...34567...102030...


The War on Drugs (band) – Wikipedia

The War on Drugs is an American indie rock band from Philadelphia, Pennsylvania, formed in 2005. The band consists of Adam Granduciel (lyrics, vocals, guitar), David Hartley (bass), Robbie Bennett (keyboards), Charlie Hall (drums), Jon Natchez (saxophone, keyboards) and Anthony LaMarca (guitar).

Founded by close collaborators Granduciel and Kurt Vile, The War on Drugs released their debut studio album, Wagonwheel Blues, in 2008. Vile departed shortly after its release to focus on his solo career. The band’s second studio album Slave Ambient was released in 2011 to favorable reviews and extensive touring.

The band’s third album, Lost in the Dream, was released in 2014 following extensive touring and a period of loneliness and depression for primary songwriter Granduciel. The album was released to widespread critical acclaim and increased exposure. Previous collaborator Hall joined the band as its full-time drummer during the recording process, with saxophonist Natchez and additional guitarist LaMarca accompanying the band for its world tour. Signing to Atlantic Records, the six-piece band released their fourth album, A Deeper Understanding, in 2017, which won the Grammy Award for Best Rock Album at the 60th Annual Grammy Awards.

In 2003, frontman Adam Granduciel moved from Oakland, California to Philadelphia, where he met Kurt Vile, who had also recently moved back to Philadelphia after living in Boston for two years.[2] The duo subsequently began writing, recording and performing music together.[3] Vile stated, “Adam was the first dude I met when I moved back to Philadelphia in 2003. We saw eye-to-eye on a lot of things. I was obsessed with Bob Dylan at the time, and we totally geeked-out on that. We started playing together in the early days and he would be in my band, The Violators. Then, eventually I played in The War On Drugs.”[4]

Granduciel and Vile began playing together as The War on Drugs in 2005. Regarding the band’s name, Granduciel noted, “My friend Julian and I came up with it a few years ago over a couple bottles of red wine and a few typewriters when we were living in Oakland. We were writing a lot back then, working on a dictionary, and it just came out and we were like “hey, good band name” so eventually when I moved to Philadelphia and got a band together I used it. It was either that or The Rigatoni Danzas. I think we made the right choice. I always felt though that it was the kind of name I could record all sorts of different music under without any sort of predictability inherent in the name”[5]

While Vile and Granduciel formed the backbone of the band, they had a number of accompanists early in the group’s career, before finally settling on a lineup that added Charlie Hall as drummer/organist, Kyle Lloyd as drummer and Dave Hartley on bass.[6] Granduciel had previously toured and recorded with The Capitol Years, and Vile has several solo albums.[7] The group gave away its Barrel of Batteries EP for free early in 2008.[8] Their debut LP for Secretly Canadian, Wagonwheel Blues, was released in 2008.[9]

Following the album’s release, and subsequent European tour, Vile departed from the band to focus on his solo career, stating, “I only went on the first European tour when their album came out, and then I basically left the band. I knew if I stuck with that, it would be all my time and my goal was to have my own musical career.”[4] Fellow Kurt Vile & the Violators bandmate Mike Zanghi joined the band at this time, with Vile noting, “Mike was my drummer first and then when The War On Drugs’ first record came out I thought I was lending Mike to Adam for the European tour but then he just played with them all the time so I kind of had to like, while they were touring a lot, figure out my own thing.”[10]

The lineup underwent several changes, and by the end of 2008, Kurt Vile, Charlie Hall, and Kyle Lloyd had all exited the group. At that time Granduciel and Hartley were joined by drummer Mike Zanghi, whom Granduciel also played with in Kurt Vile’s backing band, the Violators.

After recording much of the band’s forthcoming studio album, Slave Ambient, Zanghi departed from the band in 2010. Drummer Steven Urgo subsequently joined the band, with keyboardist Robbie Bennett also joining at around this time. Regarding Zanghi’s exit, Granduciel noted: “I loved Mike, and I loved the sound of The Violators, but then he wasn’t really the sound of my band. But you have things like friendship, and he’s down to tour and he’s a great guy, but it wasn’t the sound of what this band was.”[11]

Slave Ambient was released to favorable reviews in 2011.[citation needed]

In 2012, Patrick Berkery replaced Urgo as the band’s drummer.[12]

On December 4, 2013 the band announced the upcoming release of its third studio album, Lost in the Dream (March 18, 2014). The band streamed the album in its entirety on NPR’s First Listen site for a week before its release.[13]

Lost in the Dream was featured as the Vinyl Me, Please record of the month in August 2014. The pressing was a limited edition pressing on mint green colored vinyl.

In June 2015, The War on Drugs signed with Atlantic Records for a two-album deal.[14]

On Record Store Day, April 22, 2017, The War on Drugs released their new single “Thinking of a Place.”[15] The single was produced by frontman Granduciel and Shawn Everett.[16] April 28, 2017, The War on Drugs announced a fall 2017 tour in North America and Europe and that a new album was imminent.[17] On June 1, 2017, a new song, “Holding On”, was released, and it was announced that the album would be titled A Deeper Understanding and was released on August 25, 2017.[18]

The 2017 tour begins in September, opening in the band’s hometown, Philadelphia, and it concludes in November in Sweden.[19]

A Deeper Understanding was nominated for the International Album of the Year award at the 2018 UK Americana Awards[20].

At the 60th Annual Grammy Awards, on January 28th, 2018, A Deeper Understanding won the Grammy for Best Rock Album [21]

Granduciel and Zanghi are both former members of founding guitarist Vile’s backing band The Violators, with Granduciel noting, “There was never, despite what lazy journalists have assumed, any sort of falling out, or resentment”[22] following Vile’s departure from The War on Drugs. In 2011, Vile stated, “When my record came out, I assumed Adam would want to focus on The War On Drugs but he came with us in The Violators when we toured the States. The Violators became a unit, and although the cast does rotate, we’ve developed an even tighter unity and sound. Adam is an incredible guitar player these days and there is a certain feeling [between us] that nobody else can tap into. We don’t really have to tell each other what to play, it just happens.”

Both Hartley and Granduciel contributed to singer-songwriter Sharon Van Etten’s fourth studio album, Are We There (2014). Hartley performs bass guitar on the entire album, with Granduciel contributing guitar on two tracks.

Granduciel is currently[when?] producing the new Sore Eros album. They have been recording it in Philadelphia and Los Angeles on and off for the past several years.[4]

In 2016, The War on Drugs contributed a cover of “Touch of Grey” for a Grateful Dead tribute album called Day of the Dead. The album was curated by The National’s Aaron and Bryce Dessner.[19]

Current members

Former members

More:

The War on Drugs (band) – Wikipedia

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

More here:

UC San Diego NanoEngineering Department

NanoEngineering (NANO) Courses

[ undergraduate program | graduate program | faculty ]

All courses, faculty listings, and curricular and degree requirements described herein are subject to change or deletion without notice.

For course descriptions not found in the UC San Diego General Catalog, 201718, please contact the department for more information.

The department website is http://nanoengineering.ucsd.edu/undergrad-programs

All students enrolled in NanoEngineering courses or admitted to the NanoEngineering major are expected to meet prerequisite and performance standards, i.e., students may not enroll in any NanoEngineering courses or courses in another department that are required for the major prior to having satisfied prerequisite courses with a C or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

NANO 1. NanoEngineering Seminar (1)

Overview of NanoEngineering. Presentations and discussions of basic knowledge and career opportunities in nanotechnology for professional development. Introduction to campus library resources. P/NP grades only. Prerequisites: none.

NANO 4. ExperienceNanoEngineering(1)

Introduction to NanoEngineering lab-based skills. Hands-on training and experimentation with nanofabrication techniques, integration, and analytical tools. This class is for NANO majors who are incoming freshmen, to be taken their first year.This class is for NanoEngineering majors who are incoming freshmen, to be taken their first year. P/NP grades only. Prerequisites: department approval required.

NANO 15. Engineering Computation Using Matlab (4)

Introduction to the solution of engineering problems using computational methods. Formulating problem statements, selecting algorithms, writing computer programs, and analyzing output using Matlab. Computational problems from NanoEngineering, chemical engineering, and materials science are introduced. The course requires no prior programming skills. Cross-listed with CENG 15. Prerequisites: none.

NANO 100L. Physical Properties of Materials Lab (4)

Experimental investigation of physical properties of materials such as: thermal expansion coefficient, thermal conductivity, glass transitions in polymers, resonant vibrational response, longitudinal and shear acoustic wave speeds, Curie temperatures, UV-VIS absorption and reflection. Prerequisites: NANO 108.

NANO 101. Introduction to NanoEngineering (4)

Introduction to NanoEngineering; nanoscale fabrication: nanolithography and self-assembly; characterization tools; nanomaterials and nanostructures: nanotubes, nanowires, nanoparticles, and nanocomposites; nanoscale and molecular electronics; nanotechnology in magnetic systems; nanotechnology in integrative systems; nanoscale optoelectronics; nanobiotechnology: biomimetic systems, nanomotors, nanofluidics, and nanomedicine. Priority enrollment given to NanoEngineering majors. Prerequisites: Chem 6B, Phys 2B, Math 20C, and CENG 15 or MAE 8 or NANO 15. Department approval required.

NANO 102. Foundations in NanoEngineering: Chemical Principles (4)

Chemical principles involved in synthesis, assembly, and performance of nanostructured materials and devices. Chemical interactions, classical and statistical thermodynamics of small systems, diffusion, carbon-based nanomaterials, supramolecular chemistry, liquid crystals, colloid and polymer chemistry, lipid vesicles, surface modification, surface functionalization, catalysis. Priority enrollment given to NanoEngineering majors. Prerequisites: Chem 6C, Math 20D, NANO 101, PHYS 2D, and NANO 106. Restricted to NanoEngineering majors or by department approval.

NANO 103. Foundations in NanoEngineering: Biochemical Principles (4)

Principles of biochemistry tailored to nanotechnologies. The structure and function of biomolecules and their specific roles in molecular interactions and signal pathways. Detection methods at the micro and nano scales. Priority enrollment will be given to NanoEngineering majors. Prerequisites: BILD 1, Chem 6C, NANO 101, and NANO 102. Department approval required.

