Defects in neuromuscular junctions cause infantile and non-infantile Botulism and Myasthenia Gravis (MG). MG is a antibody-mediated autoimmune disorder of the neuromuscular junction (NMJ) (Drachman, 1994; Meriggioli & Sanders, 2009). In most cases, it is caused by pathogenic autoantibodies directed towards the skeletal muscle acetylcholine receptor (AChR) (Patrick & Lindstrom, 1973) while in others, non-AChR components of the postsynaptic muscle endplate, such as the muscle-specific receptor tyrosine kinase (MUSK), might serve as targets for the autoimmune attack (Hoch et al., 2001). Although the precise origin of the autoimmune response in MG is not known, genetic predisposition and abnormalities of the thymus gland such as hyperplasia and neoplasia could have an important role in the onset of the disease (Berrih et al., 1984; Roxanis et al., 2001).

Several diseases affect muscles: they are classified as acquired (e.g. dermatomyositis and polymyositis) and hereditary (e.g. myotonic disorders and myopaties) forms. Among the myopaties, muscular dystrophies are characterized by the primary wasting of skeletal muscle, caused by mutations in the proteins that form the link between the cytoskeleton and the basal lamina (Cossu & Sampaolesi, 2007). Mutations in the dystrophin gene cause severe form of hereditary muscular diseases; the most common are Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). DMD patients suffer for complete lack of dystrophin that causes progressive degeneration, muscle wasting and death into the second/third decade of life. Beside, BMD patients show a very mild phenotype, often asymptomatic primarily due to the expression of shorter dystrophin mRNA transcripts that maintain the coding reading frame. DMD patients muscles show absence of dystrophin and presence of endomysial fibrosis, small fibers rounded and muscle fiber degeneration/regeneration. Untreated, boys with DMD become progressively weak during their childhood and stop ambulation at a mean age of 9 years, later with corticosteroid treatment (12/13 yrs). Proximal weakness affects symmetrically the lower (such as quadriceps and gluteus) before the upper extremities, with progression to the point of wheelchair dependence. Eventually distal lower and then upper limb weakness occurs. Weakness of neck flexors is often present at the beginning, and most patients with DMD have never been able to jump. Wrist and hand muscles are involved later, allowing the patients to keep their autonomy in transfers using a joystick to guide their wheelchair. Musculoskeletal contractures (ankle, knees and hips) and learning difficulties can complicate the clinical expression of the disease. Besides this weakness distribution in the same patient, a deep variability among patients does exist. They could express a mild phenotype, between Becker and Duchenne dystrophy, or a really severe form, with the loss of deambulation at 7-8 years. Confinement to a wheelchair is followed by the development of scoliosis, respiratory failure and cardiomyopathy. In 90% of people death is directly related to chronic respiratory insufficiency (Rideau et al., 1983). The identification and characterization of dystrophin gene led to the development of potential treatments for this disorder (Bertoni, 2008). Even if only corticosteroids were proven to be effective on DMD patient (Hyser and Mendell, 1988), different therapeutic approaches were attempted, as described in detail below (see section 7).

The identification and characterization of the genes whose mutations caused the most common neuromuscular diseases led to the development of potential treatments for those disorders. Gene therapy for neuromuscular disorders embraced several concepts, including replacing and repairing a defective gene or modifying or enhancing cellular performance, using gene that is not directly related to the underlying defect (Shavlakadze et al., 2004). As an example, the finding that DMD pathology was caused by mutations in the dystrophin gene allowed the rising of different therapeutic approaches including growth-modulating agents that increase muscle regeneration and delay muscle fibrosis (Tinsley et al., 1998), powerful antisense oligonucleotides with exon-skipping capacity (Mc Clorey et al., 2006), anti-inflammatory or second-messenger signal-modulating agents that affect immune responses (Biggar et al., 2006), agents designed to suppress stop codon mutations (Hamed, 2006). Viral and non-viral vectors were used to deliver the full-length - or restricted versions - of the dystrophin gene into stem cells; alternatively, specific antisense oligonucleotides were designed to mask the putative splicing sites of exons in the mutated region of the primary RNA transcript whose removal would re-establish a correct reading frame. In parallel, the biology of stem cells and their role in regeneration were the subject of intensive and extensive research in many laboratories around the world because of the promise of stem cells as therapeutic agents to regenerate tissues damaged by disease or injury (Fuchs and Segre, 2000; Weissman, 2000). This research constituted a significant part of the rapidly developing field of regenerative biology and medicine, and the combination of gene and cell therapy arose as one of the most suitable possibility to treat degenerative disorders. Several works were published in which stem cell were genetically modified by ex vivo introduction of corrective genes and then transplanted in donor dystrophic animal models.

