Stem Cell Therapy for Anti-Aging and Sexual Performance …

Stem Cell Therapy has been around for quite some time, but due to high cost it was primarily used for recovery in athletes and the financial elite. However, with the progression of science and knowledge, stem cell therapy has become much more widely used and financially attainable.

Tampa Rejuvenation is the first in Tampa Bay to utilize the benefits of stem cell therapy for the purpose of anti-aging and sexual performance. We realize as our patients age, their bodies no longer have the regenerative properties to attain the desired results from using their growth factors alone as with our PRP, or Plasma Rich Platelet, therapy. Although many patients will still yield improvement with the PRP alone, the magnitude of cytokines and growth factors in your blood as you age will deplete with age. By implementing stem cell therapy, the number of growth factors are exponential allowing our bodies to regenerate on a magnitude that is otherwise unattainable with some results lasting for 3-5 years.

Stem Cell Therapy can be used to restore vitality to the skin, encourage the growth of hair, and even restore sexual performance and pleasure.

See the rest here:

Stem Cell Therapy for Anti-Aging and Sexual Performance …

NSI Stem Cell | What Is Stem Cell Therapy?

This innovative therapy option for alleviating pain and restoring function in the body could be the answer youve been looking for! We know you may have tried everything, and may have seen numerous doctors to take care of your condition, without real success. This can be very frustrating and can cause a lot of stress on you and your family. It is very important to your recovery to find someone that understands your journey and what you have been through along the way.

You may have been through the ringer with your injury or condition. Many of our patients have spent years getting their hopes up, and then getting their hopes dashed.

Stem Cell Therapy is about using your bodys own stem cells to regenerate damagedtissue. So if you, or someone you love, is suffering please read on to find out who can be helped and how.

Our Stem Cell Therapy is an innovative therapy that is recommendedfor a wide variety of chronic conditions, yet many people are learning about it now for the first time.

These are not embryonic stem cells or cells from fetuses.These regenerative cells come straight from your own body.

They are extracted just a few hours before theyre injected back into your body and put to work to heal damaged or dysfunctional tissue.

We use a variety of stem cells derived from the patients own tissues. Our preferred choice is bone marrow or fat because the cells there are multi-potent which means that they have the ability to differentiate into muscle, tendons, ligaments, bone, and cartilage. Once introduced into the damaged or diseased area, the stem cells can then heal your damaged tissue and regenerate new healthy tissue.

Stem Cell Therapy offers significant potential for the healing of tissues that have become injured as a result of the aging process.

See more here:

NSI Stem Cell | What Is Stem Cell Therapy?

Stem Cell Therapy for Osteoarthritis – StemGenex

Stem Cell Therapy for Osteoarthritis

New treatments and advances in research are giving new hope to people affected by Osteoarthritis pain and symptoms. StemGenex provides stem cell therapy for Osteoarthritis to help those with unmet clinical needs achieve optimum health and better quality of life.

Stem cell therapy for Osteoarthritis is being studied for efficacy in improving the complications in patients through the use of their own stem cells. These procedures may help patients who dont respond to typical drug treatment, want to reduce their reliance on medication, or are looking to try stem cell therapy before starting drug treatment.

To learn more about becoming a patient and receiving stem cell therapy for Osteoarthritis through StemGenex, please contact one of our patient advocates at (800) 609-7795 or fill out the contact form on this page.Below are some frequently asked questions about stem cell treatment for Osteoarthritis.

The majority of complications in Osteoarthritis patients are related to the deterioration of cartilage that cushions the ends of bones in your joints. Cartilage is a firm, slippery tissue that permits nearly frictionless joint motion. In Osteoarthritis, this surface become rough. Eventually, if the cartilage wears down completely, patients will be left with bone rubbing on bone.

Stem cell treatment provided by StemGenex is designed to target these areas within the joints to help with the creation of new cartilage cells. Mesenchymal stem cells are multipotent and have the ability to differentiate into cartilage called (chondrytes). The goal of each stem cell treatment is to inject the stem cells into the joint to create cartilage (chondryte cells). Stem cells are a natural anti-inflammatories which can assist with Osteoarthritis pain and swelling in the joint area.

Stem cells are the basic building blocks of human tissue and have the ability to repair, rebuild, and rejuvenate tissues in the body. When a disease or injury strikes, stem cells respond to specific signals and set about to facilitate the healing process by differentiating into specialized cells required for the bodys repair.

There are four known types of stem cells which include:

StemGenex provides autologous adult stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

StemGenex provides autologous adult adipose-derived stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

We tap into our bodys stem cell reserve daily to repair and replace damaged or diseased tissue. When the bodys reserve is limited and as it becomes depleted, the regenerative power of our body decreases and we succumb to disease and injury.

Three sources of stem cells from a patients body are used clinically which include adipose tissue (fat), bone marrow and peripheral blood.

Performed by Board Certified Physicians, dormant stem cells are extracted from the patients adipose tissue (fat) through a minimally invasive mini-liposuction procedure with little to no downtime.

During the liposuction procedure, a small area (typically the abdomen) is numbed with an anesthetic and patients receive mild to moderate sedation. Next, the extracted dormant stem cells are isolated from the fat and activated, and then comfortably infused back into the patient intravenously (IV) and via other directly targeted methods of administration. The out-patient procedure takes approximately four to five hours.

StemGenex provides multiple administration methods for Osteoarthritis patients to best target the disease related conditions and symptoms which include:

Since each condition and patient are unique, there is no guarantee of what results will be achieved or how quickly they may be observed. According to patient feedback, many patients report results in one to three months, however, it may take as long as six to nine months. Individuals interested in stem cell therapy are urged to consult with their physician before choosing investigational autologous adipose-derived stem cell therapy as a treatment option.

In order to determine if you are a good candidate for adult stem cell treatment, you will need to complete a medical history form which will be provided by your StemGenex Patient Advocate. Once you complete and submit your medical history form, our medical team will review your records and determine if you are a qualified candidate for adult stem cell therapy.

StemGenex team members are here to help assist and guide you through the patient process.

Patients travel to StemGenex treatment center located in San Diego, California for stem cell treatment from all over the United States, Canada and around the globe. Treatment will consist of one visit lasting a total of three days. The therapy is minimally invasive and there is little to no down time. Majority of patients fly home the day after treatment.