NANO 104. Foundations in NanoEngineering: Physical Principles (4)

Introduction to quantum mechanics and nanoelectronics. Wave mechanics, the Schroedinger equation, free and confined electrons, band theory of solids. Nanosolids in 0D, 1D, and 2D. Application to nanoelectronic devices. Priority enrollment given to NanoEngineering majors Prerequisites: Math 20D, NANO 101. Department approval required.

NANO 106. Crystallography of Materials (4)

Fundamentals of crystallography, and practice of methods to study material structure and symmetry. Curie symmetries. Tensors as mathematical description of material properties and symmetry restrictions. Introduction to diffraction methods, including X-ray, neutron, and electron diffraction. Close-packed and other common structures of real-world materials. Derivative and superlattice structures. Prerequisites: Math 20F.

NANO 107.Electronic Devices and Circuits for Nanoengineers (4)

Overview of electrical devices and CMOS integrated circuits emphasizing fabrication processes, and scaling behavior. Design, and simulation of submicron CMOS circuits including amplifiers active filters digital logic, and memory circuits. Limitations of current technologies and possible impact of nanoelectronic technologies.Prerequisites: NANO 15, NANO 101, Math 20B or Math 20D, and Phys 2B.

NANO 108. Materials Science and Engineering (4)

Structure and control of materials: metals, ceramics, glasses, semiconductors, polymers to produce useful properties. Atomic structures. Defects in materials, phase diagrams, micro structural control. Mechanical, rheological, electrical, optical and magnetic properties discussed. Time temperature transformation diagrams. Diffusion. Scale dependent material properties. Prerequisites: upper-division standing.

NANO 110. Molecular Modeling of Nanoscale Systems (4)

Principles and applications of molecular modeling and simulations toward NanoEngineering. Topics covered include molecular mechanics, energy minimization, statistical mechanics, molecular dynamics simulations, and Monte Carlo simulations. Students will get hands-on training in running simulations and analyzing simulation results. Prerequisites: Math 20F, NANO 102, NANO 104, and NANO 15 or CENG 15 or MAE 8. Restricted to NanoEngineering majors or by department approval.

NANO 111. Characterization of NanoEngineering Systems (4)

Fundamentals and practice of methods to image, measure, and analyze materials and devices that are structured at the nanometer scale. Optical and electron microscopy; scanning probe methods; photon-, ion-, electron-probe methods, spectroscopic, magnetic, electrochemical, and thermal methods. Prerequisites: NANO 102.

NANO 112. Synthesis and Fabrication of NanoEngineering Systems (4)

Introduction to methods for fabricating materials and devices in NanoEngineering. Nano-particle, -vesicle, -tube, and -wire synthesis. Top-down methods including chemical vapor deposition, conventional and advanced lithography, doping, and etching. Bottom-up methods including self-assembly. Integration of heterogeneous structures into functioning devices. Prerequisites: NANO 102, NANO 104, NANO 111.

NANO 114. Probability and Statistical Methods for Engineers (4)

Probability theory, conditional probability, Bayes theorem, discrete random variables, continuous random variables, expectation and variance, central limit theorem, graphical and numerical presentation of data, least squares estimation and regression, confidence intervals, testing hypotheses. Cross-listed with CENG 114. Students may not receive credit for both NANO 114 and CENG 114. Prerequisites: Math 20F and NANO 15 or CENG 15 or MAE 8.

NANO 120A. NanoEngineering System Design I (4)

Principles of product design and the design process. Application and integration of technologies in the design and production of nanoscale components. Engineering economics. Initiation of team design projects to be completed in NANO 120B. Prerequisites: NANO 110.

NANO 120B. NanoEngineering System Design II (4)

Principles of product quality assurance in design and production. Professional ethics. Safety and design for the environment. Culmination of team design projects initiated in NANO 120A with a working prototype designed for a real engineering application. Prerequisites: NANO 120A.

NANO 134. Polymeric Materials (4)

Foundations of polymeric materials. Topics: structure of polymers; mechanisms of polymer synthesis; characterization methods using calorimetric, mechanical, rheological, and X-ray-based techniques; and electronic, mechanical, and thermodynamic properties. Special classes of polymers: engineering plastics, semiconducting polymers,photoresists, and polymers for medicine. Cross-listed with CENG 134.Students may not receive credit for bothCENG134 andNANO134. Prerequisites:Chem 6Cand Phys2C.

NANO 141A. Engineering Mechanics I: Analysis of Equilibrium (4)

Newtons laws. Concepts of force and moment vector. Free body diagrams. Internal and external forces. Equilibrium of concurrent, coplanar, and three-dimensional system of forces. Equilibrium analysis of structural systems, including beams, trusses, and frames. Equilibrium problems with friction. Prerequisites:Math 20C and Phys 2A.

NANO 141B.Engineering Mechanics II: Analysis of Motion (4)

Newtons laws of motion. Kinematic and kinetic description of particle motion. Angular momentum. Energy and work principles. Motion of the system of interconnected particles.Mass center. Degrees of freedom. Equations of planar motion of rigid bodies. Energy methods. Lagranges equations of motion. Introduction to vibration. Free and forced vibrations of a single degree of freedom system. Undamped and damped vibrations. Application to NanoEngineering problems.Prerequisites:Math 20D and NANO 141A.

NANO 146. Nanoscale Optical Microscopy and Spectroscopy (4)

Fundamentals in optical imaging and spectroscopy at the nanometer scale. Diffraction-limited techniques, near-field methods, multi-photon imaging and spectroscopy, Raman techniques, Plasmon-enhanced methods, scan-probe techniques, novel sub-diffraction-limit imaging techniques, and energy transfer methods. Prerequisites: NANO 103 and 104.

NANO 148. Thermodynamics of Materials (4)

Fundamental laws of thermodynamics for simple substances; application to flow processes and to non-reacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Prerequisites: upper-division standing.

NANO 150. Mechanics of Nanomaterials (4)

Introduction to mechanics of rigid and deformable bodies. Continuum and atomistic models, interatomic forces and intermolecular interactions. Nanomechanics, material defects, elasticity, plasticity, creep, and fracture. Composite materials, nanomaterials, biological materials. Prerequisites: NANO 108.

NANO 156. Nanomaterials (4)

Basic principles of synthesis techniques, processing, microstructural control, and unique physical properties of materials in nanodimensions. Nanowires, quantum dots, thin films, electrical transport, optical behavior, mechanical behavior, and technical applications of nanomaterials. Cross-listed with MAE 166. Prerequisites: upper-division standing.

NANO 158. Phase Transformations and Kinetics (4)

Materials and microstructures changes. Understanding of diffusion to enable changes in the chemical distribution and microstructure of materials, rates of diffusion. Phase transformations, effects of temperature and driving force on transformations and microstructure. Prerequisites: NANO 108 and NANO 148.

NANO 158L.Materials Processing Laboratory(4)

Metal casting processes, solidification, deformation processing, thermal processing: solutionizing, aging, and tempering, joining processes such as welding and brazing. The effect of processing route on microstructure and its effect on mechanical and physical properties will be explored.NanoEngineering majors have priority enrollment. Prerequisites:NANO 158.

NANO 161. Material Selection in Engineering (4)

Selection of materials for engineering systems, based on constitutive analyses of functional requirements and material properties. The role and implications of processing on material selection. Optimizing material selection in a quantitative methodology. NanoEngineering majors receive priority enrollment. Prerequisites: NANO 108. Department approval required. Restricted to major code NA25.

NANO 164. Advanced Micro- and Nano-materials for Energy Storage and Conversion (4)

Materials for energy storage and conversion in existing and future power systems, including fuel cells and batteries, photovoltaic cells, thermoelectric cells, and hybrids. Prerequisites: NANO 101, NANO 102, NANO 148.

NANO 168. Electrical, Dielectric, and Magnetic Properties of Engineering Materials (4)

Introduction to physical principles of electrical, dielectric, and magnetic properties. Semiconductors, control of defects, thin film, and nanocrystal growth, electronic and optoelectronic devices. Processing-microstructure-property relations of dielectric materials, including piezoelectric, pyroelectric and ferroelectric, and magnetic materials. Prerequisites: NANO 102 and NANO 104.

NANO 174. Mechanical Behavior of Materials (4)

Microscopic and macroscopic aspects of the mechanical behavior of engineering materials, with emphasis on recent development in materials characterization by mechanical methods. The fundamental aspects of plasticity in engineering materials, strengthening mechanisms, and mechanical failure modes of materials systems. Prerequisites: NANO 108.

NANO 174L. Mechanical Behavior Laboratory (4)

Experimental investigation of mechanical behavior of engineering materials. Laboratory exercises emphasize the fundamental relationship between microstructure and mechanical properties, and the evolution of the microstructure as a consequence of rate process. Prerequisites: NANO 174.

NANO 199. Independent Study for Undergraduates (4)

Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. Prerequisites: upper division and department stamp.

NANO 200. Graduate Seminar in Chemical Engineering (1)

Each graduate student in NANO is expected to attend three seminars per quarter, of his or her choice, dealing with current topics in chemical engineering. Topics will vary. Cross-listed with CENG 205. S/U grades only. May be taken for credit four times. Prerequisites: graduate standing.

NANO 201. Introduction to NanoEngineering (4)

Understanding nanotechnology, broad implications, miniaturization: scaling laws; nanoscale physics; types and properties of nanomaterials; nanomechanical oscillators, nano(bio)electronics, nanoscale heat transfer; fluids at the nanoscale; machinery cell; applications of nanotechnology and nanobiotechnology. Students may not receive credit for both NANO 201 and CENG 211. Prerequisites: graduate standing.

NANO 202. Intermolecular and Surface Forces (4)

Development of quantitative understanding of the different intermolecular forces between atoms and molecules and how these forces give rise to interesting phenomena at the nanoscale, such as flocculation, wetting, self-assembly in biological (natural) and synthetic systems. Cross-listed with CENG 212. Students may not receive credit for both NANO 202 and CENG 212. Prerequisites: consent of instructor.