Stem cells received much attention because of their potential use in cell-based therapies for human disease such as leukaemia (Owonikoko et al., 2007), Parkinsons disease (Singh et al., 2007), and neuromuscular disorders (Endo, 2007; Nowak and Davies, 2004). The main advantage of stem cells rather than the other cells of the body is that they can replenish their numbers for long periods through cell division and, they can produce a progeny that can differentiate into multiple cell lineages with specific functions (Bertoni, 2008). The candidate stem cell had to be easy to extract, maintaining the capacity of myogenic conversion when transplanted into the host muscle and also the survival and the subsequent migration from the site of injection to the compromise muscles of the body (Price et al., 2007). With the advent of more sensitive markers, stem cell populations suitable for clinical experiments were found to derive from multiple region of the body at various stage of development. Numerous studies showed that the regenerative capacity of stem cells resided in the environmental microniche and its regulation. This way, it could be important to better elucidate the molecular composition cytokines, growth factors, cell adhesion molecules and extracellular matrix molecules - and interactions of the different microniches that regulate stem cell development (Stocum, 2001).

Several groups published different works concerning adult stem cells such as muscle-derived stem cells (Qu-Petersen et al., 2002), mesoangioblasts (Cossu and Bianco, 2003), blood- (Gavina et al., 2006) and muscle (Benchaouir et al., 2007)-derived CD133+ stem cells. Although some of them are able to migrate through the vasculature (Benchaouir et al., 2007; Galvez et al., 2006; Gavina et al., 2006) and efforts were done to increase their migratory ability (Lafreniere et al., 2006; Torrente et al., 2003a), poor results were obtained.

Embryonic and adult stem cells differ significantly in regard to their differentiation potential and in vitro expansion capability. While adult stem cells constitute a reservoir for tissue regeneration throughout the adult life, they are tissue-specific and possess limited capacity to be expanded ex vivo. Embryonic Stem (ES) cells are derived from the inner cell mass of blastocyst embryos and, by definition, are capable of unlimited in vitro self-renewal and have the ability to differentiate into any cell type of the body (Darabi et al., 2008b). ES cells, together with recently identified iPS cells, are now broadly and extensively studied for their applications in clinical studies.

Embryonic stem cells are pluripotent cells derived from the early embryo that are characterized by the ability to proliferate over prolonged periods of culture remaining undifferentiated and maintaining a stable karyotype (Amit and Itskovitz-Eldor, 2002; Carpenter et al., 2003; Hoffman and Carpenter, 2005). They are capable of differentiating into cells present in all 3 embryonic germ layers, namely ectoderm, mesoderm, and endoderm, and are characterized by self-renewal, immortality, and pluripotency (Strulovici et al., 2007).

hESCs are derived by microsurgical removal of cells from the inner cell mass of a blastocyst stage embryo (Fig. 1). The ES cells can be also obtained from single blastomeres. This technique creates ES cells from a single blastomere directly removed from the embryo bypassing the ethical issue of embryo destruction (Klimanskaya et al., 2006). Although maintaining the viability of the embryo, it has to be determined whether embryonic stem cell lines derived from a single blastomere that does not compromise the embryo can be considered for clinical studies. Cell Nuclear Transfer (SCNT): Nuclear transfer, also referred to as nuclear cloning, denotes the introduction of a nucleus from an adult donor cell into an enucleated oocyte to generate a cloned embryo (Wilmut et al., 2002).

