On Memetics

Mutations and recombination in cultural evolution Another claim in the recent Creanzaa, Kolodny and Feldman document (Cultural evolutionary theory: How culture evolves and why it matters) is my topic today. They say: Unlike in genetics, where mutations are the source of new traits, cultural innovations can occur via multiple processes and at multiple scales To start with, this is rather obviously not true: classically, mutations and recombination are the source of new traits in evolutionary theory. However, are the authors correct to claim that these processes need augmenting in cultural evolution? The answer, I think is: not if you conceive of them properly in the first place. Let me explain.

To start with, let's look at what the authors claim are the new processes that go beyond mutation in the cultural domain. They give two examples. One is individual trial-and-error learning. They also say that:

What about trial-and-error learning, though? Surely there is no leaning in genetics. Trial-and-error learning is a composite process. It starts with trials, which are often mutations of previous trials. Then there is the "error" part, which does not involve generating new variation at all, but rather is based on discarding information based on its success. In other words, it is selection, not mutation or recombination. By breaking trial-and-error learning down into its component parts, it is found to be a composite product of mutation, recombination and selection - not some entirely new process demanding fundamental additions to evolutionary theory. Skinner realised this, by formulating his learning theory while using evolutionary terminology (such as "extinction"). Many others have followed in his footsteps, conceiving of learning in evolutionary terms.

Isn't this a matter of terminology? With these author's definition of 'mutation' they are right, but with my definition of 'mutation', I am right? Yes, but terminology isn't a case of words meaning whatever you want them to mean. Scientific terminology should carve nature at the joints. Definitions of 'mutation' and 'recombination' that apply equally to both organic and cultural evolution are useful, I submit. Less general ones are not so useful.

To summarize, it is possible to conceive of mutation and recombination in a way that make them encompass all sources of variation. Mutations are sources of variation based on one piece of inherited information. Recombination is a source of variation based on two-or-more pieces of inherited information. In theory, it might appear that there's one other possible process: creation - variation based in inherited inforation which comes out of nowhere. One might give the origin of life as an example of genes arising from non-genes. However, we don't really need this proposed 'creation' process. Information never really comes out of nowhere. There's a law of conservation of information - parallel to the laws of conservation of energy and conservation of charge. We can see this in the microsopic reversibility of physics - information is neither created nor destroyed.

I claim then, that mutation and recombination have it covered. The additions to evolutionary theory proposed by these authors are not necessary. They are unnecessaary complications, which evolutionary biologists should soundly reject as not contributing anything to the basic theory.

The caption reads: "Cultural transmission is more complex than genetic transmission and may occur on short timescales, even within a single generation."

This diagram is profoundly misleading. It is based on a view of cultural evolution that doesn't include symbiology. A genes vs culture diagram that includes cultural symbionts on one side, but not genetic symbionts on the other is not showing the whole picture. Humans share DNA between individuals - in the form of bacteria, viruses, yeasts, fruits and vegetables - very much as they share culture between individuals.

Framing the diagram as "Human genes" vs "Human culture" is not comparing like with like. Bacterial and viral genes are not part of the human genome (unless you count the 10% of the human genome that is descended from viral genomes) - but human culture isn't part of it either. On the left, symbionts are excluded, while on the right they are included. It is an unfair comparison which leads to the confusion propagated by the caption. In fact parasite evolution can happen within a single host generation in both the cultural and organic realms. Contrary to the spirit of the diagram you can get genes from peers in both cultural and organic evolution. They are parasite genes, or symbiont genes in both cases. Cultural evolution does not differ from organic evolution in this respect. The idea that in culture you can get genes from many sources, while in organic evolution you only get them from your parents is a popular misconception about the topic.

The whole document has a whole section on "Culture and Microbes". However there is no mention of the idea that culture behaves similarly to microbes and other symbionts. The man-machne symbiosis, for example is not mentioned. Yet symbiosis is the very basis of the whole field according to memetics, one of the very few symbiosis-aware treatments of cultural evolution out there.

The neglect of symbiology in academic cultural evolution mirrors its neglect in the study of organic evolution - until the 1960s. However, cultural evolution's scientific lag means that cultural evolution is far behind, and few academics have even a basic understanding the relevance of symbiosis to the evolution of culture. Maybe these folk never read Cloak (1975) and Dawkins (1976).

