MIT Economist on Coronavirus: Young People Going to Get Squashed – The MIT Press Reader

The younger generation, already saddled with student debt and uncertain jobs, will pay a high price as the crisis unfolds.

Economist and economic historian Peter Temin, Professor Emeritus of Economics at MIT and author of The Vanishing Middle Class, has described America using a powerful dual economy model first created by West Indian economist and Nobel laureate W. Arthur Lewis. Common in developing countries, dual economies feature a splitting into two separate sectors where peoples lives are vastly different. As Temin sees it, the U.S. now features an affluent sector, about 20 percent of the population, where people have stable lives and good jobs and an increasingly separate, low-wage sector, roughly 80 percent, where people struggle to get by and find fewer and fewer ways to improve their lot. In a conversation with the Institute for New Economic Thinking (INET), Temin explains what the COVID-19 pandemic reveals about this system, who is most economically at risk, and what it will take to fix things.

Lynn Parramore: As the pandemic takes hold, whats your sense of who is most vulnerable? How does the crisis illustrate the changes brought about by a movement to a dual economy?

Peter Temin: Unfortunately, the current administration is not concerned about people in the low-wage sector, and under it, the rate at which the middle class is vanishing has been increasing rapidly. The rich have gotten richer: As economists Emmanuel Saez and Gabriel Zucman have pointed out, our taxes have become regressive since the 2017 tax cut. And, of course, now Trump wants to aid his friends who are rich and so he wants to bail out the airlines.

Kids who are working in the gig economy are going to getsquashed down with fewer and fewer opportunities. A lot of them haveeducational debts. Trumps statements about helping them is really justgarbage. If he truly wanted to help, he could fire [Education Secretary] BetsyDeVos. Failing that, he ought to get her or the department to go after theprivate universities those who have tricked the young people trying to getahead and cancel those debts. Thats what the Obama people tried to do andthen it was reversed by Trump in his effort to get rid of everything that Obamaever did.

Young people are very vulnerable, especially those who have not been able to find a steady job and get ahead. Their education has been compromised because teachers have been ill-paid for many years.

Young people are very vulnerable, especially those whohave not been able to find a steady job and get ahead. Their education has beencompromised because teachers have been ill-paid for many years. Teachers workvery hard and are very dedicated I dont criticize the teachers themselves but the low pay makes many people who might be innovating and using recentknowledge to help kids learn often go off and become lawyers and other thingsnow. This sacrificing of the long-run aims of the country has been going onsince the 1970s. Education used to be our very strong suit but now werefalling behind other countries.

LP: The need for social distancing from COVID-19 is forcing many students across the U.S. into online learning. Some view the push for online learning in recent years as a scheme by political groups who dont support robust public education to devalue the teaching profession (as well as an opportunity for tech companies to cash in). Whats your take?

PT: The push towards more online learning is a really bad idea. The poorest people lack access, so it condemns them to staying poor. It doesnt provide any way out. Think of the economist Roland Fryer [the youngest African American to ever receive tenure at Harvard] who got rescued from poverty when he got a football scholarship to the University of Texas. Somebody recognized how bright he was, and he then went to Harvard and won the Clark medal for the best economist under 40, and so on.

The push towards more online learning is a really bad idea. The poorest people lack access, so it condemns them to staying poor.

If online learning becomes normalized, people like thatwont make it out. They wont ever get started. They wont be in a place wheresomebody can recognize their talent and can take them on. Learning takes placepartly by the psychological bonding of kids with teachers. Thats why teachersare so important. Very poor people have parents who dont have jobs andsometimes only one parent or no parent, so this kind of connection to an adultbecomes all the more essential. If you just look at a machine that asks howmuch is 2 + 2, check the box, that isnt anything compared to a teacher saying,have you thought of this or that? For kids with stable households and parents,it might work, but not for poor people. It jeopardizes the future of Americabecause we need to have all of our young people thinking about things andgetting into the world, able to pursue a good idea. People love to talk about theorigins of our very rich entrepreneurs. Those are the people who made it, butyou wouldnt have been able to predict that when they were four years old. Theonly way to catch the talent is to give everybody a chance. Not just the peopleyou know, but all sorts of people. Ability is distributed throughout thepopulation.

For all these reasons, the education part of this is justterribly important. Each time theres a financial crisis, the support for statecolleges goes down. Most of them are now state universities in name only, withjust around 15% of their budget coming from the state. When we think aboutonline learning we may think of grade-school kids, but it makes it difficultfor them to go further, too. With online learning, you never see a book. Youmay just see shorter piece, ten-page essays and so on. You dont get that deepunderstanding that comes from reading books.

LP: This pandemic is also shining a light on Americas incarceration practices, which youve cited as a driver of the dual economy. Could the crisis help us come to terms with how out of step we are with the rest of the world in locking up so many people? Especially vulnerable populations?

PT: Americas incarceration practices are different because we had slavery. [Economics reporter] Eduardo Porter has a book coming out on this, and Im writing about it, too. This is a very hard thing, and were going to have to fix mass incarceration in order to fix urban education, which is education for the poor. But the federal government is not interested in this at all. Trump is not interested. There are district attorneys who are refusing to prosecute for non-violent offenses and reform the bail system and all the things that have built up over the course of the last half century. But whats happened is that there are a lot of vested interests, like private prisons, that want more, not fewer prisoners. So, you have to combat that. Privatization is a problem with incarceration. Youll notice in the present crisis, Trump went to private suppliers to get tests for the virus. Has he gotten them? No. He didnt go to them because they were efficient or had a secret. He wants to privatize everything.

Weve gotten ourselves into a very bad position in the U.S. and its really punishing us right now. A dual economy makes it much harder to deal with a crisis like the coronavirus.

The problem we face in confronting mass incarceration isthat we are a very diverse country. Things look very different in differentparts of the country. Areas in the South that have Evangelicals are differentfrom areas in the northeast, for example. They want to criminalize abortion,and put more, not fewer, people in prison. San Francisco may not be arrestingas many people during the pandemic, but that doesnt mean that youll see the sametrend everywhere. Prisoners are actually included in the census where theprison is, so having that tends to emphasize the votes of rural people. Thatssimilar to the old three-fifths rule in the South [counting three out of everyfive slaves as people in apportioning representatives, etc.] which emphasizedthe votes of slave-owning people before the Civil War.

LP: What kinds of responses to the COVID-19 crisis would help us move beyond the dual economy structure and create more unity between the affluent and low-wage sectors?

PT: It is critical to send money, one way or another, to the low-wage and poor people who need the money to live on and will spend it. That will get things going. We also need to increase funding for early education. Thats what the New York City superintendent has been trying to do. And that brings us back to teachers because early education cant be done on the computer.

Fundamentally, we will also have to change the tax structure. Weve gotten ourselves into a very bad position in the U.S. and its really punishing us right now. A dual economy makes it much harder to deal with a crisis like the coronavirus. People in the upper part need to pay for things for the low-wage part to recover, and of course the government needs to be involved, but there are these pro-austerity people who dont want the government to do anything. They want it all to be the private sector, and that misses the fact that very young kids dont get noticed when you leave everything to the private sector because young children dont buy things. They get lost. Then they end up in prison. The cycle repeats itself over and over. The more diverse the incomes are, the harder it is to make the changes you need. Just as the kids need good teachers, we need to have some leaders who will think about these things. Trump is all concerned with how things go on the evening news, the short-time horizon. What we need is somebody who can look ahead, to ask where are we going? What are we going to be in 20 years, 40 years, 60 years? On the current path, we are becoming Argentina, a place which is very nice for the people who live in the cities and have a lot of money, and pretty terrible for everybody else.

Lynn Parramore is Senior Research Analyst at the Institute for New Economic Thinking.

This article was first published on the blog of the Institute for New Economic Thinking, a nonprofit that seeks to promote changes to our current economic system and support new paradigms in the understanding of economic processes.

Go here to see the original:

MIT Economist on Coronavirus: Young People Going to Get Squashed - The MIT Press Reader

Chinese worker writes on the coronavirus pandemic: Disaffection is growing among the masses – World Socialist Web Site

By a correspondent 23 March 2020

A correspondent in China sent the following notes on the rising political and class tensions in that country produced by the worsening global COVID-19 pandemic and the repressive response of the Beijing regime.

1. Chinas authoritarian government has blocked every city and even every street by brutal means. Every aspect of peoples lives has been affected. Not only are there travel restrictions. Daily supplies have suffered shortages, and the economy has been greatly affected. While emergency measures were needed to combat the pandemic, they were applied repressively, to defend the interests of the capitalists. Dissatisfaction is growing among the masses.

To curb this dissatisfaction, the Chinese bureaucrats strengthened social controls and waged war on public opinion. The newly-issued Internet Information Governance Regulations came into effect in March. They strengthened the governments control over the media and the internet, and further suppressed the revolution of public opinion. They clearly stipulate that network information content producers must not produce, copy or publish content containing illegal information, including opposing basic principles of the Constitution, endangering national security, leaking state secrets, subverting state power and harming national interests.

2. At the same time, Wuhan bureaucrats demanded that people express their gratitude for the governments response to the epidemic and even forced various institutions and schools to implement grateful education. This was met with popular opposition and dissatisfaction. An article circulated on the internet: If you have a conscience, you will not ask the frightened Wuhan people to be grateful at this time.(). In this article, the author wrote: You are the public servant of the people, and your job is to serve the people. Now the peoples family you serve is ruined, the dead have just passed away and the tears of the living have not been wiped out. Sick people are unhealed and some of their dissatisfaction is completely reasonable. You should reflect and be ashamed because you and your team are not working properly, rather than accuse the people you serve in Wuhan of not being grateful. This article has now been restricted from spreading on the internet.

3. A nursery rhyme has been criticized and resisted by people. The song, Mobile cabin hospitals are so amazing(), is considered a tribute to the government, ignoring the suffering caused by the plague and government failure. Some people described this as dancing at a funeral and some netizens commented: I cant agree with such publicity, the epidemic is not over, the responsibility has not been identified and there is nothing to praise. Mobile cabin hospitals are medical isolation units set up by requisitioning existing facilities due to the coronavirus outbreaks and insufficient medical resources.

4. During the closure of the cities the government arrested those with different opinions. Three citizen journalists lost contact. The Chinese government did not announce their whereabouts, but a video uploaded by one of the citizen journalists showed him being arrested by police. These bloggers expose the real situation of the epidemic and the real living conditions of the people by uploading videos they have taken. This is not the first time they have said they have been threatened by the government and police:

https://www.youtube.com/watch?v=np8ZOQATLGY https://www.youtube.com/watch?v=XWrMZH9Xu6k

5. Due to the impact of the epidemic and the governments city closure policy, economic activities have been greatly impacted and small businesses and shops are under great pressure. Because of Chinas economic failure in recent years and the sudden outbreak of the epidemic, protests by shop owners asking for rent reductions have been held in many cities:

https://twitter.com/i/status/1240918014234513408

https://twitter.com/i/status/1240427844955668481

6. The Chinese government regarded the two hospitals built in the short term during the outbreak as government achievements, but the workers who built the two hospitals encountered difficulties. There are news reports that during the outbreak, workers were overloaded, but wage arrears and wage deductions often occurred. At the same time, after the completion of the construction, due to the closure of the city, the workers were not allowed to return home. The high cost of living and lost source of income put the workers in trouble, but companies and the Wuhan government were unwilling to assist with the workers living problems.

7. Residents have protested across Hubei province that the cost of living and food prices have become unacceptable. A reporter exposed that the food donated to Hubei from various places was put in a warehouse and rotted and was not sent to the residents homes. There are also news reports that the local government uses garbage trucks to deliver food to residents:

8. On March 17, about a thousand Foxconn workers who had returned to work started protesting and striking because they could not get the promised subsidy. These workers are reportedly dispatch workers at Foxconn. The labour dispatching system is a common method of undermining labour rights in Chinese companies. Many workers dub it the slavery dispatch system:

https://www.youtube.com/watch?v=5CqhUrWlk3Q

This is just a typical example of recent strikes by Chinese workers to defend their rights. Similar incidents have occurred in many cities. Although the Chinese government claims that they have basically controlled the corona virus outbreak, conflicts have gradually erupted as workers return to work.

The economic failure caused during the epidemic will prompt the bourgeoisie to intensify its exploitation of the working class. The working class has made huge sacrifices in the fight against the epidemic. The epidemic has increased the pressure on their lives, and made workers want a more resolute voice for labour rights. Therefore, when workers return to work, the backlog of dissatisfaction will push workers to fight the bourgeoisie and inequality. Already we can see that when the city lockdown policy was gradually cancelled, the workers movement began to reappear in various cities.

https://maps.clb.org.hk/?i18n_language=en_US&map=1&startDate=2020-03&endDate=2020-03&eventId=2020032016151780093

Read more:

Chinese worker writes on the coronavirus pandemic: Disaffection is growing among the masses - World Socialist Web Site

Q&A:Transforming genetic medicine as the medical standard of care (Includes interview) – Digital Journal

With rare diseases, 72 percent out of the 7000 known are genetic, and 70 percent of those start in childhood. The lack of scientific knowledge and the quality of information often delay diagnosis or lead to misdiagnosed cases, losing precious time that can be vital to find treatment before it's too late.This situation is changing with the advent of genetic medicine. an example is Emedgene's artificial intelligence software, which is the worlds first completely automated genetic interpretation platform using machine learning algorithms.Digital Journal spoke with Einat Metzer, CEO and Co-Founder of Emedgene to talk about the new genetic interpretation software.Digital Journal: How are rare diseases classified?Einat Metzer: Rare diseases defined by the number of people affected. In the U.S., any disease that affects fewer than 200,000 people is defined as rare, in Europe, its any disease affecting fewer than 1 in 2000 people.There are around 6000 known rare diseases, and that number is growing. Whats interesting to know, is that although they are each individually rare, collectively they impact over 300 million people. Those patients have a very difficult time receiving a diagnosis for their disease, and typically go through a diagnostic odyssey lasting on average 5-7 years. Its also worth noting that most rare diseases have a genetic basis, and appear in early childhood. DJ: Is sufficient funding and research invested into rare diseases? What are the factors that influence this?Metzer: There are two challenging aspects to rare diseases, the first is the identification of a rare disease, because obviously, physicians arent familiar with every disease affecting only tens or hundreds of patients worldwide. The second difficult aspect is developing treatments for diseases impacting small numbers of patients. The good news is countries and healthcare systems are increasingly recognizing the need to cover genetic testing for the identification of rare diseases. As of today, over 50% of the US population has insurance coverage for next generation sequencing. However, even insurance coverage for the tests does not entirely solve the problem. Sequencing a patients DNA is easily done, but understanding what variants in a patients genome mean is still quite challenging. Every patient has millions of harmless genetic variants, and only one disease-causing mutation. As a result, geneticists can spend hours manually reviewing hundreds of variants and looking for evidence for the disease in databases and the literature. There are fewer than 5,000 geneticists worldwide available to interpret patients genetic data, resulting in an interpretation bottleneck. Even as more patients become eligible for genetic testing, the workforce capable of diagnosing them is not growing fast enough. We estimate the worldwide capacity of interpretation is capped at roughly 2.4 million tests, less than the predicted rare disease testing volume for 2020. DJ: How can machine learning help?Metzer:Machine learning technologies can reduce the manual labor of interpretation, by offloading both the research and deep analysis tasks from geneticists. Machine learning is a buzzword, widely used, and applied to many types of solutions. Were talking about a unique application of the technology here, where we wont use a single algorithm to solve a single problem. Instead, we need to apply a set of algorithms designed to automate different aspects of the geneticists workflow. On the one hand, the geneticists work is to review thousands of data points for every patients test, and use them to come to a conclusion on the single genetic variant thats causing the disease. We can certainly apply machine learning algorithms to review those data points. But we can go a step further, and collect the data points most likely to impact their decision, and include those in our recommendations. The second labor-intensive task geneticists perform, is looking for the most up-to-date information in databases and the published literature. Thats a task well suited for Natural Language Processing, which can be used to augment existing databases with information curated from the literature. DJ: How does Emedgenes AI software work?Metzer:Emedgenes AI-powered genomic analysis platform tries to do just that, automate the labor-intensive parts of the geneticists workflow, so interpreting a patients genetic test takes less time and effort, and accuracy is not compromised. The goal is to scale the genetic testing interpretation in healthcare systems, so they can offer personalized care to a broader population. Our AI consists of dozens of different algorithms, each solving a different problem, all coming together to automate the genetic testing interpretation workflow. The platform is able to automatically identify the disease-causing variant, compile the evidence, and present it to the geneticist on the case for review. The machine learning algorithms utilize a proprietary knowledge graph that continuously incorporates new knowledge. The knowledge graph contains over 85,000 entities and 340,000 connections today, including unique information curated from the literature that has not yet made its way into public databases.DJ: What were the main challenges when developing the software?Access to large high-quality data sets is a major challenge in developing AI solutions in healthcare in general. For our supervised learning algorithms - those that require labeled data for training the algorithm - once we obtained the data, labeling was a challenge as well. The level of education required to annotate healthcare datasets is quite high.Fortunately, there are good solutions to both problems, both from the scientific and AI perspective. DJ: Are there any case studies you can share, to show the benefits of the approach?Metzer:Weve studied the accuracy of our interpretation algorithms with Baylor Genetics. In the 180-case study, our AI successfully identified the disease-causing mutation in 96% of the cases. Another of our customers, Greenwood Genetic Center, was able to reduce time spent per case by 75%, which was translated directly into shorter turn around times for patients waiting for a genetic diagnosis.