We provide stem cell therapy for a wide variety of diseases and conditions for which traditional treatment offers less than optimal options. Some conditions include Multiple Sclerosis, Parkinson’s Disease, Rheumatoid Arthritis, Osteoarthritis and Chronic Obstructive Pulmonary Disease (COPD).

The side effects of the mini-liposuction procedure are minimal and may include but are not limited to: minor swelling, bruising and redness at the procedure site, minor fever, headache, or nausea. However, these side effects typically last no longer than 24 hours and are experienced mostly by people with sensitivity to mild anesthesia. No long-term negative side effects or risks have been reported.

The side effects of adipose-derived stem cell therapy are minimal and may include but are not limited to: infection, minor bleeding at the treatment sites and localized pain. However, these side effects typically last no longer than 24 hours. No long-term negative side effects or risks have been reported.

StemGenex provides adult stem cell treatment with mesenchymal stem cells which come from the person receiving treatment. Embryonic stem cells are typically associated with ethical and political controversies.

Stem cell treatment is not FDA approved.

Stem cell for arthritis treatment is not covered by health insurance at this time. The cost for standard preoperative labs are included. Additional specific labs may be requested at the patients expense.

Osteoarthritis, or degenerative joint disease, is the most common type of arthritis. It is caused by the degradation of a joints cartilage. Cartilage is a firm, rubbery material that covers and cushions the ends of bones in normal joints. Its main function is to reduce friction in the joints and serve as an intermediary or cushion.

Over time, the cartilage may wear away in some areas, greatly decreasing its ability to act as a shock absorber. As the cartilage wears away, tendons and ligaments stretch, causing pain. In advanced cases, the bones could rub against each other, causing even more pain and loss of movement.

Osteoarthritis is very common in middle-aged and older people, and its symptoms can range from very mild to very severe. The disorder most often affects hands and weight-bearing joints such as knees, hips, feet and shoulders, but can affect almost any joint in the body.

Link:

Stem Cell Therapy for Osteoarthritis – StemGenex

Stem Cell Research & Therapy | Home page

“Stem cells have enormous potential for alleviating suffering for many diseases which currently have no effective therapy. The field has progressed to the clinic and it is important that this pathway is underpinned by excellent science and rigorous standards of clinical research. The journal provides an important avenue of publication in translational aspects of stem cell therapy spanning preclinical studies, clinical research and commercialization.”

Timothy O’Brien,Editor-in-Chief,Stem Cell Research & Therapy

“The study of stem cells is one of the most exciting areas of contemporary biomedical research. We believe that Stem Cell Research & Therapy will act as a highly active forum for both basic and translational research into stem cell biology and therapies. Specifically, by developing this forum for cutting edge research, we hope that Stem Cell Research & Therapy will play a significant role in bringing together the critical information to synergize stem cell science with stem cell therapies.”

Rocky S Tuan,Editor-in-Chief,Stem Cell Research & Therapy

Read more from the original source:

Stem Cell Research & Therapy | Home page

Stem Cells in Milwaukee, WI | Wisconsin Stem Cell Therapy

Dave, age 68, avid hunter and snow skier, his orthopedic surgeon suggested that he would need knee replacement surgery. He instead found relief through our powerful Stem Cell Therapy treatment protocol.

He said about his knee after our treatment, It is 85% better than when I walked in. I would recommend the procedure before trying anything else.

Continued here:

Stem Cells in Milwaukee, WI | Wisconsin Stem Cell Therapy

Stem Cell Therapy | Advanced Regenerative Orthopedics

Stem Cell Therapy involves the use of stem cells to stimulate the bodys natural repair mechanisms to repair, regenerate or replace damaged cells, tissues and organs. This physician-directed therapy is very safe, ethical and does not entail the use of any fetal or embryonic cells or tissue. It has been described as the future of medicine by many prestigious groups including the National Institutes of Health and the Institute of Medicine.

The field of Stem Cell Therapy continues to evolve, focusing on cures rather than just treatments for essentially all types of chronic diseases and conditions, including diabetes and cardiovascular disease, as well as various forms of arthritis and various orthopedic problems. When cells are transplanted into a patient, they do not stay for more than a few days. However, the cells provide a large and robust stimulus to turn on native repair mechanisms. The number of stem cells present in the body and their functional capacity to repair damaged tissue declines with each advancing decade of life, and chronic diseases further impede their ability to respond to chronic injury or damage in the body. This is why research has led to new solutions, which include the use of umbilical cord blood as the source of cells, which have the most potent ability to generate new tissues without risk of rejection. We at Advanced Regenerative Orthopedics use stem cells that are supplied by an FDA-registered cord blood bank.

Stem Cell Therapy and Tissue Engineering are much simpler and effective options that use very powerful young cells to stimulate the patients own native repair mechanisms to regenerate new cartilage and bone. The physician-directed treatment at ARO is a comprehensive approach to a specific joint with the goal of reducing the disabling pain and increasing function.

At Advanced Regenerative Orthopedics, our goal is to provide minimally invasive treatments along with regenerative techniques to target your bodys natural healing ability. Used as part of our innovative, three-tiered approach, physician-directed arthritis stem cell treatment can help patients of all ages get pain relief, increase their joint mobility and enjoy a higher quality of life.

Stem cell therapy can be an effective treatment for those suffering from a broad range of arthritic conditions. By using stem cells for arthritis, Advanced Regenerative Orthopedics stimulates your bodys natural mechanism to repair, regenerate and replace damaged cells within your joints.

If you live in Tampa, Brandon, St. Petersburg, Clearwater, Lakeland, Sarasota, The Villages, Ocala, or the surrounding areas and are interested in learning more about using stem cells for arthritis or any other joint condition, please contact our courteous and efficient office staff today to schedule an appointment. We look forward to discussing the benefits of physician-directed arthritis stem cell treatment with you and determining the best course of treatment to restore your joint health.

As many of our patients travel to us from outside the state of Florida for our world class procedures, our team is very familiar with managing the care & travel for remote patients.

See the rest here:

Stem Cell Therapy | Advanced Regenerative Orthopedics

Stem Cell Therapy for Arthritis

Experts are researching ways to use stem cells to treat arthritis in the knee and other joints. Many doctors already use stem cell therapy to treat arthritis, but it is not considered standard practice.