NANO 203. Nanoscale Synthesis and Characterization (4)

Nanoscale synthesistop-down and bottom-up; chemical vapor deposition; plasma processes; soft-lithography; self-assembly; layer-by-layer. Characterization; microscopy; scanning probe microscopes; profilometry; reflectometry and ellipsometry; X-ray diffraction; spectroscopies (EDX, SIMS, Mass spec, Raman, XPS); particle size analysis; electrical, optical. Cross-listed with CENG 213. Students may not receive credit for both NANO 203 and CENG 213. Prerequisites: consent of instructor.

NANO 204. Nanoscale Physics and Modeling (4)

This course will introduce students to analytical and numerical methods such as statistical mechanisms, molecular simulations, and finite differences and finite element modeling through their application to NanoEngineering problems involving polymer and colloiod self-assembly, absorption, phase separation, and diffusion. Cross-listed with CENG 214. Students may not receive credit for both NANO 204 and CENG 214. Prerequisites: NANO 202 or consent ofinstructor.

NANO 205. Nanosystems Integration (4)

Scaling issues and hierarchical assembly of nanoscale components into higher order structures which retain desired properties at microscale and macroscale levels. Novel ways to combine top-down and bottom-up processes for integration of heterogeneous components into higher order structures. Cross-listed with CENG 215. Students may not receive credit for both NANO 205 and CENG 215. Prerequisites: consent of instructor.

NANO 208. Nanofabrication (4)

Basic engineering principles of nanofabrication. Topics include: photo-electronbeam and nanoimprint lithography, block copolymers and self-assembled monolayers, colloidal assembly, biological nanofabrication. Cross-listed with CENG 208. Students may not receive credit for both NANO 208 and CENG 208. Prerequisites: consent of instructor.

NANO 210. Molecular Modeling and Simulations of Nanoscale Systems (4)

Molecular and modeling and simulation techniques like molecular dynamics, Monte Carlo, and Brownian dynamics to model nanoscale systems and phenomena like molecular motors, self-assembly, protein-ligand binding, RNA, folding. Valuable hands-on experience with different simulators.Prerequisites: consent of instructor.

NANO 212. Computational Modeling of Nanosystems (4)

Various modeling techniques like finite elements, finite differences, and simulation techniques like molecular dynamics and Monte Carlo to model fluid flow, mechanical properties, self-assembly at the nanoscale, and protein, RNA and DNA folding.Prerequisites: consent of instructor.

NANO 227. Structure and Analysis of Solids (4)

Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands verses bonds, free electron theory. Cross-listed with MATS 227, MAE 251 and Chem 222.Prerequisites: consent of instructor.

NANO 230. Synchrotron Characterization of Nanomaterials (4)

Advanced topics in characterizing nanomaterials using synchrotron X-ray sources. Introduction to synchrotron sources, X-ray interaction with matter, spectroscopic determination of electronic properties of nanomagnetic, structural determination using scattering techniques and X-ray imaging techniques. Cross-listed with CENG 230. Students may not receive credit for both NANO 230 and CENG 230. Prerequisites: consent of instructor.

NANO 234. Advanced Nanoscale Fabrication (4)

Engineering principles of nanofabrication. Topics include: photo-, electron beam, and nanoimprint lithography, block copolymers and self-assembled monolayers, colloidal assembly, biological nanofabrication. Relevance to applications in energy, electronics, and medicine will be discussed.Prerequisites: consent of instructor.

NANO 238. Scanning Probe Microscopy (4)

Scanning electron microscopy (SEM) detectors, imaging, image interpretation, and artifacts, introduction to lenses, electron beam-specimen interactions. Operating principles and capabilities for atomic force microscopy and scanning tunneling microscopy, scanning optical microscopy and scanning transmission electron microscopy.Prerequisites: consent of instructor.

NANO 239. Nanomanufacturing (4)

Fundamental nanomanufacturing science and engineering, top-down nanomanufacturing processes, bottom-up nanomanufacturing processes, integrated top-down and bottom-up nanofabrication processes, three-dimensional nanomanufacturing, nanomanufacturing systems, nanometrology, nanomanufactured devices for medicine, life sciences, energy, and defense applications.Prerequisites: department approval required.

NANO 241. Organic Nanomaterials (4)

This course will provide an introduction to the physics and chemistry of soft matter, followed by a literature-based critical examination of several ubiquitous classes of organic nano materials and their technological applications. Topics include self-assembled monolayers, block copolymers, liquid crystals, photoresists, organic electronic materials, micelles and vesicles, soft lithography, organic colloids, organic nano composites, and applications in biomedicine and food science. Cross-listed with Chem 241.Prerequisites: consent of instructor.

NANO 242. Biochemisty and Molecular Biology (4)

Read the original post:

NanoEngineering (NANO) Courses

IEEE-NANOMED 2016 The 10th IEEE International Conference …

Holiday Inn Macao Cotai Central Sands Cotai Central, Cotai Strip, Taipa, Macau SAR, China

Program Timetable (PDF version) is available. (FINAL, updated on Oct 26)

Registration Time:

IEEE-NANOMED is one of the premier annual events organized by the IEEE Nanotechnology Council to bring together physicians, scientists and engineers alike from all over the world and every sector of academy and industry, working at advancement of basic and clinical research in medical and biological sciences using nano/molecular and engineering methods. IEEE-NANOMED is the conference where practitioners will see nano/molecular medicine and engineering at work in both their own and related fields, from essential and advanced scientific and engineering research and theory to translational and clinical research.

Conference Theme:

Authors are also invited to submit results to a special issue of the journal Micromachines (impact factor 1.295), on the topic of Microdevices and Microsystems for Cell Manipulation. More information on the special issue and paper submission can be found here:http://www.mdpi.com/journal/micromachines/special_issues/cell_manipulation

Authors are also invited to submit results to a special issue of the journal Micromachines (impact factor 1.295), on the topic of MEMS/NEMS for Biomedical Imaging and Sensing. More information on the special issue and paper submission can be found here:http://www.mdpi.com/journal/micromachines/special_issues/MEMS_biomedical_imaging_sensing

Read the original:

IEEE-NANOMED 2016 The 10th IEEE International Conference …

Nanoengineering – Wikipedia

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

The first nanoengineering program was started at the University of Toronto within the Engineering Science program as one of the options of study in the final years. In 2003, the Lund Institute of Technology started a program in Nanoengineering. In 2004, the College of Nanoscale Science and Engineering at SUNY Polytechnic Institute was established on the campus of the University at Albany. In 2005, the University of Waterloo established a unique program which offers a full degree in Nanotechnology Engineering. [1] Louisiana Tech University started the first program in the U.S. in 2005. In 2006 the University of Duisburg-Essen started a Bachelor and a Master program NanoEngineering. [2] Unlike early NanoEngineering programs, the first Nanoengineering Department in the world, offering both undergraduate and graduate degrees, was established by the University of California, San Diego in 2007. In 2009, the University of Toronto began offering all Options of study in Engineering Science as degrees, bringing the second nanoengineering degree to Canada. Rice University established in 2016 a Department of Materials Science and NanoEngineering (MSNE). DTU Nanotech – the Department of Micro- and Nanotechnology – is a department at the Technical University of Denmark established in 1990.

In 2013, Wayne State University began offering a Nanoengineering Undergraduate Certificate Program, which is funded by a Nanoengineering Undergraduate Education (NUE) grant from the National Science Foundation. The primary goal is to offer specialized undergraduate training in nanotechnology. Other goals are: 1) to teach emerging technologies at the undergraduate level, 2) to train a new adaptive workforce, and 3) to retrain working engineers and professionals.[3]

See the original post here:

Nanoengineering – Wikipedia

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

View original post here:

UC San Diego NanoEngineering Department

What is Nanotechnology? | Nano

Nanotechnology is science, engineering, and technologyconductedat the nanoscale, which is about 1 to 100 nanometers.

Physicist Richard Feynman, the father of nanotechnology.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled Theres Plenty of Room at the Bottom by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn’t until 1981, with the development of the scanning tunneling microscope that could “see” individual atoms, that modern nanotechnology began.

Its hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atomsthe food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, its impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recentlyabout 30 years ago.

Once scientists had the right tools, such as thescanning tunneling microscope (STM)and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materialswereused for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didnt know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today’s scientists andengineers are finding a wide variety of ways to deliberatelymake materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight,increased control oflight spectrum, and greater chemical reactivity than theirlarger-scale counterparts.

Here is the original post:

What is Nanotechnology? | Nano

What does a Nanotechnology Engineer do? – Sokanu

A nanotechnology engineer seeks to learn new things that can change the face of health, science, technology, and the environment on a molecular level. They test for pollutants, create powders to enrich our foods and medicines, and study the smallest fragments of DNA. They can even manipulate cells, proteins, and other chemicals from within the body.

Nanotechnology engineers take advanced supplies and materials and turn them into something new and exciting. They may try to make a once heavy invention work better while weighing less, making the object far more efficient. They may also create new and improved ways of watching out and improving the environment by creating innovative ways to test for contaminants and pollutants in the air, ground, and water.

Nanotechnology engineers may also choose to work in the medical field creating new gadgets that can fix problems on a scale as small as the molecular level, thus changing the face of medicine forever. Those involved with bio-systems will create ways to store the tiniest amounts of DNA or other biological fragments for testing and manipulation.

Nanotechnology engineers that work with nanoelectronics will create smaller, more efficient chips, cards, and even smaller computer parts to make products that can do as much as bigger products without so much electronic waste.

Behind the scenes, these engineers must be good at paperwork and detailed description writing. They are responsible for writing extremely detailed reports describing their findings in their specific experiments.

Here is the original post:

What does a Nanotechnology Engineer do? – Sokanu

Admission to the Chemical Engineering and NanoEngineering …

Welcome to the NanoEngineering Department and congratulations on being admitted to UC San Diego.If you are interested in applying to the Chemical Engineering (CE25) and NanoEngineering (NA25) majors, please read below.