The rest is here:

Q&A:Transforming genetic medicine as the medical standard of care (Includes interview) - Digital Journal

Genomics and Medicine | NHGRI

It has often been estimated that it takes, on average, 17years to translate a novel research finding into routine clinical practice. This time lag is due to a combination of factors, including the need to validate research findings, the fact that clinical trials are complex and take time to conduct and then analyze, and because disseminating information and educating healthcare workers about a new advance is not an overnight process.

Once sufficient evidence has been generated to demonstrate a benefit to patients, or "clinical utility," professional societies and clinical standards groups will use that evidence to determine whether to incorporate the new test into clinical practice guidelines. This determination will also factor in any potential ethical and legal issues, as well economic factors such as cost-benefit ratios.

The NHGRIGenomic Medicine Working Group(GMWG) has been gathering expert stakeholders in a series of genomic medicine meetingsto discuss issues surrounding the adoption of genomic medicine. Particularly, the GMWG draws expertise from researchers at the cutting edge of this new medical toolset, with the aim of better informing future translational research at NHGRI. Additionally the working group provides guidance to theNational Advisory Council on Human Genome Research (NACHGR)and NHGRI in other areas of genomic medicine implementation, such as outlining infrastructural needs for adoption of genomic medicine, identifying related efforts for future collaborations, and reviewing progress overall in genomic medicine implementation.

Read more from the original source:

Genomics and Medicine | NHGRI

Bridging the gap study sequences Asian genomes to diversify genetic databases – University of Virginia The Cavalier Daily

Though the number of human genomes sequenced continues to rise rapidly since the completion of the Human Genome Project a scientific endeavor spanning multiple decades and countries aimed at detailing human DNA in 2003, less than 10 percent of those genomes to date correspond to individuals of Asian descent. The GenomeAsia 100K Project, a non-profit consortium, seeks to change this lack of knowledge surrounding a major portion of the worlds ethnicities. The conglomeration of researchers and private sector executives from around the world from Seoul, South Korea to the University plans to add 100,000 novel genomes from individuals of Asian ethnicity to new open-access databases.

Academic institutions and private sector companies came together in 2016 to launch the GenomeAsia 100K Project. While the research organization MedGenome and Nanyang Technological University in Singapore originally founded the non-profit consortium, representatives from other businesses and schools including Genentech, Macrogen and the University of California, San Francisco have joined the association.

Since genome sequencing can reveal the unique characteristics of each persons genetic material, it can help determine a persons ancestry and the propensity for certain medical conditions. According to GenomeAsia 100K, Asians constitute nearly half of the worlds population, and the distinct ethnicities and communities offer a relatively untapped repository of genetic diversity. The project hopes to provide new insights into inherited diseases as well as those caused by a combination of genetic and environmental factors.

Aakrosh Ratan, assistant professor of public health sciences and researcher for GenomeAsia 100K, explained that in particular, the information the initiative collects may help develop medical treatments based on peoples specific genetic makeup, instead of relying on traditional general treatments that may not target the unique root cause of each patients form of a disease.

The goal of precision medicine is to tailor treatment towards a persons genetic background, and that dream cannot be realized until you have the proper reference databases, Ratan said.

Mutations in humans DNA sequences lead to different copies of the same gene within a person and amongst ethnicities. These different versions of a gene can act as markers of diseases that are inherited or influenced by genetic makeup. For example, the disorder sickle cell anemia is caused by the change of a single point in the DNA sequence. When someone is born with copies of this particular gene from both parents contain the mutation, he or she will suffer from often debilitating pain resulting from red blood cells that cannot effectively transport oxygen.

Ratan explained that genome sequencing can highlight mutations in a persons DNA that may cause illnesses such as sickle cell anemia.

One of the ways we identify the mutations that drive a rare disease is by identifying the mutations and then prioritizing those mutations based on their prevalence in healthy populations, Ratan said. With the medical datasets we have compiled, we can actually improve such analyses for patients of Asian descent.

As of December 2019, the GenomeAsia 100K Project has completed the analysis of 1,739 genomes from 219 populations and 64 countries worldwide. Preliminary findings appeared that same month in the scientific journal Nature. The paper concluded that the sample provided a reasonable framework for sequencing practices and studying the history and health of Asian populations. Ratan and his lab at the University supervised the identification and contributed to the analysis of these genetic variants.

Once the 100,000 genomes have been collected and sequenced, the data will be publicly available as a controlled dataset. As a result, experts investigating topics from heart disease to human evolution can easily access the genome sequences.

One of the real gaps in human genetics studies of disease has been the underrepresentation of non-Europeans, Charles Farber, associate professor of public health sciences, said in an email to The Cavalier Daily. The work of the GenomeAsia 100K Consortium provided critical insight into the extent and nature of genome variation in individuals of Asian ancestry and will be critical in making disease genetic studies more inclusive of all global populations.

Ani Manichaikul, assistant professor of public health sciences in the Center for Public Health Genomics, expressed enthusiasm for the GenomeAsia 100K Project. She claimed that the additional genetic information could augment her research as part of the Multi-Ethnic Study of Atherosclerosis, a cardiovascular disease where fatty deposits accumulate and potentially block arteries. The study currently focuses on Caucasian, African American, Hispanic and Chinese American individuals.

The GenomeAsia project is very useful because there are some instances where particular genetic variants are only observed in particular genetic groups, Manichaikul said. Those markers can be unique to those sequenced through the project, which means we would not have necessarily have observed those particular variants otherwise.

Manichaikul also suggested that expanding existing repositories of hereditary statistics would improve methods of assigning people risk scores for diseases based on their DNA. The National Human Genome Research Institute describes polygenic risk score, which indicates a persons likelihood of certain diseases based on the presence of mutations known to be associated with a given disorder. Companies such as 23andMe have started to provide consumers with this metric, but without a comprehensive database of genomes from different populations, score reliability can decrease.

Since indicators of genetically-linked conditions often appear in certain alleles, or different versions of a gene, knowing whether one has a disease marker can help patients take preventative measures if need be. However, in the absence of comprehensive information on the range of disease markers that appear in different ethnicities, whole populations may lack the potential benefits of this burgeoning healthcare statistic.

The only way we can create risk prediction models that are accurate across populations is if we also have corresponding databases available with individuals that represent that diversity, Manichaikul said.

Following the findings in the preliminary study, GenomeAsia 100K Project collaborators will continue to sequence more genomes of Asian individuals. The hope is that, once researchers have access to the data, insights from 100,000 genomes will drive the development of new therapeutic strategies that will benefit people around the world.

I would like more researchers to have access to this data, Ratan said. This is a resource. Were working to establish these reference datasets, and we would definitely like them to be used.

Original post:

Bridging the gap study sequences Asian genomes to diversify genetic databases - University of Virginia The Cavalier Daily

Precision Medicine, Nanotechnology and the Rise of the Robot Now. Powered by – Now. Powered by Northrop Grumman.

Since then-President Obamas announcement in early 2015, precision medicine has been an even bigger buzzword in medical research. Its one of those terms you hear frequently, but what exactly is it? And what makes it so important for future health care?

Its both, but definitely not average. The term replaces the older description, personalized medicine. Although they mean roughly the same thing, precision medicine is the preferred term for developing treatment and preventive medicine for individuals based on genetic, environmental and lifestyle factors. In translation: instead of a one-size-fits-all approach for an average patient, the precision approach looks at individual variability when mapping out the treatment plan that has the best chance of success. Doctors base the drug choices on the individual patients genetics.

So, apart from maximizing success, what makes precision medicine so important?

Consider cancer, one of the short-term goals outlined in Mr. Obamas 2015 initiative. Characterizing a patients cancer helps clinicians design an effective treatment plan. Tissue profiling reveals cell markers that are useful when choosing chemotherapeutic drugs. For example, breast cancers that overexpress the HER2 receptor respond very well to trastuzumab (Herceptin) treatment, whereas those with abundant estrogen receptors respond better to hormone therapy. This kind of approach can also customize treatment for other conditions.

How do doctors know what works?

Omics is shorthand for a suite of biotechnologies devoted to uncovering the secrets of the genome (DNA), the proteome (proteins), the transcriptome (how genes translate into proteins) and more. Essentially, omics researchers study the basic machinery of the cell and how growth, aging, disease and nutrition affect it. These technologies underpin most research into precision medicine. By studying thousands of individuals, researchers build a picture of health, disease and risk.

Cataloging the genomic information from thousands of individuals in large population cohorts, and then matching it up with health, environmental and lifestyle records shows genes associated with specific diseases. In tumors, it shows how sensitive they are to chemotherapy.

Omics technology is advancing very rapidly and generating vast amounts of data. Sequencing a persons genome first took almost 10 years and $3 billion; current next generation sequencing (NGS) instruments will whiz through around 18,000 individuals or more in a year. Proteomics technology is catching up rapidly.

One genome generates around 780 MB of data out of around 30 terabytes of raw NGS data; typical proteome datasets run into many gigabytes in size. Studying thousands of individuals for population studies generates terabytes of data approximately 40, according to one article. And that takes a lot of processing power to analyze for clinically relevant results more than can be done manually, so biomathematicians develop algorithms and other software tools to tease the answers from the digital soup. Bioinformatics for storing and accessing electronic health records is vital for precision medicine research. Furthermore, IT systems such as the Northrop Grumman-supported MedDRA initiative encode health information consistently ensure that data banks can talk to each other, with advances in cybersecurity ensuring patient privacy despite the cross talk.

Yes. Just think of where all that data comes from.

Population studies are as big as they sound; the Million Veteran Program collects biosamples from U.S. veterans, around 400,000 so far. It aims to generate omics data that in conjunction with information on health, lifestyle and environment will translate into clinical practice. Thats a lot of samples to handle, store and analyze.

Furthermore, microelectronics advances mean that omics instruments handle more samples at a faster rate. Next-generation sequencers such as the Illumina HiSeq and the Thermo Fisher Ion Torrent use chip-based and semiconductor technology to decode genomic materials. A simple flash of fluorescence or change in pH zaps DNA base pair information into a digital format much faster than old-school gel-based Sanger sequencing.

In order to exploit the speed of these tools, robotic handling manages everything from sample aliquots for biobank storage, to 384-well plate assay wrangling. Their speed and automation bring faster results with fewer errors.

Robotic or automated workflows are also important for nanotechnology and microfluidics where the miniaturization that reduces instrument footprint and sample volume also precludes manual input. Even though they will benefit from precision medicine, our clumsy fingers and thumbs are not as welcome in the lab as they once were.

See original here:

Precision Medicine, Nanotechnology and the Rise of the Robot Now. Powered by - Now. Powered by Northrop Grumman.

Genomic assays: on the brink of revolutionising human healthcare – Drug Target Review

Detailed knowledge of the human genome can provide us with extensive information about the causes of disease and how patients will respond to treatments. In this article, Pushpanathan Muthuirulan explores the concept of genetic testing and the potential for pharmacogenomic testing to transform healthcare.

Genomic assays offer enormous potential for improving human health. Recent advances in high-throughput genomic assay technologies have enabled development of more rapid and accurate genetic testing methods that can survey the entire human genome and pinpoint the genetic defects associated with diseases. Genomic assays offer deeper insights into disease causation in families and have improved our ability to diagnose and treat genetic disorders by targeting specific genetic subsets. The rapid pace of the discovery of genetic changes associated with disease has enabled researchers to predict the risk of genetic disorders in asymptomatic individuals, offering tremendous potential for unlocking value in precision medicine. Thus, genomic assays are on the cutting edge of medical innovation, offering resources to clinicians and healthcare providers for patient care and driving the future of medicine.

Continued here:

Genomic assays: on the brink of revolutionising human healthcare - Drug Target Review

How the Pandemic Will End – The Atlantic

Editors Note: The Atlantic is making vital coverage of the coronavirus available to all readers. Find the collection here.

Three months ago, no one knew that SARS-CoV-2 existed. Now the virus has spread to almost every country, infecting at least 446,000 people whom we know about, and many more whom we do not. It has crashed economies and broken health-care systems, filled hospitals and emptied public spaces. It has separated people from their workplaces and their friends. It has disrupted modern society on a scale that most living people have never witnessed. Soon, most everyone in the United States will know someone who has been infected. Like World War II or the 9/11 attacks, this pandemic has already imprinted itself upon the nations psyche.

A global pandemic of this scale was inevitable. In recent years, hundreds of health experts have written books, white papers, and op-eds warning of the possibility. Bill Gates has been telling anyone who would listen, including the 18 million viewers of his TED Talk. In 2018, I wrote a story for The Atlantic arguing that America was not ready for the pandemic that would eventually come. In October, the Johns Hopkins Center for Health Security war-gamed what might happen if a new coronavirus swept the globe. And then one did. Hypotheticals became reality. What if? became Now what?

So, now what? In the late hours of last Wednesday, which now feels like the distant past, I was talking about the pandemic with a pregnant friend who was days away from her due date. We realized that her child might be one of the first of a new cohort who are born into a society profoundly altered by COVID-19. We decided to call them Generation C.