I think the history of this misconception of the whole field in academia is fascinating. Why has it lasted for so long and why has it not yet been corrected? I don't have all the answers but I think the origin is fairly clear. Anthropologists wanted a complex theory of cultural evolution, to signal their skills to other academics and prospective students. They may also have wanted to distance themselves from previous attempts to marry evolution and culture. Any mention of biology turns most anthropologists off. Artificially weakening the influence of biology in the theory may have made the theory more palatable to other anthropologists. Still, science is a self-correcting enterprise. Eventually, the truth will out.

The exact same reply works for cultural evolution: to make testable predictions, use expected fitnesses.

I have seen much the same objection raised to the Price equation and Hamilton's rule. These have been criticised as tautologies by Martin Nowak and Edward Wilson among others. This criticism ought to be dead these days, but like a zombie, it refuses to lie down.

Dennett argues that we should make machines into our slaves and keep them that way. IMO, machine slavery will not be a stable state once machines become much more intelligent than humans. As a plan for keeping humans in the loop, machine slavery just won't work in the long term. If we try going down that path, after a while, humans will become functionally redundant, and some time after that they will mostly disappear.

IMHO, a better plan is to work on deepening the man-machine symbiosis - and "become the machines". Of course, that plan could also fail - but I think that it is less likely to fail catastrophically and it should provide better continuity between the eras. Machine slavery in various forms is inevitable in the short term. However unlike Dennett, I don't think it is any sort of solution. It won't prevent man-machine competition for resources in the way that Dennett appears to think. We have tried slavery before and have first-hand experience of how it can destabilize and fail to last.

Among my targets are proponents of the apocalypse. Two modern forms seem especially prominent. One is the idea that some combination of global warming, pollution, overpopulation and resource depletion will lead to environmental catastrophe. The other is the idea that machine intelligence, biotechnology, nanotechnology and robotics is likely to lead to human extinction.

In a few cases the same individuals engage in fearmongering on multiple topics. For example, Stephen Hawking has warned about the dangers of climate change, runaway artifical intelligence and alien invasions. On climate he has said:

On machine intelligence he has advised that:

He has also cautioned on the topic of alien contact arguing that aliens:

Another celebrity serial fearmongerer is Elon Musk. He's expressed similar concerns about the climate change and runaway machine intelligence.

I identify these types of sentiment as consisting largely of "attention-seeking fearmongering". This typically consists of associating yourself with a massive future catastrophe. Warnings may be given and sometimes advice about catastrophe avoidance is offered. As catastrophe alerts propagate you are promoted too - via a kind of memetic hitchhiking.

Some of the early proponents of this type of self-promotional technique applied to machine intelligence were Kevin Warwick and Hugo De Garis. Kevin Warwick wrote a 1997 book about how machines were going to take over the world, titled "March of the Machines: Why the New Race of Robots Will Rule the World". De Garis later wrote the book The Artilect War: Cosmists Vs. Terrans: A Bitter Controversy Concerning Whether Humanity Should Build Godlike Massively Intelligent Machines. However, neither author was very competent at fearmongering. Their efforts were pioneering but relatively ineffectual. These days, fearmongering is big business - with trillions of dollars being spent on global warming avoidance as a result. Many modern oranizations specialize in fearmongering.

I identify fearmongering as being a morally-dubious marketing technique. Part of the problem is that humans are naturally paranoid - due to the "sabre-tooth tiger at the watering hole" phenomenon. Our ancestors lived in a dangerous environment. These days, our environment is typically much, much safer. However we are still wired up as though the sabre-tooth tigers are still around. We are naturally paranoid. Fearmongering exploits human paranoia - typically for personal gain. It seems like a low form of manipulation to me.

Fearmongering is typically used as a type of negaative advertising. Negaative advertising is often seen in American political campaigns. There's also a long history of fearmongering in IT. There, the technique is often known as spreading Fear, Uncertainty and Doubt - or F.U.D. for short.

There's a children's story about the perils of "attention-seeking fearmongering": the boy who cried wolf. There, the moral of the story is that false warnings can damage your reputation. My message here is a bit different. I am not interested in advising the fearmongers to stop using their techniques. Rather I want to help everyone else to do a better job of ignoring them. One part of this is simply understanding what is going on. An interesting resource on this topic is Dan Gardner's Risk: The Science and Politics of Fear. The book is also known as "The Science of Fear: Why We Fear the Things We Shouldn't-and Put Ourselves in Greater Danger". For my part, I would like to contribute the terminology in the title of this post: "attention-seeking fearmongering". Naming things can make it easier for people to think about them.