Stem cell therapy is one of several non-surgical treatments for arthritis pain. See Knee Osteoarthritis Treatment

There is a lot of debate around stem cell treatment, and it is helpful for potential patients to understand what stem cells are and the issues surrounding their use in arthritis therapy.

Article continues below

Stem cells are located throughout the body. What makes stem cells special is that they can:

See What Are Stem Cells?

Advocates of stem cell treatments hypothesize that, when placed into a certain environment, stem cells can transform to accommodate a certain need. For example, stem cells that are placed near damaged cartilage are hypothesized to develop into cartilage tissue.

See What Is Cartilage?

Stem cells can be applied during a surgery (such as the surgical repair of a torn knee meniscus) or delivered through injections directly into the arthritis joint.

Watch: Knee Meniscus Tear Video

When administering stem cell injections, many physicians use medical imaging, such as ultrasound, in order to deliver cells precisely to the site of cartilage damage.

The most common type of stem cells used for treating arthritis are mesenchymal stem cells. Mesenchymal stem cells are usually collected from the patients fat tissue, blood, or bone marrow.

The process of collecting cells is often called harvesting.

Bone marrow is usually taken from the pelvic bone using a needle and syringe, a process called bone marrow aspiration. The patient is given a local anesthetic and may also be given a sedative before the procedure.

There are no professional medical guidelines for who can and cannot receive stem cell therapy for arthritis. For now, the decision about who gets stem cell therapy is up to patients and doctors.

See Arthritis Treatment Specialists

There is some evidence that people with severe arthritis can benefit from stem cell therapy.1 Most research indicates that younger patients who have relatively mild osteoarthritis or cartilage damage see the most benefit.2

See What Is Osteoarthritis?

Some doctors have certain criteria for recommending stem cell therapy. For example, they only recommend it to patients who are healthy and have relatively little cartilage damage. Other doctors make recommendations on a case-by-case basis.

Stem cell therapy is a promising but still unproven treatment, and will not be covered by most insurance companies.

Complete Listing of References

See the original post:

Stem Cell Therapy for Arthritis

National Stem Cell Centers | Stem Cell Therapy in New York …

At National Stem Cell Centers, our affiliate physicians focus on leading edge, regenerative medicine. Instead of synthetic compounds, prescription medications, or surgical procedures, they activate your own natural cellular resources to promote healing.

Our goal is to allow patients access to this potentially revolutionary form of treatment to harness your bodys natural healing cascade mechanism for the repair of damaged tissues.

Adult mesenchymal stem cells are a form of undifferentiated cells. These kinds of stem cells are found in great abundance within abdominal adipose (fatty) tissue and bone marrow. Lying dormant (non-replicating), these remarkably intelligent cells can be activated to become other kinds of cells specific to tendons, muscle, blood vessels, nerves, and bone.

This means that regenerative cell therapies can be helpful in reducing pain, chronic inflammation, and the mitigation of some degenerative disease states.

At National Stem Cell Centers, our affiliated physicians utilize autologous stem cells harvested from your own tissue, without any form of artificial cellular manipulation, enzymes, expansion or multiplication.

Conditions Addressed

Anecdotal evidence including patient feedback suggests that stem cell procedures may be helpful in addressing conditions and injuries such as joint pain including knee pain, arthritis, osteoarthritis, back pain, and chronic inflammation.

As technology evolves, autoimmune and neurological disorders, orthopedic and urological conditions, heart and lung diseases, erectile dysfunction (ED), hair loss, cellular rejuvenation, autism, and aesthetics could be addressed as well.

Why National Stem Cell Centers?

There are many reasons you should choose our affiliated physicians including:- Our doctors are surgeons, not ordinary physicians- FDA registered tissue processing lab- No multiplication/duplication/expansion of cells- Numerous happy patients as evidenced by our 5 Star Reviews- IND and IRB Applications in preparation- Initiating participation in clinical trials- Affordable prices- Zero percent financing

Call today to find out if you are a candidate and to schedule a complimentary consultation. National Stem Cell Centers has affiliate physicians in New York City, Great Neck, Hauppauge and Southampton, Long Island, New Jersey, Dallas and Houston in Texas, and Newport Beach, California.

Read more from the original source:

National Stem Cell Centers | Stem Cell Therapy in New York …

Is Stem Cell Therapy Covered by Medicare?

Stem cell therapy has been a hot topic in the press lately. With more and more medical providers offering stem cell treatments, patients around the country have been wondering, Is Stem Cell Therapy covered by Medicare.

Stem Cell research has shown that its an effective treatment for chronic joint pain and arthritis sufferers and more recent studies are starting to show the benefit for treatment of neurological disorders as well. (M.S., Parkinsons, and Stroke)

So the team at Stem Cell: The Magazine, have put together some information to answer this question of insurance coverage for potential medical enrollees seeking stem cell and regenerative treatments.

So what is the answer to Does Medicare cover Stem Cell therapy?

From the research that we have pulled up regarding Medicare Insurance Coverage for stem cell therapy; medicare does cover stem cell treatments, but not for some of the chronic degenerative conditions that regenerative treatments (stem cell therapy) can help them with.

You can see in this publication from BCBS that stem cell therapy is covered for the following conditions:

INDICATIONS FOR COVERAGE

Section 2.aAllogeneic Hematopoietic Stem Cell Transplantation (HSCT) eligible for coverage in the following:a) The treatment of leukemiab) The treatment of severe combined immunodeficiency disease (SCID) and for the treatment of Wiskott-Aldrich syndrome.ORc) The treatment of Myelodysplastic Syndromes (MDS) pursuant to Coverage with Evidence Development (CED) in the context of a Medicare-approved, prospective clinical study.3. Autologous Stem Cell Transplantation(AuSCT) is eligible for coverage in the following:a) Acute leukemia in remission who have a high probability of relapse and whohave no human leucocyte antigens (HLA)-matched;ORb) Resistant non-Hodgkins lymphomas or those presenting with poor prognosticfeatures following an initial response;ORc) Recurrent or refractory neuroblastoma;ORd) Advanced Hodgkins disease who have failed conventional therapy and have no HLA-matched donor.

You can see that outside of the listed conditions above, Medicare does not cover stem cell therapy for treatments joint conditions or neurological conditions that patients are more commonly seeking treatment for.