Applications for the NanoEngineering major are open each quarter. The next application periodfor current studentsfor the NanoEngineering major will be Monday, June 18th to Sunday, July 1st, 2018. Incoming freshmenwill apply during the application period starting Monday, June 18th to Sunday July 1st, 2018.

Applications for the Chemical Engineering majorwill only beaccepted at the end of Spring quarter, each year. The application period for Fall 2018begins Monday, June 18th, 2018to Sunday, July 1, 2018 for all students.

Students must submit their application through the My Jacobs School of Engineering Major Change Application. If the application states that you are not eligible to applybut you have met all of the admission requirements, we recommend you continue submitting an application.

Prospective undergraduate students can click here for more information about transferring into an engineering major, capped majors, student advising, and more.

Change of Major Requirements – Effective Fall 2017 Quarter and later

Current students – First and second year current students can apply to both majors (B.S. Chemical Engineering and B.S. NanoEngineering). Admission into both majors is limited. Studentsthat have applied to an oversubscribed major will be further evaluated by the Office of Admissions for admission to the major, taking into consideration the number of spaces available in the major. First year studentscan apply at the end of their third quarter at UC San Diego. As continuing students, applications are also accepted until the end of their 6th quarter. Current students must have completed all screening courses (below) and earned a minimum of 3.0 GPA in screening courses to be eligible.

Transfer Students – The NanoEngineering Department will admit a predetermined number of transfer students into the Chemical Engineering or NanoEngineering majors. Interested transfer students must apply no later than at the end of their 3rd quarter at UC San Diego, as the time to graduation would be delayed since the majority of departmental courses are offered only once per year. Transfer students who wish to be considered must meet the following minimum requirements:

Screening Course Requirements

Please note: If you have not completed all of the lower division requirements listed below, please contact our Undergraduate Advisors for more information about the major and how long it will take you to graduate:

*Freshmen applicants have until the end of the third quarter and continuing student applicants have until the end of the sixth quarter at UC San Diego to complete the requirements listed. We will not consider transfer student applicants who exceed 3 quarters at UC San Diego.

Questions? If you are a current UC San Diego student and have additional questions, contact an advisor through the Virtual Advising Center (VAC). If you are not a UC San Diego student, you can reach an advisor at ne-ugradinfo@eng.ucsd.edu.

Read this article:

Admission to the Chemical Engineering and NanoEngineering …

NanoEngineering (NANO) Courses

[ undergraduate program | graduate program | faculty ]

All courses, faculty listings, and curricular and degree requirements described herein are subject to change or deletion without notice.

For course descriptions not found in the UC San Diego General Catalog, 201718, please contact the department for more information.

The department website is http://nanoengineering.ucsd.edu/undergrad-programs

All students enrolled in NanoEngineering courses or admitted to the NanoEngineering major are expected to meet prerequisite and performance standards, i.e., students may not enroll in any NanoEngineering courses or courses in another department that are required for the major prior to having satisfied prerequisite courses with a C or better. (The department does not consider D or F grades as adequate preparation for subsequent material.) Additional details are given under the program outline, course descriptions, and admission procedures for the Jacobs School of Engineering in this catalog.

NANO 1. NanoEngineering Seminar (1)

Overview of NanoEngineering. Presentations and discussions of basic knowledge and career opportunities in nanotechnology for professional development. Introduction to campus library resources. P/NP grades only. Prerequisites: none.

NANO 4. ExperienceNanoEngineering(1)

Introduction to NanoEngineering lab-based skills. Hands-on training and experimentation with nanofabrication techniques, integration, and analytical tools. This class is for NANO majors who are incoming freshmen, to be taken their first year.This class is for NanoEngineering majors who are incoming freshmen, to be taken their first year. P/NP grades only. Prerequisites: department approval required.

NANO 15. Engineering Computation Using Matlab (4)

Introduction to the solution of engineering problems using computational methods. Formulating problem statements, selecting algorithms, writing computer programs, and analyzing output using Matlab. Computational problems from NanoEngineering, chemical engineering, and materials science are introduced. The course requires no prior programming skills. Cross-listed with CENG 15. Prerequisites: none.

NANO 100L. Physical Properties of Materials Lab (4)

Experimental investigation of physical properties of materials such as: thermal expansion coefficient, thermal conductivity, glass transitions in polymers, resonant vibrational response, longitudinal and shear acoustic wave speeds, Curie temperatures, UV-VIS absorption and reflection. Prerequisites: NANO 108.

NANO 101. Introduction to NanoEngineering (4)

Introduction to NanoEngineering; nanoscale fabrication: nanolithography and self-assembly; characterization tools; nanomaterials and nanostructures: nanotubes, nanowires, nanoparticles, and nanocomposites; nanoscale and molecular electronics; nanotechnology in magnetic systems; nanotechnology in integrative systems; nanoscale optoelectronics; nanobiotechnology: biomimetic systems, nanomotors, nanofluidics, and nanomedicine. Priority enrollment given to NanoEngineering majors. Prerequisites: Chem 6B, Phys 2B, Math 20C, and CENG 15 or MAE 8 or NANO 15. Department approval required.

NANO 102. Foundations in NanoEngineering: Chemical Principles (4)

Chemical principles involved in synthesis, assembly, and performance of nanostructured materials and devices. Chemical interactions, classical and statistical thermodynamics of small systems, diffusion, carbon-based nanomaterials, supramolecular chemistry, liquid crystals, colloid and polymer chemistry, lipid vesicles, surface modification, surface functionalization, catalysis. Priority enrollment given to NanoEngineering majors. Prerequisites: Chem 6C, Math 20D, NANO 101, PHYS 2D, and NANO 106. Restricted to NanoEngineering majors or by department approval.

NANO 103. Foundations in NanoEngineering: Biochemical Principles (4)

Principles of biochemistry tailored to nanotechnologies. The structure and function of biomolecules and their specific roles in molecular interactions and signal pathways. Detection methods at the micro and nano scales. Priority enrollment will be given to NanoEngineering majors. Prerequisites: BILD 1, Chem 6C, NANO 101, and NANO 102. Department approval required.

NANO 104. Foundations in NanoEngineering: Physical Principles (4)

Introduction to quantum mechanics and nanoelectronics. Wave mechanics, the Schroedinger equation, free and confined electrons, band theory of solids. Nanosolids in 0D, 1D, and 2D. Application to nanoelectronic devices. Priority enrollment given to NanoEngineering majors Prerequisites: Math 20D, NANO 101. Department approval required.

NANO 106. Crystallography of Materials (4)

Fundamentals of crystallography, and practice of methods to study material structure and symmetry. Curie symmetries. Tensors as mathematical description of material properties and symmetry restrictions. Introduction to diffraction methods, including X-ray, neutron, and electron diffraction. Close-packed and other common structures of real-world materials. Derivative and superlattice structures. Prerequisites: Math 20F.

NANO 107.Electronic Devices and Circuits for Nanoengineers (4)

Overview of electrical devices and CMOS integrated circuits emphasizing fabrication processes, and scaling behavior. Design, and simulation of submicron CMOS circuits including amplifiers active filters digital logic, and memory circuits. Limitations of current technologies and possible impact of nanoelectronic technologies.Prerequisites: NANO 15, NANO 101, Math 20B or Math 20D, and Phys 2B.

NANO 108. Materials Science and Engineering (4)

Structure and control of materials: metals, ceramics, glasses, semiconductors, polymers to produce useful properties. Atomic structures. Defects in materials, phase diagrams, micro structural control. Mechanical, rheological, electrical, optical and magnetic properties discussed. Time temperature transformation diagrams. Diffusion. Scale dependent material properties. Prerequisites: upper-division standing.

NANO 110. Molecular Modeling of Nanoscale Systems (4)

Principles and applications of molecular modeling and simulations toward NanoEngineering. Topics covered include molecular mechanics, energy minimization, statistical mechanics, molecular dynamics simulations, and Monte Carlo simulations. Students will get hands-on training in running simulations and analyzing simulation results. Prerequisites: Math 20F, NANO 102, NANO 104, and NANO 15 or CENG 15 or MAE 8. Restricted to NanoEngineering majors or by department approval.

NANO 111. Characterization of NanoEngineering Systems (4)

Fundamentals and practice of methods to image, measure, and analyze materials and devices that are structured at the nanometer scale. Optical and electron microscopy; scanning probe methods; photon-, ion-, electron-probe methods, spectroscopic, magnetic, electrochemical, and thermal methods. Prerequisites: NANO 102.

NANO 112. Synthesis and Fabrication of NanoEngineering Systems (4)

Introduction to methods for fabricating materials and devices in NanoEngineering. Nano-particle, -vesicle, -tube, and -wire synthesis. Top-down methods including chemical vapor deposition, conventional and advanced lithography, doping, and etching. Bottom-up methods including self-assembly. Integration of heterogeneous structures into functioning devices. Prerequisites: NANO 102, NANO 104, NANO 111.

NANO 114. Probability and Statistical Methods for Engineers (4)

Probability theory, conditional probability, Bayes theorem, discrete random variables, continuous random variables, expectation and variance, central limit theorem, graphical and numerical presentation of data, least squares estimation and regression, confidence intervals, testing hypotheses. Cross-listed with CENG 114. Students may not receive credit for both NANO 114 and CENG 114. Prerequisites: Math 20F and NANO 15 or CENG 15 or MAE 8.

NANO 120A. NanoEngineering System Design I (4)

Principles of product design and the design process. Application and integration of technologies in the design and production of nanoscale components. Engineering economics. Initiation of team design projects to be completed in NANO 120B. Prerequisites: NANO 110.

NANO 120B. NanoEngineering System Design II (4)

Principles of product quality assurance in design and production. Professional ethics. Safety and design for the environment. Culmination of team design projects initiated in NANO 120A with a working prototype designed for a real engineering application. Prerequisites: NANO 120A.

