Dr. Raj at Beverly Hills Orthopedic Institute Now Offering Stem Cell Therapy to Heal Chronic Tendonitis

Beverly Hills, California (PRWEB) April 07, 2015

Dr. Raj, the top Orthopedic Surgeon in Beverly Hills and Los Angeles, is now offering stem cell therapy to heal chronic tendonitis. The treatment works exceptionally well for those suffering from tendonitis of the rotator cuff, achilles, elbow and knee. For more information and scheduling, call (310) 247-0466.

As a pioneer in regenerative medicine, Dr. Raj has been helping patients with degenerative arthritis achieve relief and avoid joint replacements for years with stem cell procedures. By adding the procedures for tendonitis, Dr. Raj is now helping patients avoid potentially risky surgeries and get back to being more active for soft tissue related pain.

"Surgery for tendonitis is often not 100% successful for patients, and the rehabilitation period may take six months," states Dr. Raj. "With the stem cell therapy, pain relief is quick and athletes get back to sports faster!"

Regenerative medicine for tennis elbow has been shown in research studies to be effective at relief and helping avoid surgery. A 2013 study out of South Florida showed that 28 out of 30 patients with chronic tennis elbow avoided surgery and got back to being very active.

For several years in a row, Dr. Raj has been named the top orthopedic doctor in Los Angeles and Beverly Hills. He is an ABC News Medical Correspondent as well as a WebMD Medical Expert.

Hundreds of patients have benefited from stem cell procedures with Dr. Raj at Beverly Hills Orthopedic Institute. They come from all over Southern California, along with throughout the country. Call (310) 247-0466 for scheduling stem cell therapy with an orthopedic surgeon Beverly Hills trusts and respects.

Read the original:

Dr. Raj at Beverly Hills Orthopedic Institute Now Offering Stem Cell Therapy to Heal Chronic Tendonitis

Regen BioPharma expands Its differentiation therapy of cancer stem cells platform

(MENAFN - ProactiveInvestors) () a biotechnology company announced the expansion of its cancer stem cell intellectual property portfolio to include targeting of the gene NR2F2 (also known as COUP-TFII) a closely related family member to the cancer stem cell gene NR2F6 with the filing of two patent applications.

Patent application #14588374 is for treatment of myelodysplastic syndrome (MDS) by inhibition of NR2F2 and patent application # 14588373 is for methods and compositions for treatment of cancer by inhibition of NR2F2 the San Diego California-based company said in a statement today.

Patent application #14588374 covers methods compositions and treatment protocols for the treatment of MDS. This patent application also covers induction of differentiation or stimulation of apoptosis as a result of NR2F2 inhibition to reduce the state of MDS and/or in other embodiments to inhibit or revert progression to leukemic states Regen said.

Patent application #14588373 covers utilizing of gene silencing technologies pertaining to suppression of the nuclear receptor NR2F2 for use as cancer stem cell inhibitors as well as cancer stem cell pathway inhibitors and methods of using such compounds to treat cancer.

These new patent applications add to the company's existing portfolio of intellectual property covering therapeutics that can be used as differentiation therapy a new form of cancer treatment that works by instructing cancer stem cells to mature in to normal cells that have a limited lifespan.

This intellectual property will compliment other intellectual property in the gene silencing of cancer stem cells therapeutics platform including in-house and acquired IP from the University of Toronto for the cancer stem cell gene NR2F6 (also known as EAR-2) and the company's CTCFL technology also known as BORIS).

We are working on establishing an area of expertise in gene silencing of cancer stem cell target genes that builds upon a licensing agreement with Benitec Biopharma for use in conjunction with their shRNA gene silencing platform chief executive officer David Koos said in the statement.

This allows us to take advantage of synergisms by establishing strengths and programs that we can use to comprehensively target the important genes in the cancer stem cell space. This will lead to economies of scale in therapy development.

The cancer stem cell is the most important and sought after cellular target of cancer therapy. Not every cancer cell within a tumour is able to divide. Cancer stem cells are the cells within the tumour that can divide an infinite number of times and are the cells within the tumour that allow a tumour to maintain its cancerous ability therefore it is important to target those cells specifically.

"Patent protection is also essential for thoroughly protecting the Company's space in this field chief scientific officer Thomas Ichim said in the statement.

More:

Regen BioPharma expands Its differentiation therapy of cancer stem cells platform

Stem Cell Therapies on Mice Reduce Parkinson Symptoms

Brazilian researchers announced progress toward the use of implanted stem cells as a treatment for Parkinsons disease.

Investigations at the DOR Institute for Research and Education (IDOR) and Federal University of Rio de Janeiro (UFRJ) report that their newly developed therapy reduced symptoms in mice.