In this article, it clearly states that stem cell therapy for the coverage of orthopedic conditions is not covered:

The orthopedic application of stem-cell therapy is not addressed within the stem cell transplantation NCD. (NCD = National Care Determinations)

What this means for any patient that is looking to receive regenerative and stem cell treatments for orthopedic conditions such as:

M

M

Download our free Stem Cell 101 educational report now!

Medicare will not cover treatment for these conditions. In fact, most major medical carriers will not provide coverage for these treatments either.

Many chronic joint pain sufferers wonder why Medicare and most major carriers dont provide coverage for these treatments if they are so effective, but there is a simple answer for why this is.

Medicare and most major health insurance are for emergency conditions. Regenerative medicine is still considered an elective treatment, close to wellness care. Insurance carriers are not in the business of providing wellness for coverage for their participants.

We found a great video that explains more about this by John R Hoffman at Arcadia University. In it he describes the challenges of Medicare coverage for Stem Cell Therapy.

Our hope at Stem Cell: The Magazine is that as more and more patients continue to seek out treatment of their orthopedic and neurological conditions using stem cell and regenerative treatments, that Mediare and major health insurances will accept stem cell as the first treatment for these chronic conditions.

Learn More About Stem Cell Therapy

Is Stem Cell Therapy Covered by Medicare? was last modified: October 3rd, 2018 by Stem Cell The Magazine

See more here:

Is Stem Cell Therapy Covered by Medicare?

Regenexx Stem Cell Procedures | 100% Non-Surgical Pain Treatment

Stem Cell Therapy Facts & Information

Stem Cell Therapyas an alternative solution to invasive surgery for patients suffering from a wide range of degenerative conditions and injuries including:

The Regenexx Stem Cell Therapy protocol produces the highest stem cell concentrations possible. All procedures utilize advanced imaging guidance to ensure the stem cells are delivered precisely to the area in need to assist healing in the damaged tissues.

Our bodys stem cells are responsible for healing us. However, as we age or sustain injury, we sometimes cannot get enough of these healing cells into the injured area. Stem Cell Therapy solves this problem by harvesting the patients own cells and then injecting them directly into the area in need. These cells can assist in the healing of damaged tissue, tendons, ligaments, cartilage and bone while decreasing downtime and avoiding painful rehabilitation periods typically associated with surgery. In a series of three injections spaced roughly two to five days apart, the patient can be well on their way to a full recovery.

TheStem Cell Therapy protocol is a series of three procedures that happen over the course of several days.

PRE-INJECTION: A dextrose solution that stimulates surrounding soft tissue & prepares it for stem cell procedure.

SAME-DAY STEM CELL PROCEDURE: In the morning, blood and bone marrow samples are taken. Later that day, stem cells and blood platelets are introduced into the injury site.

POST-INJECTION: Additional platelet stimulants are introduced to invigorate stem cells and boost healing process.

Stem Cell Therapy is intended to help your body actually heal injured tissue. Initial improvement and reduction in pain may be experienced very quickly, with continued improvement as the healing progresses. Patient studies have shown Stem Cell Therapy to be very effective at relieving pain, while MRI images have confirmed successful tissue repair following stem cell therapy. The need for surgery can be greatly reduced by treating injured tissues before the damage progresses and the condition is irreversible.

Have you been diagnosed with one the following:

Are you currently experiencing:

See the rest here:

Regenexx Stem Cell Procedures | 100% Non-Surgical Pain Treatment

Stem Cell Therapy for Knee Injuries and Arthritis

Utilizing your own stem cells to help the healing process of injured or degenerated jointsThe human body is made of billions of specialized cells that form specific organs like the brain, skin, muscles, tendons, ligaments, joints, and bone. Each day these cells go through a degenerative and regenerative process. As older cells die, new cells are born from stem cells with the unique capability of being able to create multiple types of other cells. However, when tissues are injured, the degenerative process exceeds this regenerative process, resulting in structures that become weaker, painful and less functional. While there are several types of stem cells, those that are best at promoting musculoskeletal healing (tendon, ligament, cartilage and bone) are found in bone marrow. These mesenchymal stem cells, or MSCs, are essential to successful patient outcomes and at Stem Cell ARTS we utilize the patented Regenexx Stem Cell Protocol, which iscapable of yielding much higher concentrations of these important cells.Most Commonly Treated Knee Conditions and InjuriesBelow is a list of the most common knee injuries and conditions that we treat with stem cells or platelet procedures. This is not an all-inclusive list.Knee Patient Outcome Data

This Regenexx bone marrow derived stem cell treatment outcome data analysis is part of the Regenexx data download of patients who were tracked in the Regenexx advanced patient registry.

Regenexx has published more data on stem cell safety in peer reviewed medical research for orthopedic applications than any other group world-wide. This is a report of 1,591 patients and 1,949 procedures treated with the Regenexx Stem Cell Procedure. Based on our analysis of this treatment registry data, the Regenexx Stem Cell Procedure is about as safe as any typical injection procedure, which is consistent with what we see every day in the clinic.

To use, begin playing the first video. Then use the Playlist Dropdown Menu in the upper left corner of the video display to show all video titles. Use the Scroll Bar on the right hand side of the playlist to browse all video titles if required.

These non-surgical stem cell injection procedures happen within a single day and may offer a viable alternative for those who are facing surgery or even joint replacement. Patients are typically able to return to normal activity following the procedure and are able to avoid the painful and lengthy rehabilitation periods that are typically required to help restore strength, mobility and range-of-motion following invasive joint surgeries. Lastly, patients are far less vulnerable to the risks of surgeries, such as infection and blood clots.

Modern techniques in todays medicine allows us to withdraw stem cells from bone marrow, concentrate them through a lab process and then re-inject them precisely into the injured tissues in other areas of the body using advanced imaging guidance. Through Fluoroscopy and MSK Ultrasound, were able to ensure the cells are being introduced into the exact area of need. When the stem cells are re-injected, they enhance the natural repair process of degenerated and injured tendons, ligaments, and arthritic joints Turning the tables on the natural breakdown process that occurs from aging, overuse and injury.

If you are suffering from a joint injury or degenerative condition such as osteoarthritis, you may be a good candidate for a stem cell procedure. Please complete the form below and we will immediately send you an email with additional information and next steps in determining whether youre a candidate for these advanced stem cell procedures.

Originally posted here:

Stem Cell Therapy for Knee Injuries and Arthritis

Stem Cell Therapy in Richmond Start Healing Chronic Pain …

Stem cell therapy is a targeted treatment that activates your bodys own natural ability to heal and regenerate. With a simple in-office procedure you will improve your quality of life and potentially avoid surgery.