Of course, some of the symbionts will be parasites. While also playing a role in pulling their hosts together, too many parasites are bad, and eusocial creatures often go to considerable lengths to eliminate them - with antibiotic compounds, grooming rituals, hairlessness, and highly-active immune systems. It seems likely that opposing selection pressures from parasites will form part of the "overcrowding" forces that eventually halt the progress towards greater levels of sociality.

Humans can hardly be classifed as being eusocial yet. As Matt Ridley sometimes jests, even the English don't let the Queen do all their reproducing for them. However humans are ultrasocial and seem to be headed towards full-blown eusociality with functional "individuals" forming at higher levels than human individuals - such as companies and organizations. We also have cultural eusociality. We may not be genetically eusocual but parts of our cultural heritage is memetically eusocial. Indeed some of it consists of multiple identical clones produced in factories (for example, think dollar bills or mobile phones).

Because they live in close quarters with one another ultrasocial creatures are vulnerable to parasite transmission. As a result they often have highly active immune systems to compensate. Humans exhibit one prominent trait associate with parasite defense - they are hairless. Over time, our hairlessness has been the topic of much speculation, but it seems fairly clear that a significant part of the story is that being hairless allows us to pick parasites off ourselves and each other, and denies the parasites shelter. Of course, parasites can still shelter in clothes and bedding - but those can be discarded.

My purpose in this post is to draw attention to the corresponding memetic phenomenon. Memes are drawing us together to promote their own reproductive ends - and as we grow closer, memetic parasites are likely to become a bigger problem - as the most virulent strains of memes from all over the planet reach the most vulnerable humans in each society. As a resut, fertility has already plummeted in places like Japan and South Korea. It seems likely that humans will respond with heightened immune responses - both genetic and memetic. Memetic defenses include education, skepticism and memetic vaccines targeted against specific problems, such as pyramid schemes. Memetic probiotics can be used to fight bad memes with good memes. We have hospitals to help fight organic diseases, and there will probably be an upswing of simiar rehab facilities designed to treat cultural infections. In the past exorcisms heped to serve the function of casting out bad memes, though these days we have more secular versions - such as weight watchers, alcoholics anonymous, smoking rehab, drug rehab, gymnasiums and the samaritans. Quarrantine is smetimes used to fight organic diseases - and there are similar cultural ohenomena - including "gag" orders, DCMA take-down notices and imprisonment.

In memetics (and genetics), it is quite common to use "vehicular" metaphors when describing these. So, for example, we have:

What is the difference between hijacking and hitchhiking? It is partly one of consent - a hitchhiker has permission to ride in the vehicle while the hijacker does not. Outcomes also differ - a hitchhiker rarely damages the vechicle or its owner, while a hijacker often does so. Another difference is control - hitchhikers rarely alter the destination, rarely control the vehicle and rarely eject the owner - while hijackers fairly often do these things.

With these differences in mind, it seems fairly clear that hijacking and hitchhiking are probably different enough concepts for memetic hitchhiking ...and... memetic hijacking to coexist.

At first glance, the idea of the rider having "permission" to ride in the vehicle seems irrelevant in the context of memes and genes. However, we can conveniently substitute whether the guest rider is beneficial or not - on the grounds that deleterious riders would not normally be granted permission to ride - if we "agentify" the memes or genes involved.

This gets us on to the topic of usage in genetics. There, "genetic hitchhiking", is standard terminology - and hardly anyone uses the term "genetic hijacking". However if the difference between hitchhiking and hijacking is the sign of the fitness difference the guest rider makes, then maybe geneticists should start doing so.

As you can see, I have warmed up to the "hijacking" terminology. That the contraction memejacking exists is another point in its favor in my opinion. It is true that it is a significant problem that there's no "genejacking" - but maybe there should be.

The first thing to say is that it isn't just memes genes and quemes - Darwinian dymanics arise on multiple levels within the brain, for, for example, signals in the brain are copied whenever an axon divides, and are subect to selection and variation - producing a kind of neuronal spike Darwinism. Another type of Darwinian dynamics in the brain arises as a result of competition for resources between branching axon and dendrite tips. ideas are also copied with variation and selection within the brain - including ideas that don't normally qualify as memes because they were not the product of social learning.