Using an FDA approved substance for treating stomach cancer, S.K. Rehen and colleagues were able to grow dopamine-producing neurons derived from embryonic stem cells. The cells remained healthy and functional for as long as 15 months after implantation into mice restoring motor function without forming tumors.

Parkinsons, which affect as many 10 million people in the world, is caused by a depletion of dopamine-producing neurons in the brain.

Current treatments include medications and electrical implants in the brain which causes severe adverse effects over time and fail to prevent disease progression.

In the current study, researchers build upon past investigations that have indicated the transplantation of embryonic stem cells improves motor functions in animal models. However, until now, the procedure has shown to be unsafe, because of the risk of tumors upon transplantation.

To address this issue, the researchers pre-treated undifferentiated mouse embryonic stem cells with mitomycin C a drug already prescribed to treat cancer. The substance blocks the DNA replication and prevents the cells to multiply out of control.

The researchers used mice modeled for Parkinsons. The animals were separated in three groups. The first one, the control group, did not receive the stem cell implant. The second one, received the implant of stem cells which were not treated with mitomycin C and the third one received the mitomycin C treated cells.

After the injection of 50,000 untreated stem cells, the animals of the second group showed improvement in motor functions but all of them died between three and seven weeks later. These animals also developed intracerebral tumors.

In contrast, animals receiving the treated stem cells showed improvement of Parkinsons symptoms and survived until the end of the observation period of 12 weeks post-transplant with no tumors detected. Four of these mice were monitored for as long as 15 months with no signs of pathology.

See original here:

Stem Cell Therapies on Mice Reduce Parkinson Symptoms

Degenerated/herniated lumbar discs 1 year after stem cell therapy by Harry Adelson, N.D. – Video


Degenerated/herniated lumbar discs 1 year after stem cell therapy by Harry Adelson, N.D.
Bill describes his result one year after bone marrow stem cell therapy by Dr. Harry Adelson for low back pain caused by a degenerated and herniated lumbar disc.

By: Harry Adelson, N.D.

Visit link:

Degenerated/herniated lumbar discs 1 year after stem cell therapy by Harry Adelson, N.D. - Video

Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?

Life-changing results: Sandra Sharman is a private stem cell patient. Photo: Meredith O'Shea

Last week, Suzie Palmer, 44, travelled from her home in NSW to the Gold Coast for her second round of stem cell treatments for multiple sclerosis. OnTuesday morning,the wheelchair-bound poet underwent liposuction.

By 2.30pm, stem cells had been partially separated from her abdominal fat, suspended in plasma, and injected intravenously. Her doctor, Soraya Felix, is a cosmetic surgeon and molecular biologist with a sideline in regenerative medicine.

Palmer, a relentlessly upbeat and positive person, says the treatments have helped her cope better with heat, improved her mobility and flexibility and otherwise made her "feel like a normal human being". She has, she says, managed a few steps with a walker, still a long way from "running about, which is my dream".

Poster girl: Suzie Palmer is undergoing stem cell therapy for MS. Photo: Edwina Pickles

The rapidly growing stem cell industry is aglow with similarly positive testimonials, notably on behalf of practitioners who offer little documented scientific evidence of their success.

Advertisement

Suzie Palmer is literally the poster girl for stem cell tourism within Australia. You can find her smiling sweetly, along with Dr Felix, on the Facebook page of a group called the Adult Stem Cell Foundation. She is one of an unknown number of unwell Australians pinning their hopes on an unregulated industry that is now under review by the Therapeutic Goods Administration.

The TGA public consultation, which closed earlier this month, was prompted by long-standing concerns raised by Stem Cells Australia that a loophole in the regulations has allowed dozens of doctors across Australia to provide experimental treatments without the ethics committee oversight that registered clinical trials are subject to. These treatments invariably cost $10,000 and up. The loophole is this: while the use of donor stem cells in therapies is tightly regulated, the use of a patient's own stem cells is not.

Professor Martin Pera is the program leader of Stem Cells Australia, which is administered by the University of Melbourne and includes scientists from Monash University, the Walter and Eliza Hall Institute for Medical Research, the Florey Institute and the CSIRO, among others. They are engaged in a seven-year Australian Research Council project to answer the big questions about stem cells and the potential for reliable therapies.

Read more:

Is a loophole in stem cell law helping new therapy to thrive, or allowing dubious science?

Orthopedic Stem Cell Therapy for Arthritic Joint Pain – Video


Orthopedic Stem Cell Therapy for Arthritic Joint Pain
Dr. Sergio Viroslav, board certified orthopedic surgeon and joint replacement specialist with The San Antonio Orthopaedic Group, appeared on Great Day SA on March 30th, 2015 to discuss the...