NANO 134. Polymeric Materials (4)

Foundations of polymeric materials. Topics: structure of polymers; mechanisms of polymer synthesis; characterization methods using calorimetric, mechanical, rheological, and X-ray-based techniques; and electronic, mechanical, and thermodynamic properties. Special classes of polymers: engineering plastics, semiconducting polymers,photoresists, and polymers for medicine. Cross-listed with CENG 134.Students may not receive credit for bothCENG134 andNANO134. Prerequisites:Chem 6Cand Phys2C.

NANO 141A. Engineering Mechanics I: Analysis of Equilibrium (4)

Newtons laws. Concepts of force and moment vector. Free body diagrams. Internal and external forces. Equilibrium of concurrent, coplanar, and three-dimensional system of forces. Equilibrium analysis of structural systems, including beams, trusses, and frames. Equilibrium problems with friction. Prerequisites:Math 20C and Phys 2A.

NANO 141B.Engineering Mechanics II: Analysis of Motion (4)

Newtons laws of motion. Kinematic and kinetic description of particle motion. Angular momentum. Energy and work principles. Motion of the system of interconnected particles.Mass center. Degrees of freedom. Equations of planar motion of rigid bodies. Energy methods. Lagranges equations of motion. Introduction to vibration. Free and forced vibrations of a single degree of freedom system. Undamped and damped vibrations. Application to NanoEngineering problems.Prerequisites:Math 20D and NANO 141A.

NANO 146. Nanoscale Optical Microscopy and Spectroscopy (4)

Fundamentals in optical imaging and spectroscopy at the nanometer scale. Diffraction-limited techniques, near-field methods, multi-photon imaging and spectroscopy, Raman techniques, Plasmon-enhanced methods, scan-probe techniques, novel sub-diffraction-limit imaging techniques, and energy transfer methods. Prerequisites: NANO 103 and 104.

NANO 148. Thermodynamics of Materials (4)

Fundamental laws of thermodynamics for simple substances; application to flow processes and to non-reacting mixtures; statistical thermodynamics of ideal gases and crystalline solids; chemical and materials thermodynamics; multiphase and multicomponent equilibria in reacting systems; electrochemistry. Prerequisites: upper-division standing.

NANO 150. Mechanics of Nanomaterials (4)

Introduction to mechanics of rigid and deformable bodies. Continuum and atomistic models, interatomic forces and intermolecular interactions. Nanomechanics, material defects, elasticity, plasticity, creep, and fracture. Composite materials, nanomaterials, biological materials. Prerequisites: NANO 108.

NANO 156. Nanomaterials (4)

Basic principles of synthesis techniques, processing, microstructural control, and unique physical properties of materials in nanodimensions. Nanowires, quantum dots, thin films, electrical transport, optical behavior, mechanical behavior, and technical applications of nanomaterials. Cross-listed with MAE 166. Prerequisites: upper-division standing.

NANO 158. Phase Transformations and Kinetics (4)

Materials and microstructures changes. Understanding of diffusion to enable changes in the chemical distribution and microstructure of materials, rates of diffusion. Phase transformations, effects of temperature and driving force on transformations and microstructure. Prerequisites: NANO 108 and NANO 148.

NANO 158L.Materials Processing Laboratory(4)

Metal casting processes, solidification, deformation processing, thermal processing: solutionizing, aging, and tempering, joining processes such as welding and brazing. The effect of processing route on microstructure and its effect on mechanical and physical properties will be explored.NanoEngineering majors have priority enrollment. Prerequisites:NANO 158.

NANO 161. Material Selection in Engineering (4)

Selection of materials for engineering systems, based on constitutive analyses of functional requirements and material properties. The role and implications of processing on material selection. Optimizing material selection in a quantitative methodology. NanoEngineering majors receive priority enrollment. Prerequisites: NANO 108. Department approval required. Restricted to major code NA25.

NANO 164. Advanced Micro- and Nano-materials for Energy Storage and Conversion (4)

Materials for energy storage and conversion in existing and future power systems, including fuel cells and batteries, photovoltaic cells, thermoelectric cells, and hybrids. Prerequisites: NANO 101, NANO 102, NANO 148.

NANO 168. Electrical, Dielectric, and Magnetic Properties of Engineering Materials (4)

Introduction to physical principles of electrical, dielectric, and magnetic properties. Semiconductors, control of defects, thin film, and nanocrystal growth, electronic and optoelectronic devices. Processing-microstructure-property relations of dielectric materials, including piezoelectric, pyroelectric and ferroelectric, and magnetic materials. Prerequisites: NANO 102 and NANO 104.

NANO 174. Mechanical Behavior of Materials (4)

Microscopic and macroscopic aspects of the mechanical behavior of engineering materials, with emphasis on recent development in materials characterization by mechanical methods. The fundamental aspects of plasticity in engineering materials, strengthening mechanisms, and mechanical failure modes of materials systems. Prerequisites: NANO 108.

NANO 174L. Mechanical Behavior Laboratory (4)

Experimental investigation of mechanical behavior of engineering materials. Laboratory exercises emphasize the fundamental relationship between microstructure and mechanical properties, and the evolution of the microstructure as a consequence of rate process. Prerequisites: NANO 174.

NANO 199. Independent Study for Undergraduates (4)

Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. Prerequisites: upper division and department stamp.

NANO 200. Graduate Seminar in Chemical Engineering (1)

Each graduate student in NANO is expected to attend three seminars per quarter, of his or her choice, dealing with current topics in chemical engineering. Topics will vary. Cross-listed with CENG 205. S/U grades only. May be taken for credit four times. Prerequisites: graduate standing.

NANO 201. Introduction to NanoEngineering (4)

Understanding nanotechnology, broad implications, miniaturization: scaling laws; nanoscale physics; types and properties of nanomaterials; nanomechanical oscillators, nano(bio)electronics, nanoscale heat transfer; fluids at the nanoscale; machinery cell; applications of nanotechnology and nanobiotechnology. Students may not receive credit for both NANO 201 and CENG 211. Prerequisites: graduate standing.

NANO 202. Intermolecular and Surface Forces (4)

Development of quantitative understanding of the different intermolecular forces between atoms and molecules and how these forces give rise to interesting phenomena at the nanoscale, such as flocculation, wetting, self-assembly in biological (natural) and synthetic systems. Cross-listed with CENG 212. Students may not receive credit for both NANO 202 and CENG 212. Prerequisites: consent of instructor.

NANO 203. Nanoscale Synthesis and Characterization (4)

Nanoscale synthesistop-down and bottom-up; chemical vapor deposition; plasma processes; soft-lithography; self-assembly; layer-by-layer. Characterization; microscopy; scanning probe microscopes; profilometry; reflectometry and ellipsometry; X-ray diffraction; spectroscopies (EDX, SIMS, Mass spec, Raman, XPS); particle size analysis; electrical, optical. Cross-listed with CENG 213. Students may not receive credit for both NANO 203 and CENG 213. Prerequisites: consent of instructor.

NANO 204. Nanoscale Physics and Modeling (4)

This course will introduce students to analytical and numerical methods such as statistical mechanisms, molecular simulations, and finite differences and finite element modeling through their application to NanoEngineering problems involving polymer and colloiod self-assembly, absorption, phase separation, and diffusion. Cross-listed with CENG 214. Students may not receive credit for both NANO 204 and CENG 214. Prerequisites: NANO 202 or consent ofinstructor.

NANO 205. Nanosystems Integration (4)

Scaling issues and hierarchical assembly of nanoscale components into higher order structures which retain desired properties at microscale and macroscale levels. Novel ways to combine top-down and bottom-up processes for integration of heterogeneous components into higher order structures. Cross-listed with CENG 215. Students may not receive credit for both NANO 205 and CENG 215. Prerequisites: consent of instructor.

NANO 208. Nanofabrication (4)

Basic engineering principles of nanofabrication. Topics include: photo-electronbeam and nanoimprint lithography, block copolymers and self-assembled monolayers, colloidal assembly, biological nanofabrication. Cross-listed with CENG 208. Students may not receive credit for both NANO 208 and CENG 208. Prerequisites: consent of instructor.

NANO 210. Molecular Modeling and Simulations of Nanoscale Systems (4)

Molecular and modeling and simulation techniques like molecular dynamics, Monte Carlo, and Brownian dynamics to model nanoscale systems and phenomena like molecular motors, self-assembly, protein-ligand binding, RNA, folding. Valuable hands-on experience with different simulators.Prerequisites: consent of instructor.

NANO 212. Computational Modeling of Nanosystems (4)

Various modeling techniques like finite elements, finite differences, and simulation techniques like molecular dynamics and Monte Carlo to model fluid flow, mechanical properties, self-assembly at the nanoscale, and protein, RNA and DNA folding.Prerequisites: consent of instructor.

NANO 227. Structure and Analysis of Solids (4)

Key concepts in the atomic structure and bonding of solids such as metals, ceramics, and semiconductors. Symmetry operations, point groups, lattice types, space groups, simple and complex inorganic compounds, structure/property comparisons, structure determination with X-ray diffraction. Ionic, covalent, metallic bonding compared with physical properties. Atomic and molecular orbitals, bands verses bonds, free electron theory. Cross-listed with MATS 227, MAE 251 and Chem 222.Prerequisites: consent of instructor.

NANO 230. Synchrotron Characterization of Nanomaterials (4)

Advanced topics in characterizing nanomaterials using synchrotron X-ray sources. Introduction to synchrotron sources, X-ray interaction with matter, spectroscopic determination of electronic properties of nanomagnetic, structural determination using scattering techniques and X-ray imaging techniques. Cross-listed with CENG 230. Students may not receive credit for both NANO 230 and CENG 230. Prerequisites: consent of instructor.

NANO 234. Advanced Nanoscale Fabrication (4)

Engineering principles of nanofabrication. Topics include: photo-, electron beam, and nanoimprint lithography, block copolymers and self-assembled monolayers, colloidal assembly, biological nanofabrication. Relevance to applications in energy, electronics, and medicine will be discussed.Prerequisites: consent of instructor.