Research continues to show an increasing number of potential benefits from the anti inflammatory, immunomodulatory, and regenerative actions of stem cells. Stem cell therapy treats pain and chronic conditions at their source, returning you to the things you enjoy.

Our stem cell therapy treatment utilizes umbilical cord derived Mesenchymal Stem Cells from FDA regulated cord banks. Mesenchymal Stem Cells are specialized cells that are able to receive signals from the other cells in your body. Stem cells then seek out inflammation and degeneration and go to that location to begin repairing tissue.

Stem cells have been shown to help repair muscle, bone, cartilage and tendons. Research has indicated that stem cells can benefit a wide variety of health complications and may assist in individuals living stronger, healthier lives.

Our mission is simple: Change the lives of our patients by providing an integrative, holistic approach to healing.

We help people suffering from chronic health conditions, chronic pain, autoimmune issues, and many other undiagnosed syndromes and health problems.

We are passionate about caring for our patients who, until now, were not able to find answers and treatments for their underlying health issues.

Regenerative medicine through stem cell therapy is the future of health care and, for our patients, THE FUTURE IS NOW!

Are you a candidate for regenerative stem cell therapy? The answer is YES if you suffer from any of the following:

Were here to help you heal and restore your health today! Please contact us now using the form below to explore how stem cell therapy can help you find relief and embrace your life again!

More here:

Stem Cell Therapy in Richmond Start Healing Chronic Pain …

Stem Cell Basics I. | stemcells.nih.gov

Stem cells have the remarkable potential to develop into many different cell types in the body during early life and growth. In addition, in many tissues they serve as a sort of internal repair system, dividing essentially without limit to replenish other cells as long as the person or animal is still alive. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another type of cell with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell.

Stem cells are distinguished from other cell types by two important characteristics. First, they are unspecialized cells capable of renewing themselves through cell division, sometimes after long periods of inactivity. Second, under certain physiologic or experimental conditions, they can be induced to become tissue- or organ-specific cells with special functions. In some organs, such as the gut and bone marrow, stem cells regularly divide to repair and replace worn out or damaged tissues. In other organs, however, such as the pancreas and the heart, stem cells only divide under special conditions.

Until recently, scientists primarily worked with two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic “somatic” or “adult” stem cells. The functions and characteristics of these cells will be explained in this document. Scientists discovered ways to derive embryonic stem cells from early mouse embryos more than 30 years ago, in 1981. The detailed study of the biology of mouse stem cells led to the discovery, in 1998, of a method to derive stem cells from human embryos and grow the cells in the laboratory. These cells are called human embryonic stem cells. The embryos used in these studies were created for reproductive purposes through in vitro fertilization procedures. When they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. In 2006, researchers made another breakthrough by identifying conditions that would allow some specialized adult cells to be “reprogrammed” genetically to assume a stem cell-like state. This new type of stem cell, called induced pluripotent stem cells (iPSCs), will be discussed in a later section of this document.

Stem cells are important for living organisms for many reasons. In the 3- to 5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of the organism, including all of the many specialized cell types and organs such as the heart, lungs, skin, sperm, eggs and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

Given their unique regenerative abilities, stem cells offer new potentials for treating diseases such as diabetes, and heart disease. However, much work remains to be done in the laboratory and the clinic to understand how to use these cells for cell-based therapies to treat disease, which is also referred to as regenerative or reparative medicine.

Laboratory studies of stem cells enable scientists to learn about the cells essential properties and what makes them different from specialized cell types. Scientists are already using stem cells in the laboratory to screen new drugs and to develop model systems to study normal growth and identify the causes of birth defects.

Research on stem cells continues to advance knowledge about how an organism develops from a single cell and how healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of contemporary biology, but, as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates new discoveries.

I.Introduction|Next

View post:

Stem Cell Basics I. | stemcells.nih.gov

15 Stem Cell Therapy For Pain Questions, Answered

Stem cell therapy is an exciting area of research that holds tremendous potential for helping chronic pain patients reduce their pain. Rapid advances in this field of medicine are buoying doctors and patients hopes that the exciting therapy could change lives. Advances are being made nearly every day, and as scientists further understand the nature of these cells, even more uses for them are becoming known. If youve ever wondered about how stem cell therapy for pain could help you, these 15 questions delve into how this therapy works and who it could be used for.

Science has a strong interest in stem cells because of their renewing properties and the ability of these cells to develop into any type of tissue in the body of the organism. Researchers believe that they have the potential for immeasurable clinical uses in health. Research is advancing many stem cell based therapies for people who suffer from diseases such as:

Mayo Clinic explains how this therapy works:

Stem cell therapy, also known as regenerative medicine, promotes the reparative response of diseased, dysfunctional or injured tissue using stem cells or their derivativesResearchers grow stem cells in a lab. These stem cells are manipulated to specialize into specific types of cells, such as heart muscle cells, blood cells or nerve cells. The specialized cells can then be implanted into a person.

Stem cell therapy is actually a type of treatment within the larger umbrella of regenerative medicine. Our longer post on regenerative medicine discusses the types of treatments available, including stem cell therapy and platelet-rich plasma injections.

Stem cells are essentially blank canvases that can transform into any type of cell in the human body. Specialized cells like bone cells, liver cells, and heart cells begin as stem cells. The process of the cells transforming from blank slates into specialized cells is called differentiation.

Stem cell therapy is the process of injecting these cells into damaged areas of the body, such as arthritic knees or shoulders. The stem cells then differentiate into damaged tissue, helping to regenerate the entire area.

There are two different types of natural stem cells and one that is genetically reprogrammed within the laboratory. Embryonic stem cells are the most immature and are found within the early stages of a growing embryo, usually after it has been left to develop five to six days. After the egg and sperm have united, the fertilized egg divides and creates stem cells that differentiate into the specialized cells the body requires to function. Many techniques using stem cells for pain therapies no longer rely on these types of stem cells.

The second type of stem cell, found naturally in organisms, is adult stem cells. These are present in developed tissue, such as muscle, skin, bone, brain, and blood. Also called tissue stem cells, they can self-renew and generate one specialized cell type. Under normal circumstances these tissue stem cells, or adult stem cells, will generate the type of cells that make up the organ in which they reside. These cells are used by the body to divide and repair injured areas or regenerate into specialized cells to replace the ones that are dead or damaged.