By: The San Antonio Orthopaedic Group

Go here to see the original:

Orthopedic Stem Cell Therapy for Arthritic Joint Pain - Video

Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 – 2016

DALLAS, April 2, 2015 /PRNewswire/ --

Lifescienceindustryresearch.com adds "Complete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Report" in its store. Recent months have seen the first iPSC clinical trial in humans, creation of the world's largest iPSC Biobank, major funding awards, a historic challenge to the "Yamanaka Patent", a Supreme Court ruling affecting industry patent rights, the announcement of an iPSC cellular therapy clinic scheduled to open in 2019, and much more. Furthermore, iPSC patent dominance continues to cluster in specific geographic regions, while clinical trial and scientific publication trends give clear indicators of what may happen in the industry in 2015 and beyond.

Is it worth it to get informed about rapidly-evolving market conditions and identify key industry trends that will give an advantage over the competition?

BrowsetheReportComplete 2015-16 Induced Pluripotent Stem Cell (iPSC) Industry Reportathttp://www.lifescienceindustryresearch.com/complete-2013-14-induced-pl ....

Induced pluripotent stem cells represent a promising tool for use in the reversal and repair of many previously incurable diseases. The cell type represents one of the most promising advances discovered within the field of stem cell research during the past decade, making this a valuable industry report for both companies and investors to claim in order to optimally position themselves to sell iPSC products. To profit from this lucrative and rapidly expanding market, you need to understand your key strengths relative to the competition, intelligently position your products to fill gaps in the market place, and take advantage of crucial iPSC trends.

Report Applications

This global strategic report is produced for: Management of Stem Cell Product Companies, Management of Stem Cell Therapy Companies, Stem Cell Industry Investors

It is designed to increase your efficiency and effectiveness in:

Four Primary Areas of Commercialization

There are currently four major areas of commercialization for induced pluripotent stem cells, as described below:

See the original post:

Induced Pluripotent Stem Cell (iPSC) Industry Complete Report 2015 - 2016

Premature aging of stem cell telomeres, not inflammation, linked to emphysema

Lung diseases like emphysema and pulmonary fibrosis are common among people with malfunctioning telomeres, the "caps" or ends of chromosomes. Now, researchers from Johns Hopkins say they have discovered what goes wrong and why.

Mary Armanios, M.D., an associate professor of oncology at the Johns Hopkins University School of Medicine., and her colleagues report that some stem cells vital to lung cell oxygenation undergo premature aging -- and stop dividing and proliferating -- when their telomeres are defective. The stem cells are those in the alveoli, the tiny air exchange sacs where blood takes up oxygen.

In studies of these isolated stem cells and in mice, Armanios' team discovered that dormant or senescent stem cells send out signals that recruit immune molecules to the lungs and cause the severe inflammation that is also a hallmark of emphysema and related lung diseases.

Until now, Armanios says, researchers and clinicians have thought that "inflammation alone is what drives these lung diseases and have based therapy on anti-inflammatory drugs for the last 30 years."

But the new discoveries, reported March 30 in Proceedings of the National Academy of Sciences, suggest instead that "if it's premature aging of the stem cells driving this, nothing will really get better if you don't fix that problem," Armanios says.

Acknowledging that there are no current ways to treat or replace damaged lung stem cells, Armanios says that knowing the source of the problem can redirect research efforts. "It's a new challenge that begins with the questions of whether we take on the effort to fix this defect in the cells, or try to replace the cells," she adds.

Armanios and her team say their study also found that this telomere-driven defect leaves mice extremely vulnerable to anticancer drugs like bleomycin or busulfan that are toxic to the lungs. The drugs and infectious agents like viruses kill off the cells that line the lung's air sacs. In cases of telomere dysfunction, Armanios explains, the lung stem cells can't divide and replenish these destroyed cells.

When the researchers gave these drugs to 11 mice with the lung stem cell defect, all became severely ill and died within a month.

This finding could shed light on why "sometimes people with short telomeres may have no signs of pulmonary disease whatsoever, but when they're exposed to an acute infection or to certain drugs, they develop respiratory failure," says Armanios. "We don't think anyone has ever before linked this phenomenon to stem cell failure or senescence."

In their study, the researchers genetically engineered mice to have a telomere defect that impaired the telomeres in just the lung stem cells in the alveolar epithelium, the layer of cells that lines the air sacs. "In bone marrow or other compartments, when stem cells have short telomeres, or when they age, they just die out," Armanios says. "But we found that instead, these alveolar cells just linger in the senescent stage."