NANO 238. Scanning Probe Microscopy (4)

Scanning electron microscopy (SEM) detectors, imaging, image interpretation, and artifacts, introduction to lenses, electron beam-specimen interactions. Operating principles and capabilities for atomic force microscopy and scanning tunneling microscopy, scanning optical microscopy and scanning transmission electron microscopy.Prerequisites: consent of instructor.

NANO 239. Nanomanufacturing (4)

Fundamental nanomanufacturing science and engineering, top-down nanomanufacturing processes, bottom-up nanomanufacturing processes, integrated top-down and bottom-up nanofabrication processes, three-dimensional nanomanufacturing, nanomanufacturing systems, nanometrology, nanomanufactured devices for medicine, life sciences, energy, and defense applications.Prerequisites: department approval required.

NANO 241. Organic Nanomaterials (4)

This course will provide an introduction to the physics and chemistry of soft matter, followed by a literature-based critical examination of several ubiquitous classes of organic nano materials and their technological applications. Topics include self-assembled monolayers, block copolymers, liquid crystals, photoresists, organic electronic materials, micelles and vesicles, soft lithography, organic colloids, organic nano composites, and applications in biomedicine and food science. Cross-listed with Chem 241.Prerequisites: consent of instructor.

NANO 242. Biochemisty and Molecular Biology (4)

See the original post:

NanoEngineering (NANO) Courses

UC San Diego NanoEngineering Department

The NanoEngineering program has received accreditation by the Accreditation Commission of ABET, the global accreditor of college and university programs in applied and natural science, computing, engineering and engineering technology. UC San Diego’s NanoEngineering program is the first of its kind in the nation to receive this accreditation. Our NanoEngineering students can feel confident that their education meets global standards and that they will be prepared to enter the workforce worldwide.

ABET accreditation assures that programs meet standards to produce graduates ready to enter critical technical fields that are leading the way in innovation and emerging technologies, and anticipating the welfare and safety needs of the public. Please visit the ABET website for more information on why accreditation matters.

Congratulations to the NanoEngineering department and students!

Read more from the original source:

UC San Diego NanoEngineering Department

Micro and Nano Flows for Engineering: Home

The micro & nano flows group is a research partnership between the Universities of Warwick and Edinburgh, and Daresbury Laboratory. We investigate gas and liquid flows at the micro and nano scale (where conventional analysis and classical fluid dynamics cannot be applied) using a range of simulation techniques: molecular dynamics, extended hydrodynamics, stochastic modelling, and hybrid multiscaling. Our aim is to predict and understand these flows by developing methods that combine modelling accuracy with computational efficiency.

Targeted applications all depend on the behaviour of interfaces that divide phases, and include: radical cancer treatments that exploit nano-bubble cavitation; the cooling of high-power electronics through evaporative nano-menisci; nanowire membranes for separating oil and water, e.g. for oil spills; and smart nano-structured surfaces for drag reduction and anti-fouling, with applications to low-emissions aerospace, automotive and marine transport.

Our work is supportedby a number of funding sources (see below), including a 5-year EPSRC Programme Grant (2016-2020). This Programme aims to underpin future UK innovation in nano-structured and smart interfaces by delivering a simulation-for-design capability for nano-engineered flow technologies, as well as a better scientific understanding of the critical interfacial fluid dynamics.

We will produce software that a) resolves interfaces down to the molecular scale, and b) spans the scales relevant to the engineering application. As accurate molecular/particle methods are computationally unfeasible at engineering scales, and efficient but conventional fluids models do not capture the important molecular physics, this is a formidable multiscale problem in both time and space. The software we develop will have embedded intelligence that decides dynamically on the correct simulation tools needed at each interface location, for every phase combination, and matches these tools to appropriate computational platforms for maximum efficiency.

This work is strongly supported by nine external partners (see below).

Read more:

Micro and Nano Flows for Engineering: Home

Nano Electron. Sci. & Eng. Lab (NESEL)

NESEL is world class research laboratory in the field of fabricating nanoscale devices. In the laboratory, we are growing nanostructures and composite nanostructures of variety of materials in various shapes and characterizing them by several techniques. Further, we are using these nanostructures and composite nanostructures in making several nanoelectronic devices. These devices are nanogenerators, hybrid organic inorganic solar cells, etc.

Nature Communications Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics

Advanced Materials Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators

Advanced Energy MaterialsHigh-Performance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions

Advanced Functional Materials High-Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF-TrFE) with Controlled Crystallinity and Dipole Alignment

Energy & Environmental Science Shape memory polymer-based self-healing triboelectric nanogenerator

Angewante Chemie International EditionNanocrystalline Graphene-Tailored Hexagonal Boron Nitride Thin Film

ACS Nano Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene

The Journal of Physical Chemistry LettersFerroelectric Polarization in CH3NH3PbI3 Perovskite

Nano EnergyHigh-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces

See more here:

Nano Electron. Sci. & Eng. Lab (NESEL)

Undergraduate Degree Programs | NanoEngineering

The Department of NanoEngineering offers undergraduate programs leading to theB.S. degreesinNanoengineeringandChemical Engineering. The Chemical Engineering and NanoEngineering undergraduate programs areaccredited by the Engineering Accreditation Commission of ABET. The undergraduate degree programs focus on integrating the various sciences and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.These two degree programshave very different requirements and are described in separate sections.

B.S. NanoEngineering

TheNanoEngineering Undergraduate Program became effective Fall 2010.Thismajor focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. The program includes affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The NanoEngineering undergraduate program is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanoengineers who are multidisciplinary and can work in a broad spectrum of industries.

B.S. Chemical Engineering

The Chemical Engineering undergraduate program is housed within the NanoEngineering Department. The program is made up of faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, the Department of Bioengineering and the Department of NanoEngineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). As of Fall 2008, the Department of NanoEngineering has taken over the administration of the B.S. degree in Chemical Engineering.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering website for their program of study, and their undergraduate/graduate advisor if they have questions. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the departments student affairs advisors on an annual basis.

Students can meet with the academic advisors during walk-in hours, schedule an appointment, or send messages through the Virtual Advising Center (VAC).

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken.

Independent Study

Students may take NANO 199 or CENG 199, Independent Study for Undergraduates, under the guidance of a NANO or CENG faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division Technical Elective or Nanoengineering Elective course requirements for the major. Students interested in this alternative must have completed at least 90 units and earned a UCSD cumulative GPA of 3.0 or better. Eligible students must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. Please visit the Student Affairs office for more information.

Original post:

Undergraduate Degree Programs | NanoEngineering

What is Nanotechnology? | Nano

Nanotechnology is science, engineering, and technologyconductedat the nanoscale, which is about 1 to 100 nanometers.

Physicist Richard Feynman, the father of nanotechnology.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled Theres Plenty of Room at the Bottom by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn’t until 1981, with the development of the scanning tunneling microscope that could “see” individual atoms, that modern nanotechnology began.

Its hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atomsthe food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, its impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recentlyabout 30 years ago.

Once scientists had the right tools, such as thescanning tunneling microscope (STM)and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materialswereused for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didnt know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today’s scientists andengineers are finding a wide variety of ways to deliberatelymake materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight,increased control oflight spectrum, and greater chemical reactivity than theirlarger-scale counterparts.

See the original post:

What is Nanotechnology? | Nano

Nanotechnology – Wikipedia

Nanotechnology (“nanotech”) is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form “nanotechnologies” as well as “nanoscale technologies” to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through 2012, the USA has invested $3.7 billion using its National Nanotechnology Initiative, the European Union has invested $1.2 billion, and Japan has invested $750 million.[3]

Nanotechnology as defined by size is naturally very broad, including fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage,[4][5] microfabrication,[6] molecular engineering, etc.[7] The associated research and applications are equally diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly,[8] from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale.

Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in nanomedicine, nanoelectronics, biomaterials energy production, and consumer products. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials,[9] and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.

The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There’s Plenty of Room at the Bottom, in which he described the possibility of synthesis via direct manipulation of atoms. The term “nano-technology” was first used by Norio Taniguchi in 1974, though it was not widely known.

Inspired by Feynman’s concepts, K. Eric Drexler used the term “nanotechnology” in his 1986 book Engines of Creation: The Coming Era of Nanotechnology, which proposed the idea of a nanoscale “assembler” which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control. Also in 1986, Drexler co-founded The Foresight Institute (with which he is no longer affiliated) to help increase public awareness and understanding of nanotechnology concepts and implications.

Thus, emergence of nanotechnology as a field in the 1980s occurred through convergence of Drexler’s theoretical and public work, which developed and popularized a conceptual framework for nanotechnology, and high-visibility experimental advances that drew additional wide-scale attention to the prospects of atomic control of matter. In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era.

First, the invention of the scanning tunneling microscope in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope’s developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986.[10][11] Binnig, Quate and Gerber also invented the analogous atomic force microscope that year.

Second, Fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert Curl, who together won the 1996 Nobel Prize in Chemistry.[12][13] C60 was not initially described as nanotechnology; the term was used regarding subsequent work with related graphene tubes (called carbon nanotubes and sometimes called Bucky tubes) which suggested potential applications for nanoscale electronics and devices.

In the early 2000s, the field garnered increased scientific, political, and commercial attention that led to both controversy and progress. Controversies emerged regarding the definitions and potential implications of nanotechnologies, exemplified by the Royal Society’s report on nanotechnology.[14] Challenges were raised regarding the feasibility of applications envisioned by advocates of molecular nanotechnology, which culminated in a public debate between Drexler and Smalley in 2001 and 2003.[15]

Meanwhile, commercialization of products based on advancements in nanoscale technologies began emerging. These products are limited to bulk applications of nanomaterials and do not involve atomic control of matter. Some examples include the Silver Nano platform for using silver nanoparticles as an antibacterial agent, nanoparticle-based transparent sunscreens, carbon fiber strengthening using silica nanoparticles, and carbon nanotubes for stain-resistant textiles.[16][17]

Governments moved to promote and fund research into nanotechnology, such as in the U.S. with the National Nanotechnology Initiative, which formalized a size-based definition of nanotechnology and established funding for research on the nanoscale, and in Europe via the European Framework Programmes for Research and Technological Development.