As well see, Gen Cs lives will be shaped by the choices made in the coming weeks, and by the losses we suffer as a result. But first, a brief reckoning. On the Global Health Security Index, a report card that grades every country on its pandemic preparedness, the United States has a score of 83.5the worlds highest. Rich, strong, developed, America is supposed to be the readiest of nations. That illusion has been shattered. Despite months of advance warning as the virus spread in other countries, when America was finally tested by COVID-19, it failed.

Anne Applebaum: The coronavirus called Americas bluff

No matter what, a virus [like SARS-CoV-2] was going to test the resilience of even the most well-equipped health systems, says Nahid Bhadelia, an infectious-diseases physician at the Boston University School of Medicine. More transmissible and fatal than seasonal influenza, the new coronavirus is also stealthier, spreading from one host to another for several days before triggering obvious symptoms. To contain such a pathogen, nations must develop a test and use it to identify infected people, isolate them, and trace those theyve had contact with. That is what South Korea, Singapore, and Hong Kong did to tremendous effect. It is what the United States did not.

As my colleagues Alexis Madrigal and Robinson Meyer have reported, the Centers for Disease Control and Prevention developed and distributed a faulty test in February. Independent labs created alternatives, but were mired in bureaucracy from the FDA. In a crucial month when the American caseload shot into the tens of thousands, only hundreds of people were tested. That a biomedical powerhouse like the U.S. should so thoroughly fail to create a very simple diagnostic test was, quite literally, unimaginable. Im not aware of any simulations that I or others have run where we [considered] a failure of testing, says Alexandra Phelan of Georgetown University, who works on legal and policy issues related to infectious diseases.

The testing fiasco was the original sin of Americas pandemic failure, the single flaw that undermined every other countermeasure. If the country could have accurately tracked the spread of the virus, hospitals could have executed their pandemic plans, girding themselves by allocating treatment rooms, ordering extra supplies, tagging in personnel, or assigning specific facilities to deal with COVID-19 cases. None of that happened. Instead, a health-care system that already runs close to full capacity, and that was already challenged by a severe flu season, was suddenly faced with a virus that had been left to spread, untracked, through communities around the country. Overstretched hospitals became overwhelmed. Basic protective equipment, such as masks, gowns, and gloves, began to run out. Beds will soon follow, as will the ventilators that provide oxygen to patients whose lungs are besieged by the virus.

Read: The people ignoring social distancing

With little room to surge during a crisis, Americas health-care system operates on the assumption that unaffected states can help beleaguered ones in an emergency. That ethic works for localized disasters such as hurricanes or wildfires, but not for a pandemic that is now in all 50 states. Cooperation has given way to competition; some worried hospitals have bought out large quantities of supplies, in the way that panicked consumers have bought out toilet paper.

Partly, thats because the White House is a ghost town of scientific expertise. A pandemic-preparedness office that was part of the National Security Council was dissolved in 2018. On January 28, Luciana Borio, who was part of that team, urged the government to act now to prevent an American epidemic, and specifically to work with the private sector to develop fast, easy diagnostic tests. But with the office shuttered, those warnings were published in The Wall Street Journal, rather than spoken into the presidents ear. Instead of springing into action, America sat idle.

Derek Thompson: America is acting like a failed state

Rudderless, blindsided, lethargic, and uncoordinated, America has mishandled the COVID-19 crisis to a substantially worse degree than what every health expert Ive spoken with had feared. Much worse, said Ron Klain, who coordinated the U.S. response to the West African Ebola outbreak in 2014. Beyond any expectations we had, said Lauren Sauer, who works on disaster preparedness at Johns Hopkins Medicine. As an American, Im horrified, said Seth Berkley, who heads Gavi, the Vaccine Alliance. The U.S. may end up with the worst outbreak in the industrialized world.

Having fallen behind, it will be difficultbut not impossiblefor the United States to catch up. To an extent, the near-term future is set because COVID-19 is a slow and long illness. People who were infected several days ago will only start showing symptoms now, even if they isolated themselves in the meantime. Some of those people will enter intensive-care units in early April. As of last weekend, the nation had 17,000 confirmed cases, but the actual number was probably somewhere between 60,000 and 245,000. Numbers are now starting to rise exponentially: As of Wednesday morning, the official case count was 54,000, and the actual case count is unknown. Health-care workers are already seeing worrying signs: dwindling equipment, growing numbers of patients, and doctors and nurses who are themselves becoming infected.

Italy and Spain offer grim warnings about the future. Hospitals are out of room, supplies, and staff. Unable to treat or save everyone, doctors have been forced into the unthinkable: rationing care to patients who are most likely to survive, while letting others die. The U.S. has fewer hospital beds per capita than Italy. A study released by a team at Imperial College London concluded that if the pandemic is left unchecked, those beds will all be full by late April. By the end of June, for every available critical-care bed, there will be roughly 15 COVID-19 patients in need of one. By the end of the summer, the pandemic will have directly killed 2.2 million Americans, notwithstanding those who will indirectly die as hospitals are unable to care for the usual slew of heart attacks, strokes, and car accidents. This is the worst-case scenario. To avert it, four things need to happenand quickly.

Read: All the presidents lies about the coronavirus

The first and most important is to rapidly produce masks, gloves, and other personal protective equipment. If health-care workers cant stay healthy, the rest of the response will collapse. In some places, stockpiles are already so low that doctors are reusing masks between patients, calling for donations from the public, or sewing their own homemade alternatives. These shortages are happening because medical supplies are made-to-order and depend on byzantine international supply chains that are currently straining and snapping. Hubei province in China, the epicenter of the pandemic, was also a manufacturing center of medical masks.

In the U.S., the Strategic National Stockpilea national larder of medical equipmentis already being deployed, especially to the hardest-hit states. The stockpile is not inexhaustible, but it can buy some time. Donald Trump could use that time to invoke the Defense Production Act, launching a wartime effort in which American manufacturers switch to making medical equipment. But after invoking the act last Wednesday, Trump has failed to actually use it, reportedly due to lobbying from the U.S. Chamber of Commerce and heads of major corporations.

Some manufacturers are already rising to the challenge, but their efforts are piecemeal and unevenly distributed. One day, well wake up to a story of doctors in City X who are operating with bandanas, and a closet in City Y with masks piled into it, says Ali Khan, the dean of public health at the University of Nebraska Medical Center. A massive logistics and supply-chain operation [is] now needed across the country, says Thomas Inglesby of Johns Hopkins Bloomberg School of Public Health. That cant be managed by small and inexperienced teams scattered throughout the White House. The solution, he says, is to tag in the Defense Logistics Agencya 26,000-person group that prepares the U.S. military for overseas operations and that has assisted in past public-health crises, including the 2014 Ebola outbreak.

This agency can also coordinate the second pressing need: a massive rollout of COVID-19 tests. Those tests have been slow to arrive because of five separate shortages: of masks to protect people administering the tests; of nasopharyngeal swabs for collecting viral samples; of extraction kits for pulling the viruss genetic material out of the samples; of chemical reagents that are part of those kits; and of trained people who can give the tests. Many of these shortages are, again, due to strained supply chains. The U.S. relies on three manufacturers for extraction reagents, providing redundancy in case any of them failsbut all of them failed in the face of unprecedented global demand. Meanwhile, Lombardy, Italy, the hardest-hit place in Europe, houses one of the largest manufacturers of nasopharyngeal swabs.

Read: Why the coronavirus has been so successful

Some shortages are being addressed. The FDA is now moving quickly to approve tests developed by private labs. At least one can deliver results in less than an hour, potentially allowing doctors to know if the patient in front of them has COVID-19. The country is adding capacity on a daily basis, says Kelly Wroblewski of the Association of Public Health Laboratories.

On March 6, Trump said that anyone who wants a test can get a test. That was (and still is) untrue, and his own officials were quick to correct him. Regardless, anxious people still flooded into hospitals, seeking tests that did not exist. People wanted to be tested even if they werent symptomatic, or if they sat next to someone with a cough, says Saskia Popescu of George Mason University, who works to prepare hospitals for pandemics. Others just had colds, but doctors still had to use masks to examine them, burning through their already dwindling supplies. It really stressed the health-care system, Popescu says. Even now, as capacity expands, tests must be used carefully. The first priority, says Marc Lipsitch of Harvard, is to test health-care workers and hospitalized patients, allowing hospitals to quell any ongoing fires. Only later, once the immediate crisis is slowing, should tests be deployed in a more widespread way. This isnt just going to be: Lets get the tests out there! Inglesby says.

These measures will take time, during which the pandemic will either accelerate beyond the capacity of the health system or slow to containable levels. Its courseand the nations fatenow depends on the third need, which is social distancing. Think of it this way: There are now only two groups of Americans. Group A includes everyone involved in the medical response, whether thats treating patients, running tests, or manufacturing supplies. Group B includes everyone else, and their job is to buy Group A more time. Group B must now flatten the curve by physically isolating themselves from other people to cut off chains of transmission. Given the slow fuse of COVID-19, to forestall the future collapse of the health-care system, these seemingly drastic steps must be taken immediately, before they feel proportionate, and they must continue for several weeks.

Juliette Kayyem: The crisis could last 18 months. Be prepared.

Persuading a country to voluntarily stay at home is not easy, and without clear guidelines from the White House, mayors, governors, and business owners have been forced to take their own steps. Some states have banned large gatherings or closed schools and restaurants. At least 21 have now instituted some form of mandatory quarantine, compelling people to stay at home. And yet many citizens continue to crowd into public spaces.

In these moments, when the good of all hinges on the sacrifices of many, clear coordination mattersthe fourth urgent need. The importance of social distancing must be impressed upon a public who must also be reassured and informed. Instead, Trump has repeatedly played down the problem, telling America that we have it very well under control when we do not, and that cases were going to be down to close to zero when they were rising. In some cases, as with his claims about ubiquitous testing, his misleading gaffes have deepened the crisis. He has even touted unproven medications.

Away from the White House press room, Trump has apparently been listening to Anthony Fauci, the director of the National Institute of Allergy and Infectious Diseases. Fauci has advised every president since Ronald Reagan on new epidemics, and now sits on the COVID-19 task force that meets with Trump roughly every other day. Hes got his own style, lets leave it at that, Fauci told me, but any kind of recommendation that I have made thus far, the substance of it, he has listened to everything.

Read: Grocery stores are the coronavirus tipping point

But Trump already seems to be wavering. In recent days, he has signaled that he is prepared to backtrack on social-distancing policies in a bid to protect the economy. Pundits and business leaders have used similar rhetoric, arguing that high-risk people, such as the elderly, could be protected while lower-risk people are allowed to go back to work. Such thinking is seductive, but flawed. It overestimates our ability to assess a persons risk, and to somehow wall off the high-risk people from the rest of society. It underestimates how badly the virus can hit low-risk groups, and how thoroughly hospitals will be overwhelmed if even just younger demographics are falling sick.

A recent analysis from the University of Pennsylvania estimated that even if social-distancing measures can reduce infection rates by 95 percent, 960,000 Americans will still need intensive care. There are only about 180,000 ventilators in the U.S. and, more pertinently, only enough respiratory therapists and critical-care staff to safely look after 100,000 ventilated patients. Abandoning social distancing would be foolish. Abandoning it now, when tests and protective equipment are still scarce, would be catastrophic.

Read: Americas hospitals have never experienced anything like this

If Trump stays the course, if Americans adhere to social distancing, if testing can be rolled out, and if enough masks can be produced, there is a chance that the country can still avert the worst predictions about COVID-19, and at least temporarily bring the pandemic under control. No one knows how long that will take, but it wont be quick. It could be anywhere from four to six weeks to up to three months, Fauci said, but I dont have great confidence in that range.

Even a perfect response wont end the pandemic. As long as the virus persists somewhere, theres a chance that one infected traveler will reignite fresh sparks in countries that have already extinguished their fires. This is already happening in China, Singapore, and other Asian countries that briefly seemed to have the virus under control. Under these conditions, there are three possible endgames: one thats very unlikely, one thats very dangerous, and one thats very long.

The first is that every nation manages to simultaneously bring the virus to heel, as with the original SARS in 2003. Given how widespread the coronavirus pandemic is, and how badly many countries are faring, the odds of worldwide synchronous control seem vanishingly small.

The second is that the virus does what past flu pandemics have done: It burns through the world and leaves behind enough immune survivors that it eventually struggles to find viable hosts. This herd immunity scenario would be quick, and thus tempting. But it would also come at a terrible cost: SARS-CoV-2 is more transmissible and fatal than the flu, and it would likely leave behind many millions of corpses and a trail of devastated health systems. The United Kingdom initially seemed to consider this herd-immunity strategy, before backtracking when models revealed the dire consequences. The U.S. now seems to be considering it too.

Read: What will you do if you start coughing?

The third scenario is that the world plays a protracted game of whack-a-mole with the virus, stamping out outbreaks here and there until a vaccine can be produced. This is the best option, but also the longest and most complicated.

It depends, for a start, on making a vaccine. If this were a flu pandemic, that would be easier. The world is experienced at making flu vaccines and does so every year. But there are no existing vaccines for coronavirusesuntil now, these viruses seemed to cause diseases that were mild or rareso researchers must start from scratch. The first steps have been impressively quick. Last Monday, a possible vaccine created by Moderna and the National Institutes of Health went into early clinical testing. That marks a 63-day gap between scientists sequencing the viruss genes for the first time and doctors injecting a vaccine candidate into a persons arm. Its overwhelmingly the world record, Fauci said.

But its also the fastest step among many subsequent slow ones. The initial trial will simply tell researchers if the vaccine seems safe, and if it can actually mobilize the immune system. Researchers will then need to check that it actually prevents infection from SARS-CoV-2. Theyll need to do animal tests and large-scale trials to ensure that the vaccine doesnt cause severe side effects. Theyll need to work out what dose is required, how many shots people need, if the vaccine works in elderly people, and if it requires other chemicals to boost its effectiveness.

Even if it works, they dont have an easy way to manufacture it at a massive scale, said Seth Berkley of Gavi. Thats because Moderna is using a new approach to vaccination. Existing vaccines work by providing the body with inactivated or fragmented viruses, allowing the immune system to prep its defenses ahead of time. By contrast, Modernas vaccine comprises a sliver of SARS-CoV-2s genetic materialits RNA. The idea is that the body can use this sliver to build its own viral fragments, which would then form the basis of the immune systems preparations. This approach works in animals, but is unproven in humans. By contrast, French scientists are trying to modify the existing measles vaccine using fragments of the new coronavirus. The advantage of that is that if we needed hundreds of doses tomorrow, a lot of plants in the world know how to do it, Berkley said. No matter which strategy is faster, Berkley and others estimate that it will take 12 to 18 months to develop a proven vaccine, and then longer still to make it, ship it, and inject it into peoples arms.

Read: COVID-19 vaccines are coming, but theyre not what you think

Its likely, then, that the new coronavirus will be a lingering part of American life for at least a year, if not much longer. If the current round of social-distancing measures works, the pandemic may ebb enough for things to return to a semblance of normalcy. Offices could fill and bars could bustle. Schools could reopen and friends could reunite. But as the status quo returns, so too will the virus. This doesnt mean that society must be on continuous lockdown until 2022. But we need to be prepared to do multiple periods of social distancing, says Stephen Kissler of Harvard.