The rest is here:

Premature aging of stem cell telomeres, not inflammation, linked to emphysema

New study: Stem cell field is infected with hype

When billions of dollars are at stake in scientific research, researchers quickly learn that optimism sells.

A new study published inScience Translational Medicineoffersa window into how hype arises in the interaction between the media and scientific researchers, and how resistant the hype machine is to hard, cold reality. The report'sfocus is on overly optimisticreporting on potentialstem cell therapies. Its findings are discouraging.

The study by Timothy Caulfield and Kalina Kamenova of the University of Alberta law school (Caulfieldis also on the faculty at the school of public health) found that stem cell researchers often ply journalists with "unrealistic timelines" for the development of stem cell therapies, and journalists oftenswallow these claims uncritically.

The authorsmostly blame the scientists, who need to be more aware of "the importance of conveying realistic ... timelines to the popular press." We wouldn't give journalists this much of a pass; writers on scientific topics should understand that the development of drugs and therapies can take years and involve myriad dry holes and dead ends. They should be vigilant againstgaudypromises.

That's especially true instem cell research, whichis slathered with so much money that immoderate predictions of success are common. The best illustration of that comes from California's stem cell program -- CIRM, or the California Institute for Regenerative Medicine -- a $6-billion public investment that was born in hype.

The promoters of Proposition 71, the 2004 ballot initiative that created CIRM, filled the airwaves with adsimplyingthat the only thing standing between Michael J. Fox being cured of Parkinson's or Christopher Reeve walking again was Prop. 71's money. Theycommissioned a studyassertingthat California might reap a windfall in taxes,royalties and healthcare savings up to seven times the size ofits $6-billion investment. One wouldn't build a storage shed on foundations this soft, much less a $6-billion mansion.

As we've observed before, "big science" programs create incentivesto exaggerateresults to meet the public's inflated expectations. The phenomenon was recognized as long ago as the 1960s, when the distinguished physicist Alvin Weinberg warnedthat big science "thrives on publicity," resulting in "the injection of a journalistic flavor into Big Science which is fundamentally in conflict with the scientific method.... The spectacular rather than the perceptive becomes the scientific standard."

Interestingly, the event used by the Alberta researchers as the fulcrum of their study has a strong connection to CIRM. It's the abrupt 2011 decision by Geron Corp.to terminate its pioneering stem cell development program. This was a big blow to the stem cell research community and to CIRM, which had endowed Geron with a $25-million loan for its stem cell-basedspinal cord therapy development. Then-CIRM Chairman Robert Klein II had called the loan a "landmark step."

There had been evidence, however, that CIRM, eager to show progress toward bringing stem cell therapies to market, had downplayed legitimate questions about the state of Geron's science and the design of the clinical trial. AndGeron had been criticized in the past for over-promising results.

In their study, Caulfield and Kamenova examined more than 300 articles appearing in 14 general-interest newspapers in the United States, Canada and Britain from 2010 to2013. They scrutinizedthe articles' reporting oftimelines for the "realization of the clinical promise of stem cell research" and their perspective on the future of the field generally. The U.S. newspapers were the New York Times, the Wall Street Journal, the Washington Post and USA Today.

View original post here:

