This is where stardust comes from – Astronomy Magazine

The Atacama Large Millimeter/submillimeter Array(ALMA)in the Chilean Andes has made several groundbreaking discoveries since it was brought online in 2011. Able to image the sky in millimeter and submillimeter wavelengths, ALMA can spot emission associated with molecular gas and dust, which are cold and can be difficult or impossible to see at other wavelengths. Using this ability, ALMA has identified dust and gas in a galaxy that formed when our universe was only about 4 percent of its current age.

The galaxy is called A2744_YD4, and its the most distant galaxy ever found by ALMA. It sits at a redshift of 8.38, which is associated with a time when the universe was just 600 million years old.

Redshift measures the amount by which a distant objects light is stretched by the expansion of the universe. Objects with a higher redshift are farther away, and thus we are looking at them as they appeared in the past. In the very nearby universe, objects have a redshift of nearly zero; high-redshift objects, such as A2744_YD4 with its redshift of 8.38, are extremely far away (the exact distance depends on the expansion history of the universe). Its also important to note that redshift is not linear redshifts of 0-1 are considered relatively nearby, while redshifts of 8-9 are some of the farthest objects we can currently see as we look back to the very early universe. The cosmic microwave background was produced at a redshift of about 1,000.

A2744_YD4s cosmological timestamp, as given by its redshift, falls within the estimated age range for the Epoch of Reionization, which occurred somewhere around a redshift of 10, when the universe was about 400 million years old. The Epoch of Reionization is when the universes first luminous sources stars, quasars, and galaxies turned on and ionized neutral hydrogen atoms (that is, knocked their electrons away). Neutral hydrogen is opaque to short wavelengths of light, which means that it absorbs these wavelengths easily so the light cannot pass through. As neutral hydrogen throughout the universe was ionized, however, light could finally travel vast distances.

The detection of A2744_YD4 and its properties, which was made by an international team of astronomers led by Nicolas Laporte of University College London, is remarkable for several reasons.

A2744_YD4 is full of dust. In the press release accompanying the announcement, Laporte explained that the detection of so much dust indicates early supernovae must have already polluted this galaxy. Supernovae are the end result of massive stars, which blow away much of their interiors explosively as they die. Among the material blown away is dust, which is made up of elements such as aluminum, silicon, and carbon, and is spread across galaxies by these explosions. This dust is an integral component of todays stars (like our Sun) and the planets surrounding them. In the very early universe, however, this dust was scarce, simply because the process of its creation and dispersion via supernovae hadnt had much time to complete.

But in A2744_YD4, this process has apparently had enough time to progress. A2744_YD4 produces stars at a rate of 20 solar masses per year, which is a full 20 times the rate of our Milky Ways comparatively paltry star formation rate of 1 solar mass per year. Based upon this rate, the group estimated that only about 200 million years were needed to form the dust seen in A2744_YD4.

Read more from the original source:

This is where stardust comes from - Astronomy Magazine

Related Posts

Comments are closed.