Much about the coming years, including the frequency, duration, and timing of social upheavals, depends on two properties of the virus, both of which are currently unknown. First: seasonality. Coronaviruses tend to be winter infections that wane or disappear in the summer. That may also be true for SARS-CoV-2, but seasonal variations might not sufficiently slow the virus when it has so many immunologically naive hosts to infect. Much of the world is waiting anxiously to see whatif anythingthe summer does to transmission in the Northern Hemisphere, says Maia Majumder of Harvard Medical School and Boston Childrens Hospital.

Second: duration of immunity. When people are infected by the milder human coronaviruses that cause cold-like symptoms, they remain immune for less than a year. By contrast, the few who were infected by the original SARS virus, which was far more severe, stayed immune for much longer. Assuming that SARS-CoV-2 lies somewhere in the middle, people who recover from their encounters might be protected for a couple of years. To confirm that, scientists will need to develop accurate serological tests, which look for the antibodies that confer immunity. Theyll also need to confirm that such antibodies actually stop people from catching or spreading the virus. If so, immune citizens can return to work, care for the vulnerable, and anchor the economy during bouts of social distancing.

Scientists can use the periods between those bouts to develop antiviral drugsalthough such drugs are rarely panaceas, and come with possible side effects and the risk of resistance. Hospitals can stockpile the necessary supplies. Testing kits can be widely distributed to catch the viruss return as quickly as possible. Theres no reason that the U.S. should let SARS-CoV-2 catch it unawares again, and thus no reason that social-distancing measures need to be deployed as broadly and heavy-handedly as they now must be. As Aaron E. Carroll and Ashish Jha recently wrote, We can keep schools and businesses open as much as possible, closing them quickly when suppression fails, then opening them back up again once the infected are identified and isolated. Instead of playing defense, we could play more offense.

Whether through accumulating herd immunity or the long-awaited arrival of a vaccine, the virus will find spreading explosively more and more difficult. Its unlikely to disappear entirely. The vaccine may need to be updated as the virus changes, and people may need to get revaccinated on a regular basis, as they currently do for the flu. Models suggest that the virus might simmer around the world, triggering epidemics every few years or so. But my hope and expectation is that the severity would decline, and there would be less societal upheaval, Kissler says. In this future, COVID-19 may become like the flu is todaya recurring scourge of winter. Perhaps it will eventually become so mundane that even though a vaccine exists, large swaths of Gen C wont bother getting it, forgetting how dramatically their world was molded by its absence.

The cost of reaching that point, with as few deaths as possible, will be enormous. As my colleague Annie Lowrey wrote, the economy is experiencing a shock more sudden and severe than anyone alive has ever experienced. About one in five people in the United States have lost working hours or jobs. Hotels are empty. Airlines are grounding flights. Restaurants and other small businesses are closing. Inequalities will widen: People with low incomes will be hardest-hit by social-distancing measures, and most likely to have the chronic health conditions that increase their risk of severe infections. Diseases have destabilized cities and societies many times over, but it hasnt happened in this country in a very long time, or to quite the extent that were seeing now, says Elena Conis, a historian of medicine at UC Berkeley. Were far more urban and metropolitan. We have more people traveling great distances and living far from family and work.

After infections begin ebbing, a secondary pandemic of mental-health problems will follow. At a moment of profound dread and uncertainty, people are being cut off from soothing human contact. Hugs, handshakes, and other social rituals are now tinged with danger. People with anxiety or obsessive-compulsive disorder are struggling. Elderly people, who are already excluded from much of public life, are being asked to distance themselves even further, deepening their loneliness. Asian people are suffering racist insults, fueled by a president who insists on labeling the new coronavirus the Chinese virus. Incidents of domestic violence and child abuse are likely to spike as people are forced to stay in unsafe homes. Children, whose bodies are mostly spared by the virus, may endure mental trauma that stays with them into adulthood.

Read: The kids arent all right

After the pandemic, people who recover from COVID-19 might be shunned and stigmatized, as were survivors of Ebola, SARS, and HIV. Health-care workers will take time to heal: One to two years after SARS hit Toronto, people who dealt with the outbreak were still less productive and more likely to be experiencing burnout and post-traumatic stress. People who went through long bouts of quarantine will carry the scars of their experience. My colleagues in Wuhan note that some people there now refuse to leave their homes and have developed agoraphobia, says Steven Taylor of the University of British Columbia, who wrote The Psychology of Pandemics.

But there is also the potential for a much better world after we get through this trauma, says Richard Danzig of the Center for a New American Security. Already, communities are finding new ways of coming together, even as they must stay apart. Attitudes to health may also change for the better. The rise of HIV and AIDS completely changed sexual behavior among young people who were coming into sexual maturity at the height of the epidemic, Conis says. The use of condoms became normalized. Testing for STDs became mainstream. Similarly, washing your hands for 20 seconds, a habit that has historically been hard to enshrine even in hospitals, may be one of those behaviors that we become so accustomed to in the course of this outbreak that we dont think about them, Conis adds.

Pandemics can also catalyze social change. People, businesses, and institutions have been remarkably quick to adopt or call for practices that they might once have dragged their heels on, including working from home, conference-calling to accommodate people with disabilities, proper sick leave, and flexible child-care arrangements. This is the first time in my lifetime that Ive heard someone say, Oh, if youre sick, stay home, says Adia Benton, an anthropologist at Northwestern University. Perhaps the nation will learn that preparedness isnt just about masks, vaccines, and tests, but also about fair labor policies and a stable and equal health-care system. Perhaps it will appreciate that health-care workers and public-health specialists compose Americas social immune system, and that this system has been suppressed.

Aspects of Americas identity may need rethinking after COVID-19. Many of the countrys values have seemed to work against it during the pandemic. Its individualism, exceptionalism, and tendency to equate doing whatever you want with an act of resistance meant that when it came time to save lives and stay indoors, some people flocked to bars and clubs. Having internalized years of anti-terrorism messaging following 9/11, Americans resolved to not live in fear. But SARS-CoV-2 has no interest in their terror, only their cells.

Years of isolationist rhetoric had consequences too. Citizens who saw China as a distant, different place, where bats are edible and authoritarianism is acceptable, failed to consider that they would be next or that they wouldnt be ready. (Chinas response to this crisis had its own problems, but thats for another time.) People believed the rhetoric that containment would work, says Wendy Parmet, who studies law and public health at Northeastern University. We keep them out, and well be okay. When you have a body politic that buys into these ideas of isolationism and ethnonationalism, youre especially vulnerable when a pandemic hits.

Graeme Wood: The Chinese virus is a test. Dont fail it.

Veterans of past epidemics have long warned that American society is trapped in a cycle of panic and neglect. After every crisisanthrax, SARS, flu, Ebolaattention is paid and investments are made. But after short periods of peacetime, memories fade and budgets dwindle. This trend transcends red and blue administrations. When a new normal sets in, the abnormal once again becomes unimaginable. But there is reason to think that COVID-19 might be a disaster that leads to more radical and lasting change.

The other major epidemics of recent decades either barely affected the U.S. (SARS, MERS, Ebola), were milder than expected (H1N1 flu in 2009), or were mostly limited to specific groups of people (Zika, HIV). The COVID-19 pandemic, by contrast, is affecting everyone directly, changing the nature of their everyday life. That distinguishes it not only from other diseases, but also from the other systemic challenges of our time. When an administration prevaricates on climate change, the effects wont be felt for years, and even then will be hard to parse. Its different when a president says that everyone can get a test, and one day later, everyone cannot. Pandemics are democratizing experiences. People whose privilege and power would normally shield them from a crisis are facing quarantines, testing positive, and losing loved ones. Senators are falling sick. The consequences of defunding public-health agencies, losing expertise, and stretching hospitals are no longer manifesting as angry opinion pieces, but as faltering lungs.

After 9/11, the world focused on counterterrorism. After COVID-19, attention may shift to public health. Expect to see a spike in funding for virology and vaccinology, a surge in students applying to public-health programs, and more domestic production of medical supplies. Expect pandemics to top the agenda at the United Nations General Assembly. Anthony Fauci is now a household name. Regular people who think easily about what a policewoman or firefighter does finally get what an epidemiologist does, says Monica Schoch-Spana, a medical anthropologist at the Johns Hopkins Center for Health Security.

Such changes, in themselves, might protect the world from the next inevitable disease. The countries that had lived through SARS had a public consciousness about this that allowed them to leap into action, said Ron Klain, the former Ebola czar. The most commonly uttered sentence in America at the moment is, Ive never seen something like this before. That wasnt a sentence anyone in Hong Kong uttered. For the U.S., and for the world, its abundantly, viscerally clear what a pandemic can do.

The lessons that America draws from this experience are hard to predict, especially at a time when online algorithms and partisan broadcasters only serve news that aligns with their audiences preconceptions. Such dynamics will be pivotal in the coming months, says Ilan Goldenberg, a foreign-policy expert at the Center for a New American Security. The transitions after World War II or 9/11 were not about a bunch of new ideas, he says. The ideas are out there, but the debates will be more acute over the next few months because of the fluidity of the moment and willingness of the American public to accept big, massive changes.

One could easily conceive of a world in which most of the nation believes that America defeated COVID-19. Despite his many lapses, Trumps approval rating has surged. Imagine that he succeeds in diverting blame for the crisis to China, casting it as the villain and America as the resilient hero. During the second term of his presidency, the U.S. turns further inward and pulls out of NATO and other international alliances, builds actual and figurative walls, and disinvests in other nations. As Gen C grows up, foreign plagues replace communists and terrorists as the new generational threat.

One could also envisage a future in which America learns a different lesson. A communal spirit, ironically born through social distancing, causes people to turn outward, to neighbors both foreign and domestic. The election of November 2020 becomes a repudiation of America first politics. The nation pivots, as it did after World War II, from isolationism to international cooperation. Buoyed by steady investments and an influx of the brightest minds, the health-care workforce surges. Gen C kids write school essays about growing up to be epidemiologists. Public health becomes the centerpiece of foreign policy. The U.S. leads a new global partnership focused on solving challenges like pandemics and climate change.

In 2030, SARS-CoV-3 emerges from nowhere, and is brought to heel within a month.

Go here to read the rest:

How the Pandemic Will End - The Atlantic

PA reactivating retired healthcare providers’ licenses to treat COVID-19 patients – FOX43.com

In preparation for the expected higher need for healthcare providers, the Pennsylvania Department of State took measures this week to aid the coronavirus response.

LANCASTER, Pa.

As the number of COVID-19 cases continues to rise, health systems will likely require more healthcare providers. In preparation for the expected higher need for healthcare providers, the Pennsylvania Department of State took measures this week to aid the coronavirus response.

Certain administrative requirements will be waived for healthcare providers, including allowing physicians who have retired in the last five years to reactivate their medical licenses through the end of the year for free.

Dr. Ed Balaban of Ambler retired from his work as a hematologist and oncologist about a year and a half ago. He now plans to apply to reactivate his license and volunteer to treat COVID-19 patients. Though Balaban remained a trustee-at-large for thePennsylvania Medical Society after his retirement, he never expected to be practicing medicine again so soon.

I think its only right that I help and participate where I can, he said. Physicians, nurses, healthcare providers in general, I think its just part of our genetic makeup.

Pennsylvania had1,127 confirmed COVID-19 cases as of March 25. The number of infected is expected to double every two to three days.

As case counts double you can see that its going to get very high, very fast, Pennsylvania Secretary of Health Dr. Rachel Levine said in avirtual coronavirus update. The concern is that over the next number of weeks we are going to see a surge of new cases, and thus since approximately 10 percent of new cases require hospitalization, see a surge into our healthcare facilities.

The Department of States waiver of certain administrative requirements applies to physicians,nurses and pharmacists.

If the slope continues the way it is, then I suspect that a fair number of us will be needed, Dr. Balaban said.

The relaxed measures also allow current healthcare workers, like a family care nurse practitioner or retail pharmacist, to temporarily leave their usual specialties in order to care for COVID-19 patients, if needed.

So that we can move these people into these places where theres the greatest need, said Betsy Snook, CEO of thePennsylvania State Nurses Association.

Healthcare systems in need of volunteers or additional healthcare providers will reach out to the public through the media and online.

Some of it has already gone out through social media. And then the people can volunteer in that way, Snook said. They can just directly correspond with whoevers asking for the assistance.

The state also announced last week it was waiving licensing requirements for both in-state and out-of-state healthcare providers to treat patients viatelemedicine.

Read the original post:

PA reactivating retired healthcare providers' licenses to treat COVID-19 patients - FOX43.com

You can’t kill coronavirus. That’s OK. – Mashable

Some viruses look like moon landers.

Called phages, they hijack bacteria by landing on the hapless cells and injecting them with a ream of genetic material. Then, the phages use the commandeered cells to multiply.

Similar to the new coronavirus, these phages are excellent parasites. They can be aggressive, dogged, and seem to act with purpose. Yet, many microbiologists who know viruses best say it's a stretch to call any virus truly alive. And so, they can't be killed only disarmed, like pulling the plug on an appliance.

But today, with a rapidly spreading viral pandemic that's stirring serious unease in American emergency rooms, it doesn't really matter if a virus meets biologists' definitions of dead or alive. Whatever these entities are, they're powerful.

"It's more of a philosophical question," said Ryan Relich, a medical microbiologist at Indiana University's School of Medicine, of whether viruses are alive or not.

"What's more important is that they're winning," he said.

Today, the coronavirus isn't just winning. It's dominating us. It's closed our arenas. Shut down our bars. Emptied California beaches. The increasingly austere governor of New York is now demanding ventilators from the federal government. Our best, and most critical, defense until a vaccine is developed in a year at the earliest is social distancing: We're avoiding infected persons and hiding from the microbes themselves, which are basically genes surrounded by a shell.

Viruses, like coronavirus, have become globally dominant because they evolved to become master replicators. But they can't multiply alone, so they take over other cells and exploit this cellular machinery to multiply. It's exquisite parasitism. A single coronavirus-infected cell can manufacture millions of coronaviruses.

"Parasitism is an old, venerated way of making a living," said Siobain Duffy, who researches the evolution of viruses at Rutgers University.

A colorized image of a cell (brown) from a patient infected with coronavirus (pink).

Yet, unlike parasites such as intestinal worms, viruses are almost completely dependent upon the cells they hijack. "Viruses don't actually do anything on their own," explained Relich.

They don't breathe. They don't eat. They don't make energy. They appear mindless, floating around with the possibility of landing on a cell. "They don't get up and go to work every day," said Relich. "I dont consider them to be living. But hey, maybe you want to consider them to be alive so that its easier to personify them or rationalize things in a more palatable way."

So, microbiologists can make a good argument that viruses don't have the same hallmarks of living as do amoebas, elephants, and emus.

But maybe viruses are alive just in another sense of alive. After all, life has been evolving on Earth for some 3.8 billion years, noted Duffy. There are all kinds of curious things out there that might blur the boundary between alive and not alive. For example, there are viruses with longer genomes than bacteria (which we all agree are alive), and viruses that make some bacteria better at things, like photosynthesis. Our human DNA is embedded with some viral genetic material, too, noted Relich.

"Life continues to astound us."

"People want a clear dividing line between life and non-life," said Duffy. But that line might be blurrier than we think, she added.

The quandary of whether a virus can ever be killed, then, is a bottomless philosophical hole that may never have a certain answer. But it's safe to say, at least, that there are effective ways "to inactivate viruses or otherwise render them kaput," said Relich.