By the mid-2000s new and serious scientific attention began to flourish. Projects emerged to produce nanotechnology roadmaps[18][19] which center on atomically precise manipulation of matter and discuss existing and projected capabilities, goals, and applications.

Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, nanotechnology refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products.

One nanometer (nm) is one billionth, or 109, of a meter. By comparison, typical carbon-carbon bond lengths, or the spacing between these atoms in a molecule, are in the range 0.120.15 nm, and a DNA double-helix has a diameter around 2nm. On the other hand, the smallest cellular life-forms, the bacteria of the genus Mycoplasma, are around 200nm in length. By convention, nanotechnology is taken as the scale range 1 to 100 nm following the definition used by the National Nanotechnology Initiative in the US. The lower limit is set by the size of atoms (hydrogen has the smallest atoms, which are approximately a quarter of a nm kinetic diameter) since nanotechnology must build its devices from atoms and molecules. The upper limit is more or less arbitrary but is around the size below which phenomena not observed in larger structures start to become apparent and can be made use of in the nano device.[20] These new phenomena make nanotechnology distinct from devices which are merely miniaturised versions of an equivalent macroscopic device; such devices are on a larger scale and come under the description of microtechnology.[21]

To put that scale in another context, the comparative size of a nanometer to a meter is the same as that of a marble to the size of the earth.[22] Or another way of putting it: a nanometer is the amount an average man’s beard grows in the time it takes him to raise the razor to his face.[22]

Two main approaches are used in nanotechnology. In the “bottom-up” approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition.[23] In the “top-down” approach, nano-objects are constructed from larger entities without atomic-level control.[24]

Areas of physics such as nanoelectronics, nanomechanics, nanophotonics and nanoionics have evolved during the last few decades to provide a basic scientific foundation of nanotechnology.

Several phenomena become pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, quantum effects can become significant when the nanometer size range is reached, typically at distances of 100 nanometers or less, the so-called quantum realm. Additionally, a number of physical (mechanical, electrical, optical, etc.) properties change when compared to macroscopic systems. One example is the increase in surface area to volume ratio altering mechanical, thermal and catalytic properties of materials. Diffusion and reactions at nanoscale, nanostructures materials and nanodevices with fast ion transport are generally referred to nanoionics. Mechanical properties of nanosystems are of interest in the nanomechanics research. The catalytic activity of nanomaterials also opens potential risks in their interaction with biomaterials.

Materials reduced to the nanoscale can show different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances can become transparent (copper); stable materials can turn combustible (aluminium); insoluble materials may become soluble (gold). A material such as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these quantum and surface phenomena that matter exhibits at the nanoscale.[25]

Modern synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to manufacture a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a well defined manner.

These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific configuration or arrangement is favored due to non-covalent intermolecular forces. The WatsonCrick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.

Such bottom-up approaches should be capable of producing devices in parallel and be much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases. Most useful structures require complex and thermodynamically unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on molecular recognition in biology, most notably WatsonCrick basepairing and enzyme-substrate interactions. The challenge for nanotechnology is whether these principles can be used to engineer new constructs in addition to natural ones.

Molecular nanotechnology, sometimes called molecular manufacturing, describes engineered nanosystems (nanoscale machines) operating on the molecular scale. Molecular nanotechnology is especially associated with the molecular assembler, a machine that can produce a desired structure or device atom-by-atom using the principles of mechanosynthesis. Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.

When the term “nanotechnology” was independently coined and popularized by Eric Drexler (who at the time was unaware of an earlier usage by Norio Taniguchi) it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular scale biological analogies of traditional machine components demonstrated molecular machines were possible: by the countless examples found in biology, it is known that sophisticated, stochastically optimised biological machines can be produced.

It is hoped that developments in nanotechnology will make possible their construction by some other means, perhaps using biomimetic principles. However, Drexler and other researchers[26] have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles, namely, a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) that would enable programmable, positional assembly to atomic specification.[27] The physics and engineering performance of exemplar designs were analyzed in Drexler’s book Nanosystems.

In general it is very difficult to assemble devices on the atomic scale, as one has to position atoms on other atoms of comparable size and stickiness. Another view, put forth by Carlo Montemagno,[28] is that future nanosystems will be hybrids of silicon technology and biological molecular machines. Richard Smalley argued that mechanosynthesis are impossible due to the difficulties in mechanically manipulating individual molecules.

This led to an exchange of letters in the ACS publication Chemical & Engineering News in 2003.[29] Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley.[1] They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a nanotube nanomotor, a molecular actuator,[30] and a nanoelectromechanical relaxation oscillator.[31] See nanotube nanomotor for more examples.

An experiment indicating that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bound the CO to the Fe by applying a voltage.

The nanomaterials field includes subfields which develop or study materials having unique properties arising from their nanoscale dimensions.[34]

These seek to arrange smaller components into more complex assemblies.

These seek to create smaller devices by using larger ones to direct their assembly.

These seek to develop components of a desired functionality without regard to how they might be assembled.

These subfields seek to anticipate what inventions nanotechnology might yield, or attempt to propose an agenda along which inquiry might progress. These often take a big-picture view of nanotechnology, with more emphasis on its societal implications than the details of how such inventions could actually be created.

Nanomaterials can be classified in 0D, 1D, 2D and 3D nanomaterials. The dimensionality play a major role in determining the characteristic of nanomaterials including physical, chemical and biological characteristics. With the decrease in dimensionality, an increase in surface-to-volume ratio is observed. This indicate that smaller dimensional nanomaterials have higher surface area compared to 3D nanomaterials. Recently, two dimensional (2D) nanomaterials are extensively investigated for electronic, biomedical, drug delivery and biosensor applications.

There are several important modern developments. The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy. Although conceptually similar to the scanning confocal microscope developed by Marvin Minsky in 1961 and the scanning acoustic microscope (SAM) developed by Calvin Quate and coworkers in the 1970s, newer scanning probe microscopes have much higher resolution, since they are not limited by the wavelength of sound or light.

The tip of a scanning probe can also be used to manipulate nanostructures (a process called positional assembly). Feature-oriented scanning methodology may be a promising way to implement these nanomanipulations in automatic mode.[52][53] However, this is still a slow process because of low scanning velocity of the microscope.

Various techniques of nanolithography such as optical lithography, X-ray lithography, dip pen nanolithography, electron beam lithography or nanoimprint lithography were also developed. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.

Another group of nanotechnological techniques include those used for fabrication of nanotubes and nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. The precursors of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology and which were results of nanotechnology research.[54]

The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. By using, for example, feature-oriented scanning approach, atoms or molecules can be moved around on a surface with scanning probe microscopy techniques.[52][53] At present, it is expensive and time-consuming for mass production but very suitable for laboratory experimentation.

In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly. Dual polarisation interferometry is one tool suitable for characterisation of self assembled thin films. Another variation of the bottom-up approach is molecular beam epitaxy or MBE. Researchers at Bell Telephone Laboratories like John R. Arthur. Alfred Y. Cho, and Art C. Gossard developed and implemented MBE as a research tool in the late 1960s and 1970s. Samples made by MBE were key to the discovery of the fractional quantum Hall effect for which the 1998 Nobel Prize in Physics was awarded. MBE allows scientists to lay down atomically precise layers of atoms and, in the process, build up complex structures. Important for research on semiconductors, MBE is also widely used to make samples and devices for the newly emerging field of spintronics.

However, new therapeutic products, based on responsive nanomaterials, such as the ultradeformable, stress-sensitive Transfersome vesicles, are under development and already approved for human use in some countries.[55]

As of August 21, 2008, the Project on Emerging Nanotechnologies estimates that over 800 manufacturer-identified nanotech products are publicly available, with new ones hitting the market at a pace of 34 per week.[17] The project lists all of the products in a publicly accessible online database. Most applications are limited to the use of “first generation” passive nanomaterials which includes titanium dioxide in sunscreen, cosmetics, surface coatings,[56] and some food products; Carbon allotropes used to produce gecko tape; silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.[16]

Further applications allow tennis balls to last longer, golf balls to fly straighter, and even bowling balls to become more durable and have a harder surface. Trousers and socks have been infused with nanotechnology so that they will last longer and keep people cool in the summer. Bandages are being infused with silver nanoparticles to heal cuts faster.[57] Video game consoles and personal computers may become cheaper, faster, and contain more memory thanks to nanotechnology.[58] Also, to build structures for on chip computing with light, for example on chip optical quantum information processing, and picosecond transmission of information.[59]

Nanotechnology may have the ability to make existing medical applications cheaper and easier to use in places like the general practitioner’s office and at home.[60] Cars are being manufactured with nanomaterials so they may need fewer metals and less fuel to operate in the future.[61]

Scientists are now turning to nanotechnology in an attempt to develop diesel engines with cleaner exhaust fumes. Platinum is currently used as the diesel engine catalyst in these engines. The catalyst is what cleans the exhaust fume particles. First a reduction catalyst is employed to take nitrogen atoms from NOx molecules in order to free oxygen. Next the oxidation catalyst oxidizes the hydrocarbons and carbon monoxide to form carbon dioxide and water.[62] Platinum is used in both the reduction and the oxidation catalysts.[63] Using platinum though, is inefficient in that it is expensive and unsustainable. Danish company InnovationsFonden invested DKK 15 million in a search for new catalyst substitutes using nanotechnology. The goal of the project, launched in the autumn of 2014, is to maximize surface area and minimize the amount of material required. Objects tend to minimize their surface energy; two drops of water, for example, will join to form one drop and decrease surface area. If the catalyst’s surface area that is exposed to the exhaust fumes is maximized, efficiency of the catalyst is maximized. The team working on this project aims to create nanoparticles that will not merge. Every time the surface is optimized, material is saved. Thus, creating these nanoparticles will increase the effectiveness of the resulting diesel engine catalystin turn leading to cleaner exhaust fumesand will decrease cost. If successful, the team hopes to reduce platinum use by 25%.[64]

