This supernova shock wave slammed into its companion star – Astronomy Magazine

Type Ia supernovae are one of the most important tools in an astronomers toolkit. These bright but brief events are one of just a few reliable standard candles that allow us to measure not only vast distances accurately, but also determine the expansion rate of the universe. However, because theyre both brief and unpredictable, its been difficult to catch a supernova in the earliest stages of occurring until now. This March, an astronomer at the University of Arizona managed to spot a supernova just a day old, and extensive follow-up observations are now telling us more about the event that caused it.

The supernova, called SN 2017cbv, was discovered by David Sand, an assistant professor at the University of Arizona, as part of the Distance Less Than 40 Megaparsecs or DLT40 survey. (One megaparsec is about 3 million light-years, so 40 megaparsecs covers a distance out to 120 million light-years.) SN 2017cbv went off in NGC 5643, a galaxy 55 million light-years away, making it one of the closest recently discovered supernova events. And because, as Sand says in a press release, it was one of the earliest catches ever within a day, perhaps even hours, of its explosion, astronomers were able to immediately turn the telescopes in a global network toward the event, recording information as the event unfolded thats never been seen before. The work will soon be published in the Astrophysical Journal Letters.

That information came in the form of a small bump, or short rise and fall in the supernovas light curve, which measures the brightness of the event over time. Typically, supernovae get very bright very quickly, then fade over the following weeks. The small bump in SN 2017cbvs light curve, which occurred within the first few days of observation, would have been missed if the supernova had been discovered later. And that bump is telling its the signal that, Sand says, likely comes from the explosion slamming into a nearby companion star.

Stellar remnants called white dwarfs are the progenitors of type Ia supernovae. These remnants are left over when a Sun-like star reaches the end of its life. But these white dwarfs dont explode without prompting. Thanks to the physics of the matter that comprises them, white dwarfs cannot grow more massive than about 1.4 times the mass of our Sun. If this happens, the white dwarf explodes as a type Ia supernova. Currently, there are two competing theories about the cause of type Ia supernovae: Either two white dwarfs in a binary system spiral inward, collide, and explode, or a white dwarf in a binary system with a normal star pulls matter off that companion until enough mass builds up that the white dwarf explodes.

Originally posted here:

This supernova shock wave slammed into its companion star – Astronomy Magazine

Related Post

Comments are closed.