ESCs differentiation. Differentiation potentiality of human embryonic stem cell lines. Human embryonic stem cell pluripotency is evaluated by the ability of the cells to differentiate into different cell types.

Here is the original post:

Stem Cell Therapy for Neuromuscular Diseases | InTechOpen

What Is A Stem Cell, Stem Cell Questions, How Do Stem …

Our Technology

Phoenix Stem Cell Treatment Center uses adipose derived stem cells for deployment & clinical research. Early stem cell research has traditionally been associated with the controversial use of embryonic stem cells. The new focus is on non-embryonic adult mesenchymal stem cells which are found in a persons own blood, bone marrow, and fat. Most stem cell treatment centers in the world are currently using stem cells derived from bone marrow.

A recent technological breakthrough enables us to now use adipose (fat) derived stem cells. Autologous stem cells from a persons own fat are easy to harvest safely under local anesthesia and are abundant in quantities up to 2500 times those seen in bone marrow.

Clinical success and favorable outcomes appear to be related directly to the quantity of stem cells deployed. Once these adipose derived stem cells are administered back in to the patient, they have the potential to repair human tissue by forming new cells of mesenchymal origin, such as cartilage, bone, ligaments, tendons, nerve, fat, muscle, blood vessels, and certain internal organs. Stem cells ability to form cartilage and bone makes them potentially highly effective in the treatment of degenerative orthopedic conditions. Their ability to form new blood vessels and smooth muscle makes them potentially very useful in the treatment of peyronies disease and impotence. Stem cells are used extensively in Europe and Asia to treat these conditions.

We have anecdotal and experimental evidence that stem cell therapy is effective in healing and regeneration. Stem cells seek out damaged tissues in order to repair the body naturally. The literature and internet is full of successful testimonials but we are still awaiting definitive studies demonstrating efficacy of stem cell therapy. Such data may take five or ten years to accumulate. At the Phoenix Stem Cell Treatment Center we are committed to gathering those data by conducting sound and effective clinical research. In an effort to provide relief for patients suffering from certain degenerative diseases that have been resistant to common modalities of treatment, we are initiating pilot studies as experimental tests of treatment effectiveness with very high numbers of adipose derived stem cells obtained from fat. Adipose fat is an abundant and reliable source of stem cells.

Phoenix Stem Cell Treatment Centers cell harvesting and isolation techniques are based on technology from Korea. This new technological breakthrough allows patients to safely receive their own autologous stem cells in extremely large quantities. Our treatments and research are patient funded and we have endeavored successfully to make it affordable. All of our sterile procedures are non-invasive and done under local anesthesia. Patients who are looking for non-surgical alternatives to their degenerative disorders can participate in our trials by filling out our treatment application to determine if they are candidates. Phoenix Stem Cell Treatment Center is proud to be state of the art in the new field of Regenerative Medicine.RETURN TO TOP

We are currently in the process of setting up FDA approved protocols for stem cell banking in collaboration with a reputable cryo-technology company. This enables a person to receive autologous stem cells at any time in the future without having to undergo liposuction which may be inconvenient or contraindicated. Having your own stem cells available for medical immediate use is a valuable medical asset.

Provisions are nearly in place for this option and storage of your own stem cells obtained by liposuction at PSCTC or from fat obtained from cosmetic procedures performed elsewhere should be possible in the near future.RETURN TO TOP

Adult (NonEmbryonic) Mesenchymal Stem Cells are undifferentiated cells that have the ability to replace dying cells and regenerate damaged tissue. These special cells seek out areas of injury, disease and destruction where they are capable of regenerating healthy cells and enabling a persons natural healing processes to be accelerated. As we gain a deeper understanding of their medical function and apply this knowledge, we are realizing their enormous therapeutic potential to help the body heal itself. Adult stem cells have been used for a variety of medical treatments to repair and regenerate acute and chronicially damaged tissues in humans and animals. The use of stem cells is not FDA approved for the treatment of any specific disease in the United States at this time and their use is therefore investigational. Many reputable international centers have been using stem cell therapy to treat various chronic degenerative conditions as diverse as severe neurologic diseases, renal failure, erectile dysfunction, degenerative orthopedic problems, and even cardiac and pulmonary diseases to name a few. Adult stem cells appear to be particularly effective at repairing cartilage in degenerated joints.RETURN TO TOP

Regenerative Medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage, or congenital defects. This field holds the promise of regenerating damaged tissues and organs in the body by stimulating previously irreparable organs to heal themselves. (Wikipedia)RETURN TO TOP

Excerpt from:

What Is A Stem Cell, Stem Cell Questions, How Do Stem ...