The third type of stem cells, which are genetically reprogrammed in the laboratory, are induced pluripotent stem cells. After years of stem cell research and development, it was discovered that artificially triggering certain genetic components would prompt different cells to become pluripotent stem cells, which were similar in nature to embryonic stem cells. This helps avoid ethical concerns associated with using human embryonic tissue for research and regenerative medicine.

The following video from an Arizona pain doctor goes into detail about how stem cell therapy for pain works.

There are twomajor types of stem cells: those harvested from adults and those harvested from embryonic tissues.

However, there are other ways to retrieve stem cells that reduce the use of embryonic stem cells, including:

As the Euro Stem Cell organization reports, some of these types of stem cells are more effective than others.

One source of stem cells is human embryos. These cells are called pluripotent stem cells, and theyre very useful to researchers because they can be multiplied indefinitely in the laboratory. Although these cells are often cultivated from embryos that are just a few days old, they can also be taken from fetal tissue thats older than eight weeks, according to the National Institutes of Health (NIH).

The majority of therapeutic stem cells come from adults. Even though embryos are the richest source of stem cells, humans of all ages have stem cells. Stem cells give adults the ability to replace damaged tissue, heal wounds, and grow hair.The patients own adult stem cells are extracted, purified, concentrated, and then injected into the damaged tissue. This process is usually non-surgical and the individual has very little recovery time. Most patients report only some soreness around the site of the injection. Sometimes there is also slight bruising. There have been no reports of serious side effects from treatments using stem cell therapy.

Newer research has given scientists the ability to reprogram specialized adult cells so they essentially return to their original stem cell state. These reprogrammed cells are known as induced pluripotent stem cells. Although this ability exists, scientists arent sure how or if these artificially created stem cells behave differently than other types.

Despite these unknowns, the reprogrammed stem cells are already being used in the development of medicines and helping scientists learn more about specific types of diseases, according to NIH.

Stem cells have many uses, and the full spectrum of their application isnt yet known. One way stem cells are helping researchers is by illuminating the inner workings of various diseases. Stem cells offer scientists the ability to model human disease progression in a laboratory setting.

This is exciting because many studies rely on animals with similar, but not exact, biology to humans. The more scientists can understand about human-specific disease progression, the greater insight they have regarding potential treatments.

For example, one of the earliest uses for stem cells were bone marrow transplants, used to help patients with leukemia or sickle cell anemia heal. This treatment has been used for more than 40 years. In addition, stem cell therapy may be used to treat:

The application of most interest to chronicpatients is likely the emerging field of regenerative medicine, which is the science of helping tissues regenerate. This field examines the potential of stem cells to repair damaged tissue and heal areas of the body bone and potentially organs, too affected by arthritis, diabetes, spinal cord injuries, nerve damage, Parkinsons disease, and more.

Exciting research has also uncovered the potential for stem cells to expand the number of lungs available for transplant. A portion of lungs available for transplant arent used because they become damaged. However, research from the American Physiological Society has found stem cells could help repair the organs and prepare them to save lives.

Other recent researchstories include:

For many of the studies underway, time is needed to fully examine the benefits and potential dangers of this treatment. Another obstacle is obtaining specific types of adult stem cells. Theyre difficult to grow in the laboratory, making it hard to produce the large numbers available for research.

Another potential issue with donor stem cells is the possibility of rejection. The immune system of the recipient could reject the cells, essentially making it difficult for the treatment to work as intended and causing ancillary problems.

Finally, since this is such a new treatment area, some government agencies are calling for more oversight of its use. Others are pushing back, claiming that stem cell therapy provides a new area of treatment for patients who have exhausted all other options.

That being said, even though there are complications and roadblocks to its use, the benefits of stem cell therapy could be huge. As the American Academy of Anti-Aging Medicine notes:

[A]n analysis of the potential benefits of stem cells based therapies indicates that 128 million people in the United States alone may benefit with the largest impact on patients with Cardiovascular disorders (5.5 million), autoimmune disorders (35 million) and diabetes (16 million US patients and more than 217 million worldwide).

Californias Stem Cell Agency gives a great overview of this process, noting:

In order to be approved by the FDA for use in human trials, stem cells must be grown in good manufacturing practice (GMP) conditions. Under GMP standards, a cell line has to be manufactured so that each group of cells is grown in an identical, repeatable, sterile environment. This ensures that each batch of cells has the same properties, and each person getting a stem cell therapy gets an equivalent treatment. Although the FDA hasnt yet issued guidelines for how pluripotent stem cells need to meet GMP standards, achieving this level of consistency could mean knowing the exact identity and quantity of every component involved in growing the cells.

Stem cell therapy is being studied for a number of chronic pain conditions, especiallypain in the:

Stem cell therapy for pain could help reduce the inflammation that results in chronic pain, or it could help to heal regenerative conditions that lead to pain, such as arthritis.

Using stem cell therapy for knee pain is one of the leading areas of research. Stem cell therapy for knees can be provided as stem cell injections or as blood platelet treatments from the body itself (another form of regenerative medicine).These two treatments may help relieve pain associated with:

The leading researchers on stem cell therapy for knee pain claim that it can help patients avoid surgery, with its associated costs and risks.

Since stem cell therapy promises to treat a number of conditions related to degenerative conditions, like arthritis and tendonitis, stem cell therapy may present a great treat option for hip pain related to these causes.

The National Multiple Sclerosis Society is leading the efforts in research, but currently reports the following:

At present, there are no approved stem cell therapies for MS. Larger, longer-term, controlled studies are needed to determine the safety and effectiveness of using stem cells to treat MS. When the results of these and subsequent clinical trials are available, it should be possible to determine what the optimal cells, delivery methods, safety and actual effectiveness of these current experimental therapies might be for different people with MS.

Potentially. One of our sister clinics, Arizona Pain, is participating in a study evaluating the potential of stem cells to reduce back pain related to degenerative disc disease. This progressive condition sometimes results from injury, but other times has no clear cause.

The study is exciting because it involves stem cells harvested from the bone marrow of healthy, young adults, and therefore itdoesnt come with the ethical concerns of embryonic stem cells. So far, the results have been very positive, and a significant number of people who received stem cells for their back pain have experienced reduced discomfort and improved quality of life.