Chemicals like bleach and rubbing alcohols can massively damage the exterior wrappings of viruses, which for some include a fatty membrane envelope, making viruses useless. Thorough hand washing destroys these viral shells, too. Though there are no proven antiviral medications for coronavirus (and there may not be for many months), these types of drugs are designed to disrupt a virus' activity. For instance, the HIV drug Enfuvirtide blocks the virus from even attaching to human cells. Other drugs stop viruses from replicating, once they've already slipped inside a cell.

There's another very certain thing about viruses. Humanity has a ton to learn about them. There are countless species, and they're everywhere. "There are more viruses in this world than there are cells," said Duffy. But only 6,828 virus species have been formally named by scientists. Meanwhile, there could be millions more species out there. Finding and understanding theses microscopic entities could reveal much more about their nature, and "lives."

"We need more research, we need more researchers, we need more funding for research," said Relich.

Only in 1977 did humanity discover the third domain of life, a massive, ancient group of organisms called archaea (the other two domains are bacteria and eukaryotes which include humans.) What might the great diversity of viruses in this domain, still being discovered, tell us?

"Life continues to astound us," said Duffy. Indeed.

For now, we're focused on the minority of viruses that can threaten our ability to breathe, like the new coronavirus which can result in the serious respiratory disease COVID-19. And for good reason.

"It's to our own advantage to know our enemies as well as possible," said Relich.

Even if they can't be killed.

"Whether or not theyre alive, viruses influence life," said Duffy.

See the original post here:

You can't kill coronavirus. That's OK. - Mashable

10 Groundbreaking Medical Discoveries Made in NYC – Untapped New York – Untapped New York

In a time when New Yorks hospitals and research institutions are under significant pressure to treat sick patients and discover new vaccines and solutions to the coronavirus crisis, it is worth applauding the groundbreaking medical discoveries made in New York City that changed modern medicine forever. From detecting cervical cancer to identifying cystic fibrosis to showing that DNA serves as genetic material, New York City has paved the way for future research which saves the lives of thousands of people yearly.

Perhaps the vaccine for coronavirus will be discovered here. Multiple drug trials are underway in New York, the hardest hit state including using antibody injections and combinations of existing drugs, tests to identify those with antibodies, andwork is ongoing on a serological drug. Special thanks to the New York Academy of Medicine for their help with this article!

Former tuberculosis pavilion in Seaview Hospital

Seaview Hospital was once the largest tuberculosis sanatorium in the country, now listed on the U.S. National Register of Historic Places and is also a U.S. Historic District and New York City landmark. Opened in 1913, the hospital was designed by Raymond F. Allmiral reflecting the latest in thought about the treatment of tuberculosis, including light, cross-ventilation, access to the outdoors, and thought towards medical operational efficiency. At the time, fresh air, rest and a nutritious diet were the only prescribed treatments. At its opening,The New York Timesdeclared Seaview the largest and finest hospital ever built for the care and treatment of those who suffer from tuberculosis in any form.

Sea View hospital was the site of the first clinical trials for hydrazides treatments, which ultimately led to the discovery of the cure of the disease in 1957. The tuberculosis hospital gradually ceased operations in the late 1950s after the cure was discovered, and currently functions as a long term care facility.

View all on one page

Read the rest here:

10 Groundbreaking Medical Discoveries Made in NYC - Untapped New York - Untapped New York

Coronavirus vaccine: when will it be ready? – The Guardian

Even at their most effective and draconian containment strategies have only slowed the spread of the respiratory disease Covid-19. With the World Health Organization finally declaring a pandemic, all eyes have turned to the prospect of a vaccine, because only a vaccine can prevent people from getting sick.

About 35 companies and academic institutions are racing to create such a vaccine, at least four of which already have candidates they have been testing in animals. The first of these produced by Boston-based biotech firm Moderna will enter human trials imminently.

This unprecedented speed is thanks in large part to early Chinese efforts to sequence the genetic material of Sars-CoV-2, the virus that causes Covid-19. China shared that sequence in early January, allowing research groups around the world to grow the live virus and study how it invades human cells and makes people sick.

But there is another reason for the head start. Though nobody could have predicted that the next infectious disease to threaten the globe would be caused by a coronavirus flu is generally considered to pose the greatest pandemic risk vaccinologists had hedged their bets by working on prototype pathogens. The speed with which we have [produced these candidates] builds very much on the investment in understanding how to develop vaccines for other coronaviruses, says Richard Hatchett, CEO of the Oslo-based nonprofit the Coalition for Epidemic Preparedness Innovations (Cepi), which is leading efforts to finance and coordinate Covid-19 vaccine development.

Coronaviruses have caused two other recent epidemics severe acute respiratory syndrome (Sars) in China in 2002-04, and Middle East respiratory syndrome (Mers), which started in Saudi Arabia in 2012. In both cases, work began on vaccines that were later shelved when the outbreaks were contained. One company, Maryland-based Novavax, has now repurposed those vaccines for Sars-CoV-2, and says it has several candidates ready to enter human trials this spring. Moderna, meanwhile, built on earlier work on the Mers virus conducted at the US National Institute of Allergy and Infectious Diseases in Bethesda, Maryland.

Sars-CoV-2 shares between 80% and 90% of its genetic material with the virus that caused Sars hence its name. Both consist of a strip of ribonucleic acid (RNA) inside a spherical protein capsule that is covered in spikes. The spikes lock on to receptors on the surface of cells lining the human lung the same type of receptor in both cases allowing the virus to break into the cell. Once inside, it hijacks the cells reproductive machinery to produce more copies of itself, before breaking out of the cell again and killing it in the process.

All vaccines work according to the same basic principle. They present part or all of the pathogen to the human immune system, usually in the form of an injection and at a low dose, to prompt the system to produce antibodies to the pathogen. Antibodies are a kind of immune memory which, having been elicited once, can be quickly mobilised again if the person is exposed to the virus in its natural form.

Traditionally, immunisation has been achieved using live, weakened forms of the virus, or part or whole of the virus once it has been inactivated by heat or chemicals. These methods have drawbacks. The live form can continue to evolve in the host, for example, potentially recapturing some of its virulence and making the recipient sick, while higher or repeat doses of the inactivated virus are required to achieve the necessary degree of protection. Some of the Covid-19 vaccine projects are using these tried-and-tested approaches, but others are using newer technology. One more recent strategy the one that Novavax is using, for example constructs a recombinant vaccine. This involves extracting the genetic code for the protein spike on the surface of Sars-CoV-2, which is the part of the virus most likely to provoke an immune reaction in humans, and pasting it into the genome of a bacterium or yeast forcing these microorganisms to churn out large quantities of the protein. Other approaches, even newer, bypass the protein and build vaccines from the genetic instruction itself. This is the case for Moderna and another Boston company, CureVac, both of which are building Covid-19 vaccines out of messenger RNA.

Cepis original portfolio of four funded Covid-19 vaccine projects was heavily skewed towards these more innovative technologies, and last week it announced $4.4m (3.4m) of partnership funding with Novavax and with a University of Oxford vectored vaccine project. Our experience with vaccine development is that you cant anticipate where youre going to stumble, says Hatchett, meaning that diversity is key. And the stage where any approach is most likely to stumble is clinical or human trials, which, for some of the candidates, are about to get under way.

Clinical trials, an essential precursor to regulatory approval, usually take place in three phases. The first, involving a few dozen healthy volunteers, tests the vaccine for safety, monitoring for adverse effects. The second, involving several hundred people, usually in a part of the world affected by the disease, looks at how effective the vaccine is, and the third does the same in several thousand people. But theres a high level of attrition as experimental vaccines pass through these phases. Not all horses that leave the starting gate will finish the race, says Bruce Gellin, who runs the global immunisation programme for the Washington DC-based nonprofit, the Sabin Vaccine Institute.

There are good reasons for that. Either the candidates are unsafe, or theyre ineffective, or both. Screening out duds is essential, which is why clinical trials cant be skipped or hurried. Approval can be accelerated if regulators have approved similar products before. The annual flu vaccine, for example, is the product of a well-honed assembly line in which only one or a few modules have to be updated each year. In contrast, Sars-CoV-2 is a novel pathogen in humans, and many of the technologies being used to build vaccines are relatively untested too. No vaccine made from genetic material RNA or DNA has been approved to date, for example. So the Covid-19 vaccine candidates have to be treated as brand new vaccines, and as Gellin says: While there is a push to do things as fast as possible, its really important not to take shortcuts.

An illustration of that is a vaccine that was produced in the 1960s against respiratory syncytial virus, a common virus that causes cold-like symptoms in children. In clinical trials, this vaccine was found to aggravate those symptoms in infants who went on to catch the virus. A similar effect was observed in animals given an early experimental Sars vaccine. It was later modified to eliminate that problem but, now that it has been repurposed for Sars-CoV-2, it will need to be put through especially stringent safety testing to rule out the risk of enhanced disease.

Its for these reasons that taking a vaccine candidate all the way to regulatory approval typically takes a decade or more, and why President Trump sowed confusion when, at a meeting at the White House on 2 March, he pressed for a vaccine to be ready by the US elections in November an impossible deadline. Like most vaccinologists, I dont think this vaccine will be ready before 18 months, says Annelies Wilder-Smith, professor of emerging infectious diseases at the London School of Hygiene and Tropical Medicine. Thats already extremely fast, and it assumes there will be no hitches.

In the meantime, there is another potential problem. As soon as a vaccine is approved, its going to be needed in vast quantities and many of the organisations in the Covid-19 vaccine race simply dont have the necessary production capacity. Vaccine development is already a risky affair, in business terms, because so few candidates get anywhere near the clinic. Production facilities tend to be tailored to specific vaccines, and scaling these up when you dont yet know if your product will succeed is not commercially feasible. Cepi and similar organisations exist to shoulder some of the risk, keeping companies incentivised to develop much-needed vaccines. Cepi plans to invest in developing a Covid-19 vaccine and boosting manufacturing capacity in parallel, and earlier this month it put out a call for $2bn to allow it to do so.

Once a Covid-19 vaccine has been approved, a further set of challenges will present itself. Getting a vaccine thats proven to be safe and effective in humans takes one at best about a third of the way to whats needed for a global immunisation programme, says global health expert Jonathan Quick of Duke University in North Carolina, author of The End of Epidemics (2018). Virus biology and vaccines technology could be the limiting factors, but politics and economics are far more likely to be the barrier to immunisation.

The problem is making sure the vaccine gets to all those who need it. This is a challenge even within countries, and some have worked out guidelines. In the scenario of a flu pandemic, for example, the UK would prioritise vaccinating healthcare and social care workers, along with those considered at highest medical risk including children and pregnant women with the overall goal of keeping sickness and death rates as low as possible. But in a pandemic, countries also have to compete with each other for medicines.

Because pandemics tend to hit hardest those countries that have the most fragile and underfunded healthcare systems, there is an inherent imbalance between need and purchasing power when it comes to vaccines. During the 2009 H1N1 flu pandemic, for example, vaccine supplies were snapped up by nations that could afford them, leaving poorer ones short. But you could also imagine a scenario where, say, India a major supplier of vaccines to the developing world not unreasonably decides to use its vaccine production to protect its own 1.3 billion-strong population first, before exporting any.

Outside of pandemics, the WHO brings governments, charitable foundations and vaccine-makers together to agree an equitable global distribution strategy, and organisations like Gavi, the vaccine alliance, have come up with innovative funding mechanisms to raise money on the markets for ensuring supply to poorer countries. But each pandemic is different, and no country is bound by any arrangement the WHO proposes leaving many unknowns. As Seth Berkley, CEO of Gavi, points out: The question is, what will happen in a situation where youve got national emergencies going on?

This is being debated, but it will be a while before we see how it plays out. The pandemic, says Wilder-Smith, will probably have peaked and declined before a vaccine is available. A vaccine could still save many lives, especially if the virus becomes endemic or perennially circulating like flu and there are further, possibly seasonal, outbreaks. But until then, our best hope is to contain the disease as far as possible. To repeat the sage advice: wash your hands.

This article was amended on 19 March 2020. An earlier version incorrectly stated that the Sabin Vaccine Institute was collaborating with the Coalition for Epidemic Preparedness Innovations (Cepi) on a Covid-19 vaccine.

Link:

Coronavirus vaccine: when will it be ready? - The Guardian

Twelve Women Who Have Shaped The History of the BioHealth Capital Region – BioBuzz

The BioHealth Capital Region (BHCR) and its life science ecosystem have a rich and deep history of pioneering scientific innovation, research, development, and commercialization. The regions history has been written by life science anchor companies, scientific research universities, government research organizations, rich startup culture, and serial entrepreneurs, all of whom have played critical roles in transforming the BHCR into one of the most innovative and productive biocluster in the world.

Contributions to the BHCRs legacy of life science achievement have emerged from all staffing levels, various labs, countless executive teams, numerous entrepreneurs and biohub support organizations. Contributions have arisen from an intricate tapestry of backgrounds and cultures.

Women, in particular, have had a strong hand in shaping the history of the BHCR. In celebration of Womens History Month, were taking a closer look at the achievements of female life science leaders that have laid the groundwork for the next generation of women trailblazers in the BHCR and made the region what it is today.

Dr. Fraser is one of the most influential figures in BHCR history. In 1995, she was the first to map the complete genetic code of a free-living organism while at the Institute for Genomic Research (TIGR) in Rockville, Maryland. It was there that the automation of the DNA sequencing process made the idea of large-scale sequencing efforts tangible. As President and Director of TIGR, Fraser and her team gained worldwide public notoriety for its involvement in the Human Genome Project, which was completed in 2000 with the presentation of a working draft of the fully sequenced human genome.

As a leader, Fraser provided her researchers with the infrastructure to collaborate and apply multi-disciplinary team science and empowered them to think big. She is also most importantly known for how she challenged her team to ask the right questions, which is the root of scientific progress and success.

Her work at TIGR and as part of the Human Genome Project are foundational events in the regions history, as it marked the BHCR as the epicenter of genomic research and helped spark the regions biotech boom. In fact, it was a controversial partnership with TIGR that gave Human Genome Sciences(HGSi) the first opportunity to utilize any sequences emerging from TIGR labs. The mass of genetic information and sequences, especially that associated with diseases, that HGSi acquired catapulted them into biotech history and an important anchor company within the region.

Dr. Fraser is widely viewed as a pioneer and global leader in genomic medicine; she has published approximately 320 scientific publications and edited three books; she is also one of the most widely cited microbiology experts in the world. She founded the Institute for Genome Sciences at the University of Maryland in 1997. The institute currently holds 25 percent of the funding thats been awarded by the Human Microbiome Project and has been referred to as The Big House in genetics.

Dr. Judy Britz is yet another female life science pioneer that put the BHCR on the map. While working as a research scientist at Electro-Nucleonics Inc., Dr. Britz developed one of the first licensed blood screening tests for HIV, and launching a storied career that has spanned approximately 25 years. She is also a serial entrepreneur that has successfully raised $50M in capital and served as the top executive for two highly successful Maryland-located companies.

Dr. Britz was the first woman to lead the states biotech initiative as the first announced Executive Director of the Maryland Biotech Center. The center was launched under the Maryland Department of Commerce to deploy a strategic life science economic development plan under Governor Martin OMalleys $1.3B, 2020 Vision and to be a one-stop-shop and information center to promote and support biotechnology innovation and entrepreneurship in Maryland.