Telehealth Stem Cell Clinic Now Offering Wound Healing Guarantee

La Jolla, California (PRWEB) April 13, 2015

The top stem cell therapy clinic in Southern California, Telehealth, is now offering a wound healing guarantee with its innovative stem cell therapy program.The program works exceptionally well for those dealing with nonhealing wounds as a result of diabetes or other issues. Simply call (888) 828-4575 for more information and scheduling at any of the stem cell clinics in La Jolla, Irvine, Orange or Upland.

Nonhealing wounds lead to considerable disability and the potential for infection and amputation. Telehealth has developed a stem cell therapy that routinely works for healing these problematic wounds, especially for diabetic ulcers.

The stem cell therapy wound healing guarantee includes closing an ulcer wound within 90 days as long as it is less than 2 cm x 4 cm in size. Thankfully, Telehealth is also able to close larger ones as well. The Board Certified physicians have extensive experience with stem cell therapy for all types of musculoskeletal conditions.

There are several types of stem cell procedures available at the four locations in La Jolla, Irvine, Orange and Upland. Board certified physicians perform the procedures and oversee the care.

In addition to treating nonhealing wounds, Telehealth also treats degenerative arthritis, tendonitis, ligament injuries, degenerative disc disease, peripheral artery disease and more.

The stem cell therapy for nonhealing wounds is often partially covered by insurance. For more information and to schedule an appointment with the top stem cell clinics in Southern California, call (888) 828-4575.

Follow this link:

Telehealth Stem Cell Clinic Now Offering Wound Healing Guarantee

NYC Health & Longevity Center Now Offering Stem Cell Therapy to Avoid Joint Replacement

NYC, NY (PRWEB) April 13, 2015

NYC Health & Longevity Center is now offering outpatient stem cell therapy to help patients avoid joint replacement in all extremities. The treatments are performed by a Board Certified physician, with most patients being able to avoid or delay the need for surgery. Simply call (844) GET-STEM for more information and scheduling with stem cell therapy NYC trusts.

Millions of joint replacements are performed in the US annually for degenerative arthritis of the knee, hip, shoulder, elbow, wrist and ankle. While these are mostly effective, they are not risk free procedures and should be avoided as long as possible. In addition, the implants placed are not meant to last forever.

With stem cell therapy now being commercially available, individuals now have access to the most cutting-edge procedures with the potentially to actually regenerate damaged tissue. This includes cartilage, ligament and tendon.

The stem cell procedures are performed by a Board Certified Anti-Aging doctor with considerable experience in both the stem cell procedures along with prolotherapy too.

The stem cell material comes from amniotic fluid that is obtained from consenting donors after a scheduled C-section, which is then processed at an FDA regulated lab. No fetal tissue or embryonic stem cells are used, eliminating any ethical concerns. Amniotic fluid causes no rejection, and has a very high amount of stem cells, growth factors and anti-inflammatory effects. The overall result is typically tremendous pain reduction and functional improvements that are long lasting.

Stem cell therapy for arthritis is performed on an outpatient basis, with absolutely minimal risk. The procedure takes less than a half hour, with patients able to return to desired activities quickly.

Along with degenerative arthritis, the stem cell procedures also help rheumatoid arthritis along with tendonitis of the rotator cuff, Achilles, elbow and knee. Athletes benefit from typically being able to avoid surgery and get back their sport much faster than with conventional treatments.

For more information on stem cell therapy at NYC Health & Longevity Center for extremity arthritis of the hips, knees, shoulders, elbow, wrist or ankle, call (844) GET-STEM.

Link:

NYC Health & Longevity Center Now Offering Stem Cell Therapy to Avoid Joint Replacement