This study is currently in Phase III, which is the phase immediately preceding potential FDA approval. This means it could soon be available to many more patients and potentially covered by insurance, although each insurance companys coverage policy varies.

Absolutely, and the research into this area is very promising. In fact, scientists have recently uncovered the specific type of stem cell most likely to reduce arthritis pain. Theyre special cells that are specifically able to rebuild tissue, bone, and cartilage, potentially offering much relief to osteoarthritis patients.

What other questions do you have regarding stem cell therapy for pain? If youre ready to learn more about using stem cell therapy to treatyour pain, click the button below to find a pain specialist in your area.

More:

15 Stem Cell Therapy For Pain Questions, Answered

Apollo Astronaut: It Would Be “Stupid” to Send People to Mars

According to Apollo 8 astronaut Bill Anders, crewed missions to Mars and hyped-up chatter of settling the planet are all a waste of time and money.

Fool’s Errand

According to one of the astronauts aboard NASA’s 1968 Apollo 8 mission, it would be “stupid” and “almost ridiculous” to pursue a crewed mission to Mars.

“What’s the imperative? What’s pushing us to go to Mars? I don’t think the public is that interested,” said Bill Anders, who orbited the Moon before returning to Earth 50 years ago, in a new documentary by BBC Radio 5 Live.

Anders argued that there are plenty of things that NASA could be doing that would be a better use of time and money, like the unmanned InSight rover that recently touched down to study Mars’ interior. The comments, by one of the most accomplished space explorers in human history, illustrates a deep and public philosophical rift about whether the future of spaceflight will be characterized by splashy crewed missions or less expensive automated ones.

Mars Bars

The crux of Anders’ argument on the BBC boils down to his perception that NASA is fueling a vicious cycle of highly-publicized missions that bolster its image, improve its funding, and attract top talent so that it can launch more highly-publicized missions. Sending an astronaut to Mars would dominate the news cycle, but wouldn’t push the frontier of practical scientific knowledge, Anders argued — a mismatch, essentially, between the priorities of NASA and those of the public.

That skepticism places Anders among the ranks of other high-profile critics of NASA, Elon Musk’s SpaceX, and Jeff Bezos’ Blue Origin — all three of which have set their sights on the Red Planet.

For instance, science communicator and advocate Bill Nye predicted last year that no layperson would want to settle Mars. Nye also doubled down last month to say that anyone planning on terraforming Mars must be high on drugs.

Robust Explanation

But Anders’ own Apollo 8 crewmate Frank Borman disagreed, arguing in the documentary that crewed exploration is important.

“I’m not as critical of NASA as Bill is,” Borman told BBC. “I firmly believe that we need robust exploration of our Solar System and I think man is part of that.”

However, even Borman draws the line somewhere between exploration and settlement.

“I do think there’s a lot of hype about Mars that is nonsense,” Borman said. “Musk and Bezos, they’re talking about putting colonies on Mars. That’s nonsense.”

READ MORE: Sending astronauts to Mars would be stupid, astronaut says [BBC]

More on reaching Mars: Four Legal Challenges to Resolve Before Settling on Mars

The post Apollo Astronaut: It Would Be “Stupid” to Send People to Mars appeared first on Futurism.

Here is the original post:

Apollo Astronaut: It Would Be “Stupid” to Send People to Mars

Elon Musk Tweets Image of SpaceX’s Stainless Steel Starship

Stainless steel starship

Big Picture

Christmas came early for Elon Musk’s Twitter followers.

The SpaceX CEO took to the social media platform on Christmas Eve to share a new image of a prototype version of the Starship spacecraft at the company’s Texas testing facilities.

The massive rocket with the ever-changing name — it was previously known as the “Mars Colonial Transporter,” the “Interplanetary Transport System,” and the “Big Falcon Rocket” — could one day ferry passengers to Mars. And Musk’s new photo reveals that the key to making that possible might be a material you’ve got in your kitchen right now.

Stainless Steel Starship

The new Starship is made out of stainless steel,  according to the tweet, a material which handles extreme heat very well — polish it up, and its mirror-like finish will reflect thermal energy far better than the carbon-based materials used for many rockets.

That could help Starship withstand the strain of long-term spaceflight, but stainless steel is heavier than carbon fiber, and keeping weight down is extremely important in space travel.

From an impromptu Twitter Q&A following the reveal of the Starship prototype, we learned that by exposing the stainless steel to extremely cold temperatures — that is, giving it a cryogenic treatment — SpaceX was able to get around the issue of the material weighing more than carbon fiber. According to a Musk tweet, “Usable strength/weight of full hard stainless at cryo is slightly better than carbon fiber, room temp is worse, high temp is vastly better.”

Stainless Steel Starship pic.twitter.com/rRoiEKKrYc

— Elon Musk (@elonmusk) December 24, 2018

Countdown to Liftoff

Perhaps the most exciting Starship revelation of the past week, though, is Musk’s assertion that the prototype could be ready for liftoff in just a few months’ time.

On December 22, he tweeted that he would “do a full technical presentation of Starship” after the prototype’s test flight, which could happen in March or April. If all goes well with that test flight, SpaceX could be one step closer to achieving Musk’s vision of making humanity a multiplanetary species.

READ MORE: SpaceX CEO Elon Musk: Starship Prototype to Have 3 Raptors and “Mirror Finish” [Teslarati]

More on Starship: Elon Musk Just Changed the BFR’s Name for a Fourth Time

The post Elon Musk Tweets Image of SpaceX’s Stainless Steel Starship appeared first on Futurism.

Read the original post:

Elon Musk Tweets Image of SpaceX’s Stainless Steel Starship

Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear

Startup Organic Basics claims its silver-coated underwear remain odor-free after weeks of wear, but several testers disagree.

Under Where?

Want to wear the same pair of underwear for weeks at a time? Go right ahead.

A Danish startup called Organic Basics claims its underwear remain fresh through weeks of wear, eliminating the need for frequent washing. And this could be a boon for the environment — if it’s actually true.

Silver Skivvies

When your sweat meets your clothing, it creates an ideal environment for bacteria. It’s this bacteria that actually produces a foul-smelling odor. Silver is antimicrobial, meaning it kills bacteria and other microorganisms.

By treating their underwear with Polygiene, a product that uses silver chloride to control smells, Organic Basics says it can prevent the growth of 99.9 percent of this bacteria, which it claims prevents the underwear from smelling bad as quickly.