Judy was the first woman to lead Marylands life sciences initiative, bringing industry experience and perspective to the states economic development activities, a focus still maintained under Governor Hogans leadership today, shared Judy Costello, Managing Director, Economic Development BioHealth Innovation, Inc., who served as Deputy Director under Dr. Britz.

Much of the work done by Dr. Britz and her team laid the foundation and seeded the commercialization efforts that have blossomed into the thriving #4 Biotech Hub that we have today.

GeneDx was founded by Dr. Bale and Dr. John Compton in 2000. The company recently celebrated its 20th anniversary. Since its founding, GeneDx has become a global leader in genomics and patient testing. Under her leadership, the Gaithersburg, Maryland company has played an important role in the history of genetic sequencing and the rise of the BHCR as a global biohealth cluster.

GeneDx was the very first company to commercially offer NGS (Next Generation Sequencing) testing in a CLIA (Clinical Laboratory Improvement Amendments) lab and has been at the leading edge of genetic sequencing and testing for two decades. The companys whole exome sequencing program and comprehensive testing capabilities are world-renowned.

Prior to launching GeneDx, Dr. Bale spent 16 years at NIH, the last nine as Head of the Genetic Studies Section in the Laboratory of Skin Biology. She has been a pioneer during her storied career, publishing over 140 papers, chapters and books in the field. Her 35-year career includes deep experience in clinical, cytogenetic, and molecular genetics research.

Prior to being named CEO and Chair of the Board of Sequella in 1999, Dr. Nacy was the Chief Science Officer and an Executive VP at EntreMed, Inc. EntreMed was one of the most influential BHCR companies in the 1990s. EntreMed, MedImmune, Human Genome Sciences and Celera Genomics all played critical roles in creating the globally recognized, top biocluster that the BHCR has become.

After earning her Ph.D. in biology/microbiology from Catholic University, Nacy did her postdoc work at the Walter Reed Army Institute of Research in the Department of Rickettsial Diseases; her postdoc performance earned a full-time position at Walter Reed that started a 17-year career at the institute. After a highly successful run, Nacy left Walter Reed to join EntreMed.

Today, Dr. Nacy leads Rockville, Marylands Sequella, a clinical-stage pharmaceutical company focused on developing better antibiotics to fight drug-resistant bacterial, fungal and parasitic infections. Sequellas pipeline of small molecule infectious disease treatments have the potential to improve the treatment and outcomes for the over 3 billion people worldwide that are impacted by increasingly drug-resistant infectious diseases.

Emmes Corporation is the largest woman-led organization in the BHCR and is headed by Dr. Lindblad, who started her career at Emmes in 1982 as a biostatistician. She has been with Emmes for nearly 40 years, ascending to become VP in 1992, Executive VP in 2006 and ultimately the companys CEO in late summer of 2013.

Dr. Lindblad has published more than 100 publications and presentations has served as a reviewer of grant and contract applications for the National Institutes of Health (NIH) and has chaired or served on Safety and Data Monitoring Committees across multiple disease areas. Emmes is a life science anchor company for the BHCR, employing more than 600 staff globally with its headquarters in Rockville, Maryland.

Under Kings leadership, GlycoMimetics (GMI), an oncology-focused biotech, went public, secured an exclusive global licensing agreement with Pfizer and was instrumental in raising significant amounts of capital for the company. She was also the first woman Chair of Biotechnology Innovation Associations (BIO, 2013-14), where she still plays an active role on BIOs Executive Committee.

A graduate of Dartmouth College and Harvard Business School, King has had a celebrated career in both biopharma and finance. Prior to becoming CEO of GMI, King served as an Executive in Residence for New Enterprise Associates (NEA), one of the leading venture capital firms in the U.S. She has also held the position of Senior Vice President of Novartis-Corporation. King joined Novartis after a remarkable ten year run with Genetic Therapy, Inc. where she was named CEO after helping Genetic Therapy navigate the organization through various growth stages, including the companys sale to Novartis. King was named the Maryland Tech Councils Executive of the Year in 2013, the Top 10 Women in Biotech by FierceBio and has served on multiple boards across her career.

Dr. Connolly has had a pioneering career in the life sciences. She was the very first woman to graduate from Johns Hopkins Universitys Biomedical Engineering Doctoral Program in 1980. She was also a member of the first female undergraduate class entering Stevens Institute of Technology in 1971.

For decades, Dr. Connolly tirelessly worked to build up what is now known as the BHCR. In 1997, shortly before the region gained wider recognition as a biotech hub, she was the first person to be designated the state of Marylands biotechnology representative. Dr. Connollys career has spanned academia, government, and industry, including co-founding a startup and working as the Business Development Director for EntreMed, Inc., an original BHCR anchor company. She is the former Director of Maryland Industrial Partnerships Program (MIPS) and was inducted into the College of Fellows by the American Institute for Medical and Biological Engineering (AIMBE) in 2013.

Dr. Kirschstein played an enormous role in shaping the BHCR as NIH Deputy Director from 1993 to 1999 during the regions early formative years. She also served as Acting Director of NIH in 1993 and from 2000 to 2002. A pathologist by training, she received her medical degree from Tulane University in 1951 and went on to a long, successful career at the Division of Biologics Standards that lasted from 1957 to 1972.

While at the Division of Biologics Standards, Dr. Kirschstein played an important role in testing the safety of viral vaccines and helped select the Sabin polio vaccine for public use. She eventually ascended to Deputy Director of the group in 1972 and was later appointed the Deputy Associate Commissioner for Science at the FDA. In 1974 she became the Director of the National Institute of Medical Sciences at NIH and served in that role for 19 years.

Her awards and accolades are too numerous to list, but one notable honor came in 2000 when she received the Albert B. Sabin Heroes of Science Award from the Americans for Medical Progress Education Foundation.

Lastly, we want to recognize four additional women for their contributions to launching an organization that has impacted thousands of women by promoting careers, leadership, and entrepreneurship for women in the life sciences Women In Bio.

Women In Bio (WIB), one of the most important and influential support organizations for women in the life sciences, was founded in 2002 to help women entrepreneurs and executives in the Baltimore-Washington-Northern Virginia area build successful bioscience-related businesses. WIB started as a BHCR organization but has expanded its footprint to 13 chapters across the U.S. with 225 volunteer leaders and 2,600 members. The non-profit group has created a forum for female life science entrepreneurs and executives based on its core philosophy of women helping women.

WIB founders are Anne Mathias, a local venture capitalist and current Senior Strategist with Vanguard;

Elizabeth Gray, co-founder of Gabriel Pharma and current Partner at Willkie Farr & Gallagher LLP;

Robbie Melton, former Director of Entrepreneurial Innovation at TEDCO and current Director of Kauai County, Hawaiis Office of Economic Development;

and Cynthia W. Hu, COO, and General Counsel at CASI Pharmaceuticals.

In conclusion, we can not fairly capture the true history of life science and the BioHealth Capital Region without giving special recognition to Henrietta Lacks. In 1951 a Johns Hopkins researcher created the first immortal human cell line from cervical cancer cells taken from Lacks. That cell line, known as HeLa, is the oldest and most commonly used human cell line which was essential in developing the polio vaccine and has been used in scientific landmarks such as cloning, gene mapping and in vitro fertilization.

Though she was a black tobacco farmer from southern Virginia, her impact on science and medicine is unquestionable. She never knew that the Doctor took a piece of her tumor that would be used by scientists who had been trying to grow tissues in culture for decades without success. For some reason, that is still unknown, but her cells never died and the first immortal human cell line was born.

Thank you to all of the women who have been so influential in shaping the field of science, the industry of biotechnology and the BioHealth Capital Region.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

See the original post:

Twelve Women Who Have Shaped The History of the BioHealth Capital Region - BioBuzz

Alnylam Pharmaceuticals and Gen Sign Distribution Agreement in Turkey for ONPATTRO (patisiran), the First-in-Class Gene-Silencing RNAi Therapeutic -…

Alnylam Pharmaceuticals, Inc. (Nasdaq: ALNY), the leading RNAi therapeutics company, and Gen, a GMP-certified pharmaceutical company specializing in rare diseases, today announced an exclusive Distribution Agreement for ONPATTRO, a first-in-class RNAi therapeutic for the treatment of hATTR amyloidosis in adults with Stage 1 or Stage 2 polyneuropathy.

"Our partnership with Gen enables us to extend access to ONPATTRO to patients suffering from hereditary ATTR (hATTR) amyloidosis with polyneuropathy in Turkey where we currently dont have a presence," said Brendan Martin, Vice President and Acting Head of Canada, Europe, Middle East and Africa, Alnylam Pharmaceuticals. "There are a significant number of patients in Turkey who urgently need new treatment options and we are delighted to partner with Gen to bring ONPATTRO to those in need."

Abidin Glms, CEO of Gen stated: "We are proud of our reputation as one of Turkey's leading specialty pharmaceutical companies and are excited to have partnered with Alnylam. Through collaborations with leading international companies, we aim to bring innovative medicines to patients in Turkey in the fastest and most reliable way possible."

Patients in Turkey were among those who participated in the randomized, double-blind, placebo-controlled, global Phase 3 APOLLO study, the largest-ever study in hATTR amyloidosis patients with polyneuropathy, which led to the approval of ONPATTRO in the U.S. and EU in 2018.

About ONPATTRO (patisiran)

ONPATTRO is an RNAi therapeutic that was approved in the United States and Canada for the treatment of the polyneuropathy of hATTR amyloidosis in adults. ONPATTRO is also approved in the European Union, Switzerland and Brazil for the treatment of hATTR amyloidosis in adults with Stage 1 or Stage 2 polyneuropathy, and in Japan for the treatment of hATTR amyloidosis with polyneuropathy. Based on Nobel Prize-winning science, ONPATTRO is an intravenously administered RNAi therapeutic targeting transthyretin (TTR). It is designed to target and silence TTR messenger RNA, thereby blocking the production of TTR protein before it is made. ONPATTRO blocks the production of TTR in the liver, reducing its accumulation in the bodys tissues in order to halt or slow down the progression of the polyneuropathy associated with the disease. For more information about ONPATTRO, visit ONPATTRO.com.

Story continues

Important Safety Information (ISI) for ONPATTRO

Infusion-Related Reactions

Infusion-related reactions (IRRs) have been observed in patients treated with patisiran. In a controlled clinical study, 19% of patisiran-treated patients experienced IRRs, compared to 9% of placebo-treated patients. The most common symptoms of IRRs with patisiran were flushing, back pain, nausea, abdominal pain, dyspnoea, and headache. Hypotension, which may include syncope, has also been reported as a symptom of IRRs.

To reduce the risk of IRRs, patients should receive premedication with a corticosteroid, paracetamol, and antihistamines (H1 and H2 blockers) at least 60 minutes prior to patisiran infusion. Monitor patients during the infusion for signs and symptoms of IRRs. If an IRR occurs, consider slowing or interrupting the infusion and instituting medical management as clinically indicated. If the infusion is interrupted, consider resuming at a slower infusion rate only if symptoms have resolved. In the case of a serious or life-threatening IRR, the infusion should be discontinued and not resumed.

Reduced Serum Vitamin A Levels and Recommended Supplementation

Patisiran treatment leads to a decrease in serum vitamin A levels. Patients receiving patisiran should take oral supplementation of approximately 2500 IU vitamin A per day to reduce the potential risk of ocular toxicity due to vitamin A deficiency. Doses higher than 2500 IU vitamin A per day should not be given to try to achieve normal serum vitamin A levels during treatment with patisiran, as serum levels do not reflect the total vitamin A in the body. Patients should be referred to an ophthalmologist if they develop ocular symptoms suggestive of vitamin A deficiency (e.g. including reduced night vision or night blindness, persistent dry eyes, eye inflammation, corneal inflammation or ulceration, corneal thickening or corneal perforation).

Adverse Reactions

The most common adverse reactions that occurred in patients treated with patisiran were peripheral oedema (30%) and infusion-related reactions (19%).

About RNAi

RNAi (RNA interference) is a natural cellular process of gene silencing that represents one of the most promising and rapidly advancing frontiers in biology and drug development today. Its discovery has been heralded as "a major scientific breakthrough that happens once every decade or so," and was recognized with the award of the 2006 Nobel Prize for Physiology or Medicine. By harnessing the natural biological process of RNAi occurring in our cells, a new class of medicines, known as RNAi therapeutics, is now a reality. Small interfering RNA (siRNA), the molecules that mediate RNAi and comprise Alnylams RNAi therapeutic platform, function upstream of todays medicines by potently silencing messenger RNA (mRNA) the genetic precursors that encode for disease-causing proteins, thus preventing them from being made. This is a revolutionary approach with the potential to transform the care of patients with genetic and other diseases.

About Alnylam

Alnylam (Nasdaq: ALNY) is leading the translation of RNA interference (RNAi) into a whole new class of innovative medicines with the potential to transform the lives of people afflicted with rare genetic, cardio-metabolic, hepatic infectious, and central nervous system (CNS)/ocular diseases. Based on Nobel Prize-winning science, RNAi therapeutics represent a powerful, clinically validated approach for the treatment of a wide range of severe and debilitating diseases. Founded in 2002, Alnylam is delivering on a bold vision to turn scientific possibility into reality, with a robust RNAi therapeutics platform. Alnylams commercial RNAi therapeutic products are ONPATTRO (patisiran), approved in the U.S., EU, Canada, Japan, Brazil and Switzerland, and GIVLAARI (givosiran), approved in the U.S and the EU. Alnylam has a deep pipeline of investigational medicines, including five product candidates that are in late-stage development. Alnylam is executing on its "Alnylam 2020" strategy of building a multi-product, commercial-stage biopharmaceutical company with a sustainable pipeline of RNAi-based medicines to address the needs of patients who have limited or inadequate treatment options. Alnylam is headquartered in Cambridge, MA.

About Gen

Gen is the fastest growing pharmaceutical company in Turkey. Teamed up with its leading international partners and compliant with ethical and scientific principles, Gen supplies products used in treatment of rare diseases and disorders in different branches and aims to bring these products to patients in the easiest, fastest and most reliable way possible while striving to find and bring new treatments to patients with unmet medical needs. With its GMP certificated production facility based in Ankara, Gen exports its products to different countries and has offices in Ankara (HQ), stanbul, zmir, Trabzon, Azerbaijan, Kazakhstan and Russia with 400+ employees. For more information please visit the Gen website.