Nanotechnology also has a prominent role in the fast developing field of Tissue Engineering. When designing scaffolds, researchers attempt to the mimic the nanoscale features of a Cell’s microenvironment to direct its differentiation down a suitable lineage.[65] For example, when creating scaffolds to support the growth of bone, researchers may mimic osteoclast resorption pits.[66]

Researchers have successfully used DNA origami-based nanobots capable of carrying out logic functions to achieve targeted drug delivery in cockroaches. It is said that the computational power of these nanobots can be scaled up to that of a Commodore 64.[67]

An area of concern is the effect that industrial-scale manufacturing and use of nanomaterials would have on human health and the environment, as suggested by nanotoxicology research. For these reasons, some groups advocate that nanotechnology be regulated by governments. Others counter that overregulation would stifle scientific research and the development of beneficial innovations. Public health research agencies, such as the National Institute for Occupational Safety and Health are actively conducting research on potential health effects stemming from exposures to nanoparticles.[68][69]

Some nanoparticle products may have unintended consequences. Researchers have discovered that bacteriostatic silver nanoparticles used in socks to reduce foot odor are being released in the wash.[70] These particles are then flushed into the waste water stream and may destroy bacteria which are critical components of natural ecosystems, farms, and waste treatment processes.[71]

Public deliberations on risk perception in the US and UK carried out by the Center for Nanotechnology in Society found that participants were more positive about nanotechnologies for energy applications than for health applications, with health applications raising moral and ethical dilemmas such as cost and availability.[72]

Experts, including director of the Woodrow Wilson Center’s Project on Emerging Nanotechnologies David Rejeski, have testified[73] that successful commercialization depends on adequate oversight, risk research strategy, and public engagement. Berkeley, California is currently the only city in the United States to regulate nanotechnology;[74] Cambridge, Massachusetts in 2008 considered enacting a similar law,[75] but ultimately rejected it.[76] Relevant for both research on and application of nanotechnologies, the insurability of nanotechnology is contested.[77] Without state regulation of nanotechnology, the availability of private insurance for potential damages is seen as necessary to ensure that burdens are not socialised implicitly.

Nanofibers are used in several areas and in different products, in everything from aircraft wings to tennis rackets. Inhaling airborne nanoparticles and nanofibers may lead to a number of pulmonary diseases, e.g. fibrosis.[78] Researchers have found that when rats breathed in nanoparticles, the particles settled in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress response[79] and that nanoparticles induce skin aging through oxidative stress in hairless mice.[80][81]

A two-year study at UCLA’s School of Public Health found lab mice consuming nano-titanium dioxide showed DNA and chromosome damage to a degree “linked to all the big killers of man, namely cancer, heart disease, neurological disease and aging”.[82]

A major study published more recently in Nature Nanotechnology suggests some forms of carbon nanotubes a poster child for the “nanotechnology revolution” could be as harmful as asbestos if inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh, Scotland, who contributed to the article on carbon nanotubes said “We know that some of them probably have the potential to cause mesothelioma. So those sorts of materials need to be handled very carefully.”[83] In the absence of specific regulation forthcoming from governments, Paull and Lyons (2008) have called for an exclusion of engineered nanoparticles in food.[84] A newspaper article reports that workers in a paint factory developed serious lung disease and nanoparticles were found in their lungs.[85][86][87][88]

Calls for tighter regulation of nanotechnology have occurred alongside a growing debate related to the human health and safety risks of nanotechnology.[89] There is significant debate about who is responsible for the regulation of nanotechnology. Some regulatory agencies currently cover some nanotechnology products and processes (to varying degrees) by “bolting on” nanotechnology to existing regulations there are clear gaps in these regimes.[90] Davies (2008) has proposed a regulatory road map describing steps to deal with these shortcomings.[91]

Stakeholders concerned by the lack of a regulatory framework to assess and control risks associated with the release of nanoparticles and nanotubes have drawn parallels with bovine spongiform encephalopathy (“mad cow” disease), thalidomide, genetically modified food,[92] nuclear energy, reproductive technologies, biotechnology, and asbestosis. Dr. Andrew Maynard, chief science advisor to the Woodrow Wilson Center’s Project on Emerging Nanotechnologies, concludes that there is insufficient funding for human health and safety research, and as a result there is currently limited understanding of the human health and safety risks associated with nanotechnology.[93] As a result, some academics have called for stricter application of the precautionary principle, with delayed marketing approval, enhanced labelling and additional safety data development requirements in relation to certain forms of nanotechnology.[94][95]

The Royal Society report[14] identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that “manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure” (p. xiii).

The Center for Nanotechnology in Society has found that people respond to nanotechnologies differently, depending on application with participants in public deliberations more positive about nanotechnologies for energy than health applications suggesting that any public calls for nano regulations may differ by technology sector.[72]

View original post here:

Nanotechnology – Wikipedia

Nanoengineering – Wikipedia

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter.

Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

The first nanoengineering program was started at the University of Toronto within the Engineering Science program as one of the options of study in the final years. In 2003, the Lund Institute of Technology started a program in Nanoengineering. In 2004, the College of Nanoscale Science and Engineering at SUNY Polytechnic Institute was established on the campus of the University at Albany. In 2005, the University of Waterloo established a unique program which offers a full degree in Nanotechnology Engineering. [1] Louisiana Tech University started the first program in the U.S. in 2005. In 2006 the University of Duisburg-Essen started a Bachelor and a Master program NanoEngineering. [2] Unlike early NanoEngineering programs, the first Nanoengineering Department in the world, offering both undergraduate and graduate degrees, was established by the University of California, San Diego in 2007. In 2009, the University of Toronto began offering all Options of study in Engineering Science as degrees, bringing the second nanoengineering degree to Canada. Rice University established in 2016 a Department of Materials Science and NanoEngineering (MSNE). DTU Nanotech – the Department of Micro- and Nanotechnology – is a department at the Technical University of Denmark established in 1990.

In 2013, Wayne State University began offering a Nanoengineering Undergraduate Certificate Program, which is funded by a Nanoengineering Undergraduate Education (NUE) grant from the National Science Foundation. The primary goal is to offer specialized undergraduate training in nanotechnology. Other goals are: 1) to teach emerging technologies at the undergraduate level, 2) to train a new adaptive workforce, and 3) to retrain working engineers and professionals.[3]

See original here:

Nanoengineering – Wikipedia

Undergraduate Degree Programs | NanoEngineering

The Department of NanoEngineering offers undergraduate programs leading to theB.S. degreesinNanoengineeringandChemical Engineering. The Chemical Engineering and NanoEngineering undergraduate programs areaccredited by the Engineering Accreditation Commission of ABET. The undergraduate degree programs focus on integrating the various sciences and engineering disciplines necessary for successful careers in the evolving nanotechnology industry.These two degree programshave very different requirements and are described in separate sections.

B.S. NanoEngineering

TheNanoEngineering Undergraduate Program became effective Fall 2010.Thismajor focuses on nanoscale science, engineering, and technology that have the potential to make valuable advances in different areas that include, to name a few, new materials, biology and medicine, energy conversion, sensors, and environmental remediation. The program includes affiliated faculty from the Department of NanoEngineering, Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, and the Department of Bioengineering. The NanoEngineering undergraduate program is tailored to provide breadth and flexibility by taking advantage of the strength of basic sciences and other engineering disciplines at UC San Diego. The intention is to graduate nanoengineers who are multidisciplinary and can work in a broad spectrum of industries.

B.S. Chemical Engineering

The Chemical Engineering undergraduate program is housed within the NanoEngineering Department. The program is made up of faculty from the Department of Mechanical and Aerospace Engineering, Department of Chemistry and Biochemistry, the Department of Bioengineering and the Department of NanoEngineering. The curricula at both the undergraduate and graduate levels are designed to support and foster chemical engineering as a profession that interfaces engineering and all aspects of basic sciences (physics, chemistry, and biology). As of Fall 2008, the Department of NanoEngineering has taken over the administration of the B.S. degree in Chemical Engineering.

Academic Advising

Upon admission to the major, students should consult the catalog or NanoEngineering website for their program of study, and their undergraduate/graduate advisor if they have questions. Because some course and/or curricular changes may be made every year, it is imperative that students consult with the departments student affairs advisors on an annual basis.

Students can meet with the academic advisors during walk-in hours, schedule an appointment, or send messages through the Virtual Advising Center (VAC).

Program Alterations/Exceptions to Requirements

Variations from or exceptions to any program or course requirements are possible only if the Undergraduate Affairs Committee approves a petition before the courses in question are taken.

Independent Study

Students may take NANO 199 or CENG 199, Independent Study for Undergraduates, under the guidance of a NANO or CENG faculty member. This course is taken as an elective on a P/NP basis. Under very restrictive conditions, however, it may be used to satisfy upper-division Technical Elective or Nanoengineering Elective course requirements for the major. Students interested in this alternative must have completed at least 90 units and earned a UCSD cumulative GPA of 3.0 or better. Eligible students must identify a faculty member with whom they wish to work and propose a two-quarter research or study topic. Please visit the Student Affairs office for more information.

Read more:

Undergraduate Degree Programs | NanoEngineering

What is Nanotechnology? | Nano

Nanotechnology is science, engineering, and technologyconductedat the nanoscale, which is about 1 to 100 nanometers.

Physicist Richard Feynman, the father of nanotechnology.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled Theres Plenty of Room at the Bottom by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn’t until 1981, with the development of the scanning tunneling microscope that could “see” individual atoms, that modern nanotechnology began.

Its hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atomsthe food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, its impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recentlyabout 30 years ago.

Once scientists had the right tools, such as thescanning tunneling microscope (STM)and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materialswereused for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didnt know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today’s scientists andengineers are finding a wide variety of ways to deliberatelymake materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight,increased control oflight spectrum, and greater chemical reactivity than theirlarger-scale counterparts.

Continued here:

What is Nanotechnology? | Nano


...34567...102030...