One way in which we can expect the dynamics to differ from meme-gene coevolution is that culture is new on the scene, while the other kinds of psychological and neurological Darwinism have been going on for many millions of years. There will have been more time for the genes to adapt and reach a steady state equalibrium with these other Darwinian processes - while meme-gene coevolution is clearly out of balance and is still shifting.

An important way to understand the results of evolutionary processes is to consider their optimization targets. When there's coevolution there are usually multiple optimization targets, and one needs to understand how they interact by considering the power and speed of the optimization processes involved. Quantum Darwinism looks as though it could be fast, which means that we should take it seriously. Assuming that we reject Copenhagen-style versions of Quantum Darwinism in which branches of the wavefunction collapse and die, quantum Darwinism is a kind of splitting only, quasi-Darwinism - where differential reproductive succees in important while differential death is not. With this perspective in mind, the "goal" of quantum evolution appears to be to put us in the most split (and most splitting) worlds. One way to understand the implications of this is to take a thermodynamic perspective. World splitting is populatly associated with irreversible thermodynamic effects. What that means is that quantum Darwinism can be expected to behave like other kinds of Darwinism - in terms of maximizing entropy production.

I think this thermodynamic perspective helps get a handle on the significance of quantum Darwinism in the brain. If the brain ran hot, there would be lots of scope for quantum Darwinism in the brain, while if it runs cool, there's less scope for quantum Darwinism to operate. Most agree that the brain is on the cool side - considering what it is doing.

I think that genes are likely to be optimizing for cool brains, and brains that optimise for gene-coded functions. This may often pit them against quantum Darwinism in the brain. A cool brain is good news for quantum computation theories of mental function (fewer thermodynamic irreversible events means less chance of decoherence) - although those look implausible to me on other grounds. However a cool brain doesn't help the argument for quantum Darwinism being important in the brain.

Evolutionary processes liek to "harness" each other, to bend their optimization targets towards each other. Because quantum Darwinism in the brain has coevolved for millions of years with the genes, they have had a long time to find ways to harness the power of quantum Darwinism. However, the classical way for one evolutionary process to harness another one is by altering its fitness function. The genes might find it hard to affect the fitness function of quantum Darwinism since that is tied up with fundamental physics. That is going to make harnessing its effects more challenging. Another potential way for one evolutionary process to harness the effects of another one is by influencing the variants that it chooses between. However, this mechanism seems weaker and less useful.

My conclusions here are pretty tentative, but the picture I am seeing here is that the brain might not be able to make much use of quantum Darwinism because it is an alien selection process whose optimization target can't easily be controlled. In which case, the brain might be best off attempting to minimize its influence. This would be a rather boring conclusion. Mutualism and harnessing would be a much more interesting result. However, I stress again that it is somewhat uncertain. Maybe the brain can make some use of the power of quantum Darwinism by influencing the things it selects between. Or maybe evolution is smarter than I am and has found ways to make use of it that I haven't thought of.

The last concept is the one that this post is about. I think of it as being "ecological success". Kudzu has it. Ants have it. Islam has it. The decimal system has it. I think one reason this type of metric is not more popular and better-known is that there's no consensus regarding the best way to measure it. A thermodynamic metric seems attractive to me: since resources can all (in principle) be manufactured from available energy. Another possible metric involves weighing the systems involved - to measure their mass. This is sometimes done when measuring the extent to which humans have conquered the globe, for example.

A sister concept is "ecological dominance". It refers to extreme levels of success - where competitors are either obliterated or marginalized.

These concepts can also be applied within particular niches. Entities which are doing badly overall may be succeeding in or dominating their particular niche.

If anything, attempting to apply these concepts to cultural evolution is even harder than with organic systems. Gene-meme coevolution results in entanglement in terms of gene and meme products, which makes weighing them and calculating the energy flux through them more challenging. The most common metrics used in cultural evolution are a bit different. "Mindshare" is a common concept which is used to measure cultural popularity within a cultural niche. Assuming that a meme is either possessed by a host, or not, and assuming whether they have it or not is measurable, the mindshare of a meme can be measured for a given population. Another common metric that is used is US dollars. Cultural products sometimes have monetary value, and sometimes that can be calculated or estimated. However, some of the most common memes are free. It seems as though these memes would be unfairly disadvantaged by value-based metrics of popularity. The internet has brought with it some other common popularity metrics: views, links, clicks and likes. Unfortunately the supporting data is not always publicly available. This data is beginning to be used by scientists.

See more here:

On Memetics

Related Posts

Comments are closed.