Alnylam Forward Looking Statements

Various statements in this release concerning future expectations, plans and prospects, including, without limitation, Alnylam's views and plans with respect to the ability to extend patient access to ONPATTRO in Turkey through the announced Distribution Agreement with Gen, and the number of patients in Turkey within the approved indication for ONPATTRO who are in need of new treatment options, Gens views and plans with respect to the speed and reliability with which it is able to bring innovative medicines to patients in Turkey, and Alnylams expectations regarding the continued execution on its "Alnylam 2020" guidance for the advancement and commercialization of RNAi therapeutics, constitute forward-looking statements for the purposes of the safe harbor provisions under The Private Securities Litigation Reform Act of 1995. Actual results and future plans may differ materially from those indicated by these forward-looking statements as a result of various important risks, uncertainties and other factors, including, without limitation: Alnylam's ability to discover and develop novel drug candidates; the pre-clinical and clinical results for its product candidates, which may not be replicated or continue to occur in other subjects or in additional studies or otherwise support further development of product candidates for a specified indication or at all; actions or advice of regulatory agencies, which may affect the design, initiation, timing, continuation and/or progress of clinical trials or result in the need for additional pre-clinical and/or clinical testing; delays, interruptions or failures in the manufacture and supply of its product candidates or its marketed products, including ONPATTRO in Turkey; obtaining, maintaining and protecting intellectual property; intellectual property matters including potential patent litigation relating to its platform, products or product candidates; obtaining regulatory approval for its product candidates, including lumasiran and product candidates developed in collaboration with others, including inclisiran, and maintaining regulatory approval and obtaining pricing, reimbursement and access for its products, including ONPATTRO and GIVLAARI; progress in continuing to establish a commercial and ex-United States infrastructure, including in Europe; successfully launching, marketing and selling its approved products globally, including ONPATTRO and GIVLAARI, and achieve net product revenues for ONPATTRO within its expected range during 2020; potential risks to Alnylams business, activities and prospects as a result of the COVID-19 pandemic, or delays or interruptions resulting therefrom, including without limitation, any risks affecting access to ONPATTRO in Turkey, Alnylams ability to successfully expand the indication for ONPATTRO in the future; competition from others using technology similar to Alnylam's and others developing products for similar uses; Alnylam's ability to manage its growth and operating expenses within the ranges of its expected guidance and achieve a self-sustainable financial profile in the future, obtain additional funding to support its business activities, and establish and maintain strategic business alliances and new business initiatives; Alnylam's dependence on third parties, including Regeneron, for development, manufacture and distribution of certain products, including eye and CNS products, and Ironwood, for assistance with the education about and promotion of GIVLAARI in the U.S.; the outcome of litigation; the risk of government investigations; and unexpected expenditures, as well as those risks more fully discussed in the "Risk Factors" filed with Alnylam's most recent Annual Report on Form 10-K filed with the Securities and Exchange Commission (SEC) and in other filings that Alnylam makes with the SEC. In addition, any forward-looking statements represent Alnylam's views only as of today and should not be relied upon as representing its views as of any subsequent date. Alnylam explicitly disclaims any obligation, except to the extent required by law, to update any forward-looking statements.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200325005133/en/

Contacts

Alnylam Pharmaceuticals, Inc. Christine Regan Lindenboom(Investors and Media)+1-617-682-4340

Fiona McMillan(Media, Europe)+44 1628 244960

Gen Ayhan Yener, MD(Medical Director)+90 554 566 57 40

View post:

Alnylam Pharmaceuticals and Gen Sign Distribution Agreement in Turkey for ONPATTRO (patisiran), the First-in-Class Gene-Silencing RNAi Therapeutic -...

The Harvard Wyss Institute’s response to COVID-19: beating back the coronavirus – P&T Community

BOSTON, March 25, 2020 /PRNewswire/ -- The burgeoning coronavirus (COVID-19) global pandemic has already killed thousands of people worldwide and is threatening the lives of many more. In an effort to limit the virus from spreading, Harvard University was among the first organizations to promote social distancing by requiring all but the most essential personnel to work remotely. However, labs that perform vital COVID-19-related research are permitted to continue their potentially life-saving work and many of these activities are currently ongoing at the Wyss Institute for Biologically Inspired Engineering.

Essentially all medical treatment centers impacted by SARS-CoV2 (CoV2), the SARS-family virus that causes COVID-19, are overstrained or unable to confront the virus, starting from their ability to diagnose the virus' presence in the human body, treat all infected individuals, or prevent its spread among those that have not been infected yet. Therefore, finding better solutions to diagnose, treat, and prevent the disease, is key to combating this menace and bringing this pandemic under control. Equally concerning, there are worldwide shortages on the front lines in hospitals in our region and around the world, including rapidly depleting supplies of personal protective equipment, such as N95 face masks, and nasopharyngeal swabs needed for COVID-19 diagnostic testing. Solving these challenges requires rapid responses and creative solutions.

"With our highly multi-disciplinary and translation-focused organization, we [the Wyss Institute] were able to quickly pivot, and refocus our unique engineering capabilities on much needed diagnostic, therapeutic, and vaccine solutions, and we hope to be part of the solution for many of the innumerable problems the present pandemic poses," said Wyss Institute Founding Director Donald Ingber,M.D., Ph.D., who also is theJudah Folkman Professor of Vascular Biologyat Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). "We strive to make a major contribution to bringing this crisis under control, and are confident that what we accomplish under duress now will help prevent future epidemics."

Meeting challenges on the front lines of patient care

Many of the Institute's hospital partner institutions and government agencies have reached out to Institute leadership to assist in this rapidly escalating battle against COVID-19. Ingber's team is working closely with collaborators at Beth Israel Deaconess Medical Center(BIDMC), other Harvard-affiliated hospitals, and generous corporate partners to develop potential solutions to the increasing shortage of nasopharyngeal swabs and N95 face masks. Senior Staff Engineers Richard Novak, Ph.D., and Adama Sesay, Ph.D., and Senior Research Scientist Pawan Jolly, Ph.D., are working diligently with our clinical partners to help devise a solution as quickly as possible.

Diagnosing COVID-19 more quickly, easily, and broadly

With COVID-19 rapidly spreading around the planet, the efficient detection of the CoV2 virus is pivotal to isolate infected individuals as early as possible, support them in whatever way possible, and thus prevent the further uncontrolled spread of the disease. Currently, the most-performed tests are detecting snippets of the virus' genetic material, its RNA, by amplifying them with a technique known as "polymerase chain reaction" (PCR) from nasopharyngeal swabs taken from individuals' noses and throats.

The tests, however, have severe limitations that stand in the way of effectively deciding whether people in the wider communities are infected or not. Although PCR-based tests can detect the virus's RNA early on in the disease, test kits are only available for a fraction of people that need to be tested, and they require trained health care workers, specialized laboratory equipment, and significant time to be performed. In addition, health care workers that are carrying out testing are especially prone to being infected by CoV2. To shorten patient-specific and community-wide response times, Wyss Institute researchers are taking different parallel approaches:

Advancing antiviral therapeutics on the fast track

To date there is no antiviral drug that has been proven to reduce the intensity and duration of the infection in more seriously affected patients, or protect vulnerable patients from CoV2 infection. Doctors can merely provide supportive care to their COVID-19 patients by making sure they receive enough oxygen, managing their fever, and generally supporting their immune systems to buy them time to fight the infection themselves. Research groups in academia and industry working at breakneck pace by now have compiled a list of candidate therapeutics and vaccines to could offer some help. However, given the high failure rates of candidate drugs in clinical trials, more efforts are needed to develop effective medicines for a world population that likely will vary with regards to their susceptibility and access to new therapeutic technologies.

The ongoing COVID-19 pandemic requires rapid action, and the fastest way to combat this challenge is by repurposing existing drugs that are already FDA approved for other medical applications as COVID-19 therapeutics. While clinicians around the world are attempting to do this, the approaches have been haphazard, and there is a great need to attack this problem in a systematic way.

In search of ultimate protection a vaccine

With no vaccine currently available, but several vaccine candidates being explored around the world, Wyss Institute researchers led by Wyss Core Faculty member David Mooney,Ph.D., are developing a material that could make vaccinations more effective. Previously, Mooney's team has developed implantable and injectable cancer vaccinesthat can induce the immune system to attack and destroy cancer cells.

Understanding how COVID-19 develops and how to control it

COVID-19 does not strike equally strong in every individual that it infects. Independent of age, some are prone to become seriously ill, while others show an astonishing level of resilience against the disease. Figuring out the biological basis for these differences could lead to new protective strategies.

On the national level, Walt is a member of a COVID-19 discussion started at the National Academies' newly formed "Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats." The committee is strongly focusing now on the present coronavirus pandemic to find ways to help the federal government consolidate and streamline efforts across the nation but will also work long-term to develop strategies and make recommendations for future health threats.

At the international level, the Wyss Institute functions as a Center of Excellence of the Global Virus Network(GVN), with Ingber as leader and the other Wyss Faculty as key participating members. The GVN is designed to integrate surveillance and response efforts for biothreats, epidemics, and pandemics by integrating efforts of top virus research institutions from around the world.Ingber is also currently working closely with the Defense Advanced Research Projects Agency(DARPA) and Bill & Melinda Gates Foundation, as well as in active discussions with the NIH's National Institute of Allergy and Infectious Diseases(NIAID), Biomedical Advanced Research and Development Authority(BARDA), and Public Health England, as they all try to align and coordinate efforts to meet this monumental health challenge.

"The Wyss Institute and its collaborators are taking exactly the type of comprehensive, integrated approach to addressing this pandemic that is required at local, national, and international levels," said Walt.

PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBenjamin Boettner,benjamin.boettner@wyss.harvard.edu, +1917-913-8051

The Wyss Institute for Biologically Inspired Engineering at Harvard University(http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, DanaFarber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charit Universittsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

View original content to download multimedia:http://www.prnewswire.com/news-releases/the-harvard-wyss-institutes-response-to-covid-19-beating-back-the-coronavirus-301029871.html

SOURCE Wyss Institute for Biologically Inspired Engineering at Harvard University

Continue reading here:

The Harvard Wyss Institute's response to COVID-19: beating back the coronavirus - P&T Community

How long will we have to wait for a coronavirus vaccine? – Telegraph.co.uk

Disease modelling experts have warned that the shut down imposed on the UK may have to last until a vaccine is available. This isbecause as soon the population comes out of its enforced hibernation the coronavirus will start to spread once more.

The bad news is that that a vaccineis unlikely tobe ready for worldwide use by the beginning of the next year at the earliest.

Covid-19has also mutated into two strains, one which appears to be far more aggressive, scientists have said, in a discovery which could hinder attempts to develop a vaccine.

And health experts have warned that the virus could hit Britain in "multiple waves", and led to fears that some vaccines might not work on mutated strains.

That's the bad news. The good news is that the world has never been more geared up to develop technologies against emerging infectious diseases than it is today.

The rapid genetic sequencing and open publication of the virus by Chinese scientists has been a boon for researchers who have been working against the clock to produce a preventive jab or pill, as well astreatments and diagnostics.

British scientists are competing with dozens of laboratories around the world to be the first to develop a drug. Last week, scientists at Public Health England said that trials of a vaccine could begin within the next month.

Human trials on the vaccine have already startedin the United States - breaking records for the speed with which such trials can get off the ground. Healthy volunteers in Americaare being given the new-generation genetic hack after it bypassed standard animal testing as part of a highly accelerated process.

If proven safe and effective, larger "live situation" trials will be carried out to see whether inoculation works on patients infected withCovid-19. If successful, pharmaceutical industry leaders hope there could be millions of doses ready within 12 to 18 months, but admit its aspirational.

Professor Robin Shattock and his team at the Department of Infectious Disease atImperial College London developed a candidate vaccine within 14 days of getting the sequence from China. They have been testing it on animals since February 10 and hope to move to clinical trials in the summer if they can secure funding.

Other than creating a traditional antibody jab, the Imperial drug works by effectively injecting new genetic code into a muscle, instructing it to make a protein found on the surface of coronavirus, which triggers a protective immune response.

"We have the kind of technology to be able to generate a vaccine with a speed that's never been realised before," said Prof Shattock. "Most vaccines are five years in the discovery phase, and at least one or two years to manufacture and get into trials.

"We may not be the first, but it only requires one group to get there. We're only one party and at some point we might say: 'Somebody else is ahead, we should stop working'. While we want to go the whole way, we're also prepared to stand down."

One crucial advance aiding vaccine research is the development of an organisation called Cepi, set up in response to the lack of scientific progress when Ebola ripped through West Africa in 2014 to 2016.

Cepi's mission is to rapidly respond to epidemics by providing the money to researchers to develop vaccines.

It harnesses the power of so-called "rapid response platforms"which use what its chief executive, Dr Richard Hatchett, describes as a "common backbone"that can be adapted quickly for different pathogens by inserting new genetic or protein sequences.

It is already working on the development of a vaccine against another coronavirus - Middle East respiratory syndrome (Mers) - and in January, Cepi announced that a vaccine for Covid-19 would be ready for testing by the end of May.

But the biggest hurdle for vaccine development is manufacture and distribution at scale.Even the most optimistic pharmaceutical executive would be inclined to suggest the vaccinewould only be ready by the end of this year.

Andit would probably be given to what public health experts call "key populations"first - health workers, vulnerable groups and the contacts of affected patients - before any nationwide mass vaccination programme took place.

But what doctors are pinning their hopes on - more than vaccines - are drugs for other diseasesthat they are repurposing to treat coronavirus patients.

The most promising of these is a drug called remdesivir, a broad-spectrum antiviral treatment developed by drug firm Gilead that began testing earlier this week.

The drug was developed for Ebola and was used to treat the Scottish nurse Pauline Cafferkey when she suffered a relapse 18 months after being cleared of the disease which she contracted while volunteering in Sierra Leone.

Doctors in the United States first used the drug in January on a patient who was not responding to other treatment- within 24 hours, he showed improvements, eventually making a full recovery.

HIV antiviral drugs have also been flagged as potential options, and there are several studies ongoing in China looking at a combination of lopinavir and ritonavir, both of which work to lower the levels of HIV in the bloodstream.

Earlier this month doctors in Thailand claimed that, 48 hours after taking a cocktail of these HIV drugs alongside a flu treatment, a patient tested negative for the coronavirus.

Sir Jeremy Farrar, director of the UK biomedical research charity Wellcome, said using existing drugs makes sense because all the safety and efficacy testing has already been carried out.

But before we can start hailing any miracle cures,proper clinical trials must be conducted.

"Do the drugs work?" Sir Jeremy asks.

"We just don't know, but we won't know unless we look."

The virus has evolved into two major lineages - dubbed L and S types. The older S-type appears to be milder and less infectious, while the L-type which emerged later, spreads quickly and currently accounts for around 70 per cent of cases.

In addition, genetic analysis of a man in the US who tested positive on January 21 also showed it is possible to be infected with both types.

Experts suggest that while Covid-19's mutation makes it more difficult to develop a vaccine, a vaccine is still possible.

Dr Stephen Griffin, of the Leeds Institute of Medical Research and chair of the virus division at the Microbiology Society, said that two of the changes between the S and L lineages were in a crucial protein called a spike, which plays a key role in the infection process and is a target for vaccines.

Dr Griffin said developers would need to test whether their prototype vaccines would still neutralise viruses with the changes, but added that the variations were "fairly limited" and may not be a "huge hurdle."

It is usually the case that when RNA viruses first cross species barriers into humans they arent particularly well adapted to their new host - us! said Dr Griffin.

Thus, they usually undergo some changes allowing them to adapt and become better able to replicate within, and spread from human-to-human.

Virologist Professor Jonathan Ball also warned that mutations could affect vaccine production, but said that the Chinese results needed replication with a larger study.

At the moment we don't have hard evidence that the virus has changes with regards to disease severity or infectivity so we need to be cautious when interpreting these kinds of computer-based studies, interesting as they might be, he added.

New mutations were also discovered in the case of a 61-year-old man from Brazil, although ProfessorDavid Heymann of the London School of Hygiene and Tropical Medicine said a vaccine should still work on the emerging strain.

Nothing has occurred that is major and this virus appears to be stable, he said.