“It works,” CEO Mads Fibiger told Business Insider Nordic in May. “You can wear our underwear much longer before washing.”

Smell Test

Fibiger might claim the coating “works,” but not everyone agrees.

A reporter for New York magazine claimed she noticed a “less-than-fresh scent” on just the second day wearing Organic Basics’s women’s briefs, noting that she “didn’t feel comfortable pushing [her] luck with a third day of testing.” Her male colleague also tossed his Organic Basics boxer briefs in the laundry hamper after just 48 hours.

Even if the underwear did maintain the desired level of freshness, though, people might not be able get over the mental hurdle of wearing the same undergarments for weeks at a time — just this week, Elle reporter R. Eric Thomas wrote that reading about the undies made him want to “bleach [his] eyes.”

Futuristic Fashion

Organic Basics isn’t just trying to help people avoid laundry day, though. “The traditional way of buying, wearing, washing, and throwing away overpriced underwear is…extremely harmful to the environment,” Fibiger told Business Insider.

And he’s right. Washing and drying clothing requires water and energy, so the more often you clean your underwear, the greater the garment’s impact on the environment.

Still, the environmental benefits of wearing the same pair of underwear for weeks at a time might not be enough to get even the most environmentally conscious among us to wear Organic Basics’s underwear if they don’t actually smell fine on day three and beyond.

READ MORE: A Danish Startup Invented Underwear You Can Wear for Weeks Without Washing [Business Insider Nordic]

More on sustainable fashion: These Clothes Grow With Your Child and Are a Step Towards Sustainable Fashion

The post Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear appeared first on Futurism.

Read the original post:

Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear

Microorganisms That Eat Seaweed Can Create Biodegradable Plastic

bioplastic

Ocean of Opportunity

Earth’s oceans contain tens of millions of tons of plastic pollution. But a new technique that creates biodegradable plastics out of seaweed could finally give the oceans relief.

Bioplastics are plastics manufactured from biomass sources instead of fossil fuels. Many degrade far more quickly than traditional plastics, but creating them typically requires fertile soil and fresh water, which aren’t available everywhere.

Now, researchers have found a way to create a bioplastic using seaweed, a far more accessible resource — a promising new approach that could both reduce strain on the plastic-clogged oceans and reduce the Earth’s dependence on fossil fuels.

Scarfing Seaweed

Researchers from the University of Tel Aviv describe their new bioplastic production process in a study published recently in the journal Bioresource Technology.

Certain microorganisms naturally produce a polymer called polyhydroxyalkanoate (PHA). Some factories already create plastics from PHA, but they do so using microorganisms that feed on plants that grow on land using fresh water.

Through their experiments, the team found it was possible to derive PHA from Haloferax mediterranei, a microorganism that feeds on seaweed.

“We have proved it is possible to produce bioplastic completely based on marine resources in a process that is friendly both to the environment and to its residents,” researcher Alexander Golberg said in a press release.

Plastic Problem

Every year, 8 million metric tons of plastic finds its way into the Earth’s oceans, and researchers estimate that plastic will outweigh fish by 2050. That plastic is killing marine life, destroying coral reefs, and even affecting human health.

Efforts are already underway to remove plastic from the ocean, and several governments are banning certain plastics altogether. But plastic pollution is a huge problem that will require a multi-pronged solution — and a biodegradable plastic could be one of those prongs.

READ MORE: Sustainable “Plastics” Are on the Horizon [Tel Aviv University]

More on plastic pollution: The EU Just Voted to Completely Ban Single-Use Plastics

The post Microorganisms That Eat Seaweed Can Create Biodegradable Plastic appeared first on Futurism.

Read this article:

Microorganisms That Eat Seaweed Can Create Biodegradable Plastic

Virtual Reality Tumors Could Help Lead to New Cancer Treatments

A new virtual reality simulation built by Cambridge University scientists gives a high-resolution detail view into the cells of a breast cancer tumor.

Oculus Oncologists

Doctors have a new weapon in the fight against cancer: detailed maps of the cells in a tumor that can be explored and analyzed in a virtual reality simulation that its creators say provides researchers with an intuitive new way to examine complex medical data that could lead to unexpected breakthroughs.

Built by doctors at the Cancer Research UK Cambridge Institute (CRUK), the new virtual lab takes detailed scans of breast cancer tissues and turns them into detailed simulations that doctors around the world can explore, the BBC reports.

The simulation lets doctors analyze every single cell of a tumor, something they’ve never been able to do before. And because that data is stored in a simulation rather than microscope slides, doctors around the world can explore and study the cancer without having to prepare their own samples.

“Understanding how cancer cells interact with each other and with healthy tissue is critical if we are going to develop new therapies,” CRUK Chief Scientist Karen Vousden told the BBC. “Looking at tumors using this new system is so much more dynamic than the static 2D versions we are used to.”

Dive in Headfirst

The Cambridge scientists and peers from around the world who helped develop the virtual lab won two separate 20 million pound grants ($25.3 million each) to build up their project from Cancer Research UK last year.

Now they have a functional simulation built up from highly-detailed scans of a cubic millimeter-sized sample of breast cancer tissue. In that sample, each of the roughly 100,000 cells was marked to highlight its molecular and genetic characteristics.

Enhance! Enhance!

With that information, the resulting VR map highlights which cells are cancerous which have certain genetic variations, and how developed the tumor was at the time of the biopsy. All of this is information that was laborious to obtain from samples that were easily contaminated.

Moving the analysis to VR makes tumor research much more user friendly and lets doctors analyze cells in greater detail than ever before.

Not only does that let scientists literally immerse themselves in their work as they look for new cancer treatments, but it can also open the door to more collaborative diagnosis and patient care among teams that are spread around the world.

These simulations don’t guarantee that doctors will find new ways to treat or prevent breast cancer, but at least it makes the search much easier.

READ MORE: ‘Virtual tumour’ new way to see cancer [BBC]

More on virtual reality: VR TREATMENT, EVEN WITHOUT A THERAPIST, HELPS PEOPLE OVERCOME FEAR OF HEIGHTS

The post Virtual Reality Tumors Could Help Lead to New Cancer Treatments appeared first on Futurism.

Read this article:

Virtual Reality Tumors Could Help Lead to New Cancer Treatments