Small mutations are normal, especially with RNA viruses. We look for the parts of the virus that are most sustained.

Read the original:

How long will we have to wait for a coronavirus vaccine? - Telegraph.co.uk

Football: Ryan Day and staff transitioning to work-from-home mode – OSU – The Lantern

Conference calls, FaceTime calls, calls to players and staff, calls to recruits, calls with trainers, calls with families and mornings filled with film study this is what running the Ohio State football program looks like for head coach Ryan Day during the COVID-19 pandemic.

Twice a week, Day holds a conference call with his staff to evaluate each player on academics, strength and conditioning, and football development.

He uses personal calls to direct players on how to stay in shape and continue growing in their football skills.

Day said that one minute he could be watching Tiger King on Netflix or perfecting his chili recipe, but if his phone rings the next minute, he doesnt miss it.

Its always right there, Day said during a teleconference call with media members Wednesday. I cant tell you how many times weve sat down as a family to do something and the phone rings, and then Im off and running.

All of college football holds steady, with spring practice canceled across the country and plans for the future still uncertain. The calls Day is making now will significantly impact how well his team transitions through the COVID-19 quarantine into the 2020 football season.

It is what it is, and its the same for everybody else throughout the country, Day said. Good news for us is, a lot of our young guys played especially in those first 10 games they got a lot of snaps. Some kids got over 200, 250, 300 snaps last year. Quarterback is returning. So I feel like in terms of game readiness that we do have a fairly veteran team.

Under normal circumstances, Ohio State would have held its Pro Day Wednesday and completed its seventh spring practice Thursday.

Instead, the Buckeyes are spread across the country. Most players living in dorms have returned home, with the exception of those who applied for exemptions to stay on campus, Day said. The Woody Hayes Athletic Center is closed to all organized activity.

At this point, guys are just at their house, doing their first week of academics, Day said. All of our stuff has been moved online or virtual.

Constant interaction and communication with players and their families has been second only to personal health for the staff, he added.

Day said the team wants to maintain the structure to which players are accustomed when not under quarantine, in terms of coaching feedback, workouts, academics and meals. Instructions are individually tailored since not all players have home gyms. Some have been sent resistance bands and are running down their hometown streets for conditioning.

We worked really hard to get ourselves in shape and ready for spring practice, Day said. We want to try to maintain that the best we can given the circumstances.

There are specific positional considerations being made, too.

Two Ohio State freshmen, C.J. Stroud and Jack Miller, are both contending for the backup quarterback job behind junior Justin Fields. As early enrollees, spring practice was providing an opportunity for both to learn Ohio States offense and develop chemistry with its wide receivers.

Its unfortunate because spring practice is so important for a young quarterback, Day said. They do have access to our film, and were gonna do the best we can to make sure they have everything they can to study that stuff.

Many players rehabbing injury have been sent instructions by head athletic trainer Shaun Barnhouse and his staff, Day said. Those still in Columbus, Ohio, have been using the Jameson Crane Sports Medicine Institute.

Redshirt sophomore running back Master Teague, for instance, is rehabbing an Achilles injury after having rushed for 789 yards behind J.K. Dobbins this past season. Hell be competing for the 2020 starting role against graduate transfer Trey Sermon from Oklahoma.

Masters a very mature young man. Hes got his priorities straight, Day said. Hes gonna attack this rehab, and hes gonna do the best he can to get back as fast as possible. Hes a little bit of a genetic freak. Were hopeful that with our team and with his hard work and the way his genetics are, well get a speedy recovery here.

Day has also been dealing damage on the recruiting trail from his home office.

The Buckeyes landed four recruits, two of them top 100 prospects, in a three-day span from March 15-17, then added Sermon Sunday.

What allowed those verbal commitments to happen was the foundation laid by the Buckeyes with their prospects throughout the course of the past year, placing them ahead of the curve, Day said.

Day and other staffers have consistently FaceTimed with recruits since the Big Ten banned all on- and off-campus recruiting activities March 13.

I think theres a lot of excitement around the program and what were building on both sides of the ball, Day said. Weve been doing this for a while now with this class. Theres been a lot built up. This is not something we just started a few months ago.

When football does resume, Day said he thinks a structure similar to the NFLs OTAs would be helpful, where teams can recuperate lost spring practice time with additional summer practices and camp days.

Go here to read the rest:

Football: Ryan Day and staff transitioning to work-from-home mode - OSU - The Lantern

Is privacy in pandemics like atheism in foxholes? – Reason

That's the question I debate with David Kris and Nick Weaver in this episode, as we explore the ways in which governments are using location data to fight the covid-19 virus. Phone location data is being used both to enforce quarantines and to track contacts with infected people. It's useful for both, but Nick thinks the second application may not really be ready for a year too late for this outbreak.

Our interview is with Jason Healey, who has a long history with Cyber Command and a deep recent oeuvre of academic commentary on cyberconflict. Jay explains Cyber Command's doctrine of "persistent engagement" and "defending forward" in words that I finally understand. It makes sense in terms of Cyber Command's aspirations as well as the limitations it labored under in the Obama administration, but I wonder if in the end it will be different from "deterrence through having the best offense." Nothing wrong with that, in my view as long as you have the best offense by a long shot, something that is by no means proven.

We return to the news to discover the whole idea of sunsets for national security laws looking dumber than it did when it first saw the light of day (which is saying something). Several important FISA authorities have expired, Matthew Heiman reports. That's thanks to Sens. Rand Paul and Mike Lee, I might add (though Nick blames President Trump, who certainly put his boot in too). Both House and Senate passed measures to keep FISA authorities alive, but the measures were completely different and out of sync. Maybe the House will fix the problem this week, but only by extending the deadline for a couple of months. Because of course by then we'll be rested and ready, in the middle of a contagion and a Presidential campaign, for a debate over Sen. Paul's proposal to make it harder to wiretap and prosecute Americans who spy for foreign governments.

Maybe before they did all that naming and shaming of Russian government hackers, federal prosecutors should have worked on their aiming: The US Justice Department has now dropped Robert Mueller's charges against a sponsor of Russian electoral interference, Matthew tells us. We explore two fever-dream narratives that the whole prosecution was part of a witch hunt and that the Attorney General is just sabotaging Bob Mueller's righteous crusade. You don't have to believe either to conclude that the Mueller team should have thought a little more about how it would try the case and a little less about how convenient it was to be able to tell the IRA story in an indictment. CyberScoop Wall Street Journal

There's another major leak about government skullduggery in cyberspace, David tells us, and Wikileaks is, uh, nowhere to be seen. That's because the skulldugging government in question is Vladimir Putin's, and Wikileaks is looking more and more like Putin's lapdog. So it falls to a group called Digital Revolution to publish internal FSB documents showing Russia's determination to acquire a huge DDOS network, maybe enough to take whole nations offline.

Alan Cohn makes a guest appearance to discuss the role that DHS's CISA is playing in the covid-19 crisis. And it has nothing to do with cybersecurity. Instead, CISA is ensuring the security of critical infrastructure around the country by identifying facilities that need to keep operating, notwithstanding state lockdown orders. We talk about the federalism crisis that could come from the proliferation of critical infrastructure designations but neither of us expects it soon.

Here's a surprise: Russia is deploying coronavirus disinformation, claiming that it is a US bioweapon. Uncharacteristically, I find myself praising the European Union for flagging the campaign.

Nick talks about the ambiguity of the cyberattack on Norsk Hydro, and I raise the risk that companies may stop releasing attribution information pointing to nation states because doing so may undercut their insurance claims.

Finally, we wrap up the story of ex-Uber autonomous driving executive Anthony Levandowski, who pled guilty to trade-secret theft and is likely headed to prison for a year or three.

Download the 307th Episode (mp3).

Take our listener poll at steptoe.com/podcastpoll.You can subscribe to The Cyberlaw Podcast using iTunes, Google Play, Spotify, Pocket Casts, or our RSS feed. As always, The Cyberlaw Podcast is open to feedback. Be sure to engage with @stewartbaker on Twitter. Send your questions, comments, and suggestions for topics or interviewees to CyberlawPodcast@steptoe.com. Remember: If your suggested guest appears on the show, we will send you a highly coveted Cyberlaw Podcast mug!

The views expressed in this podcast are those of the speakers and do not reflect the opinions of their institutions, clients, friends, families, or pets.

Follow this link:

Is privacy in pandemics like atheism in foxholes? - Reason

Christians Convert To Atheism And Pray To Science – Patheos

America was once full of Christians. Catholics, Baptists, and other denominations littered the landscape with cries of Hallelujah! and Youre going to Hell for butt stuff! Among industrialized nations, the United States was an outlier. While countries like Germany, Italy, and Britain enjoyed a post-Christian culture, the USA was still firmly in the hands of an angry God and His confused worshippers.

With the COVID-19 epidemic, the religious landscape is changing. The virus that is wrecking the world economy is taking a toll on traditional faith. Many Christians are seeing the light. They are turning away from Christianity and reaching for science.

Professor Andrew Canard heads the Sociology Department at the Theological Institute of Technology (TIT). He notes those who are turning away from the cross dont seem to know how to science:

The coronavirus is showing how empty the promises of Jehovah are. In some parts of the Bible God tells worshippers He will protect them, and at other times God tells people to take their lumps and theyll get their reward in heaven. Its crazy.

Whats disturbing is that these new followers of science are exchanging one God for another. They dont seem to understand science is a process.Rather, they are treating science as another deity to worship.

Professor Canard states these new science believers typically follow their new science-faith in certain ways:

Did you enjoy this post? How about buying the writer a cup of coffee!

Or becoming a Patron?

Here is the original post:

Christians Convert To Atheism And Pray To Science - Patheos

As religion re-emerges as the faultline of Indian society, could Bhagat Singh’s ideas of atheism be a way… – Firstpost

In Amitav Ghoshs novel The Shadow Lines, the unnamed narrators grandmother whom he addresses as Tha'mma talks of how as a student in Dhaka, she wanted to join the revolutionary movement that was active in Bengal in the first decade of the 20th century. She talks of revolutionary societies like Jugantar and Anushilan and how a quiet, retiring classmate of hers turned out to be a member of one of them. These societies which were part of the first wave of the revolutionary movement propagated a programme of violent resistance to British rule by assassinating prominent British officials in their bid to state the case for Indias freedom. Highly motivated, secretive and daring, for a time, they caught the imagination of the public. Eventually, the British came down hard on them, sending several to the gallows.

But what remains unsaid is that while these societies were popular and patriotic, they were also characterised by a strong Hindu element in ideology and practice. They drew on the literature of Bankim Chandra Chattopadhyay and Swami Vivekananda for inspiration, swore oaths on the Bhagavad Gita and often worshipped arms in the presence of an idol of Goddess Durga. It appears that non-Hindus found virtually no place in the movement.

Bhagat Singh. Image via WikimediaCommons

By contrast, the second wave of the revolutionary movement that grabbed the centre stage from the early 1920s and formed an important of the anti-colonial movement during that entire decade till the execution of Bhagat Singh, Rajguru and Sukhdev on March 23, 1931, was distinctly non-religious. While some individual members did observe their faith privately, religion formed no part of the rituals and conduct of the organisation itself. Arguably, in large part, this was on account of the convictions of Bhagat Singh.

In a long essay, Why I am an Atheist, written and completed in 1931, a few days before his hanging, Bhagat Singh laid bare the nature of his lack of faith. In a nuanced and well-argued stance, he traces how his atheism came to be. Clearly, atheism wasnt part of his childhood. His grandfather was an orthodox Arya Samajist and as a boarder at the DAV School, Lahore, the teenaged Bhagat Singh was in fact given to reciting the Gayatri Mantra several times a day. This habit lapsed in time, but not his faith in God. His close compatriot in revolutionary activities, Sachindra Nath Sanyal, was a fervent believer as well as were some of his other fellow-travellers in the revolutionary movement.

But in spite of keeping such company, by 1926, Bhagat Singhs faith had lapsed. In his own words, Realism became our cult. Atheism seemed to be the outcome of the extensive programme of the reading of revolutionary literature that Bhagat Singh had embarked on in the years prior to his final lapse of faith. And it was atheism that did not waver till his dying day.

"Belief softens the hardships, even can make them pleasant. In God man can find very strong consolation and support," Bhagat Singh states in the essay. But, given that many trials and tribulations lay ahead of him, what is perhaps of interest is how faith did not make a comeback to Bhagat Singhs life. By his own telling, his first arrest in May 1927 over suspected complicity in the Kakori Case did not send him scurrying to faith. In fact, the police officers who arrested him actually encouraged him to pray, perhaps as a veiled threat of sorts since they probably intended to apply third-degree methods to him. But it didnt make a dent.

Later, even when his execution was imminent, religious belief remained conspicuous by its absence. Clearly, faith had completely left him leaving no traces behind. Bhagat Singhs objection to faith and God seemed to be both philosophical as well as springing from the severe religious unrest that he observed around him which marred regular life in 1920s India. This was a matter that Bhagat Singh had also written on prior to 1931.

In an article entitled Religion and National Politics published in the journal Kirti, in May 1928, Bhagat Singh talks of how religion is proving to be a barrier to national unity and preventing people from moving forward in their quest for independence. The practices of social distancing mandated by religious leaders were proving to be a huge obstacle. Equally, religions habit of demanding complete submission was in Bhagat Singhs opinion, weakening individuals, and not helping to build their self-confidence.

Similarly, in another article, Communal Problem and Its Solution, published in the same journal the following month, Bhagat Singh comments darkly on the recent Lahore communal riots. These riots were prompted by the publication of a controversial book called Rangila Rasul by an individual with Arya Samaji persuasions which the Muslim community found offensive. On the other hand, cow slaughter was a sore point with the Hindu community. These differences were then sought to be resolved with daggers and fists. The article castigates the members of all three religious communities (Hindu, Muslim and Sikh) for their inability to keep a cool head in the face of provocation and the political leadership for their inability to play a constructive role. Interestingly, the article also takes to task the press and journalists for instigating communal tension through mischievous headlines and reports. The economic question, Bhagat Singh believes, is at the root of much of the tension and to attempt to solve that problem is to strike at the heart of the matter.

The impression that one gathers when re-reading these articles is that little has changed in close to a hundred years. On the one hand, it is tempting to say that religion has re-emerged as the faultline of Indian society in the last decade. But it appears that a heightened awareness of religious (and caste) differences was never very far away from the surface all along. Hence the inability of people to band together to demand more from elected representatives and the bureaucratic machinery. The nation has meandered along for seven decades riding on the back of some noteworthy achievements, but with most urgent tasks to do with economic matters left undone.

How then can we hope to plot our way forward?

In a country like India, while atheism is bound to have limited appeal, could we hope to make realism our cult? Could the sobering fact of widespread poverty, poor educational accomplishments and our lackadaisical health-care system not to mention the doddering economy and the agricultural crisis force us to look away from our religious and caste differences and concentrate on more compelling matters instead? The distractions that media and political leadership throw at us are not going to go away. It is up to us to look away.

That would perhaps be the greatest tribute to Bhagat Singh.

Find latest and upcoming tech gadgets online on Tech2 Gadgets. Get technology news, gadgets reviews & ratings. Popular gadgets including laptop, tablet and mobile specifications, features, prices, comparison.

Link:

As religion re-emerges as the faultline of Indian society, could Bhagat Singh's ideas of atheism be a way... - Firstpost