New study: Stem cell field is infected with hype

Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

(SACRAMENTO, Calif.) - The state stem cell agency, California Institute for Regenerative Medicine (CIRM),awarded a pair of grants totaling more than $7 million to UC Davis School of Medicine researchers who are working to develop stem cell therapies for spina bifida and chronic diabetic wounds. The funding is part of what the agency considers "the most promising" research leading up to human clinical trials using stem cells to treat disease and injury. Diana Farmer, professor and chair of surgery at UC Davis Medical Center, is developing a placental stem cell therapy for spina bifida, the common and devastating birth defect that causes lifelong paralysis as well as bladder and bowel incontinence. She and her team are working on a unique treatment that can be applied in utero - before a baby is born -- in order to reverse spinal cord damage. Roslyn Rivkah Isseroff, a UC Davis professor of dermatology, and Jan Nolta, professor of internal medicine and director of the university's Stem Cell Program, are developing a wound dressing containing stem cells that could be applied to chronic wounds and be a catalyst for rapid healing. This is Isseroff's second CIRM grant, and it will help move her research closer to having a product approved by the U.S. Food and Drug Administration that specifically targets diabetic foot ulcers, a condition affecting more than 6 million people in the country. The CIRM board, which met in Berkeley today, has high hopes for these types of research that the agency funded in this latest round of stem cell grants. "This investment will let us further test the early promise shown by these projects," said Jonathan Thomas, chair of CIRM's governing board. "Preclinical work is vital in examining the feasibility, potential effectiveness and safety of a therapy before we try it on people. These projects all showed compelling evidence that they could be tremendously beneficial to patients. We want to help them build on that earlier research and move the projects to the next level." The CIRM grants are designed to enable the UC Davis research teams to transition from preclinical research to preclinical development over the next 30 months to be able to meet the FDA's rigorous safety and efficacy standards for Investigative New Drugs. As the former surgeon-in-chief at UCSF Benioff Children's Hospital, Farmer helped pioneer fetal surgery techniques for treating spina bifida before birth. The condition, also known as myelomeningocele, is one of the most common and devastating birth defects worldwide, causing lifelong paralysis as well as bowel and bladder incontinence in newborns. Farmer has been investigating different stem cell types and the best way to deliver stem cell-based treatments in the womb for the past six years. She and her research colleagues recently discovered a placental therapy using stem cells that cures spina bifida in animal models. That discovery requires additional testing and FDA approval before the therapy can be used in humans. With the CIRM funding, Farmer and her team plan to optimize their stem cell product, validate its effectiveness, determine the optimal dose and confirm its preliminary safety in preparation for human clinical trials. Isseroff, who also serves as chief of dermatology and director of wound healing services for the VA Northern California Health Care System, has long been frustrated by the challenges of treating the chronic, non-healing wounds of diabetics. In 2010, she and Nolta received a CIRM grant to begin developing a bioengineered product for treating chronic diabetic wounds. Foot ulcers, in particular, affect about 25 percent of all diabetic patients and are responsible for most lower-limb amputations. Isseroff and her research team created a treatment using stem cells derived from bone marrow (mesenchymal stem cells) along with a FDA-approved scaffold to help regenerate dermal tissue and restart the healing process. Their studies found the technique to be highly effective for healing wounds in animal models. With this latest CIRM grant, Isseroff's team will refine their therapeutic technique by determining the safest dosage for regenerating tissue and testing their product in skin-wound models that closely resemble those in diabetic humans. Nolta also plans to create a Master Cell Bank of pure and effective human mesenchymal stem cells, and establish standard operating procedures for use in diabetic wound repair. The results of their efforts will enable UC Davis to move closer to FDA approval for human clinical trials in the next two and a half years. "These amazing research efforts are giant steps forward in turning stem cells into cures," said Nolta, who also directs the UC Davis Institute for Regenerative Cures in Sacramento. "This preclinical research is the most crucial, and often the toughest, stage before we move scientific discoveries from the laboratory bench to the patient's bedside. We are now poised as never before to make a big difference in the lives of people with spina bifida and non-healing diabetic wounds." For more information, visit UC Davis School of Medicine at http://medschool.ucdavis.edu.

Read more from the original source:

Stem Cell Grants for Spina Bifida and Diabetic Wound Treatments

Sight Restoration Through Stem Cell Therapy – Subject of June Symposium of Experts

Los Angeles, CA (PRWEB) March 31, 2015

This June 13th, a distinguished group of Ph.Ds, M.Ds and Professors from the top U.S and International Medical Schools will come together in Santa Monica, California, to share their latest research on the application of stem cell therapy in treatments and cures for blinding eye diseases. The symposium is organized and funded by the Ocular Research Symposia Foundation, Inc. (ORSF), an independent nonprofit that has been convening intimate meetings of top experts in the field of eye research since 2002 to move the research discussed forward at an accelerated pace.

Gerald J. Chader, Ph.D., Executive Director of the Ocular Stem Cell Project in the Department of Ophthalmology at the University of Southern California, and Dr. Michael Young of Harvard Medical School are co-chairs of this year's symposium. "ORSF has the unique ability to bring together experts in the key foundational issues of stem cell research, as well as a range of clinical applications," states Dr. Chader. "Beyond the academic presentations on stem cell therapy relating to glaucoma, corneal diseases, macular degeneration and other incurable eye diseases, the participants will devote time to discussing strategies to move the most promising research forward toward clinical trials and effective treatments and cures. Our approach is unique. We believe we can accomplish more in a few hours of frank discussions among colleagues than can be achieved in a week-long conference of hundreds of attendees."

After each symposium, ORSF produces a comprehensive report bringing together the many discussions and findings from the latest meeting. In 2013, their report on "The Aging Eye" was published as a special issue of "IOVS: Investigative Ophthalmology & Visual Science," the Journal of the Association for Research in Vision and Ophthalmology. They will also be publishing this year's report. The reports offer a prime vehicle for spreading information beyond the symposium participants themselves to other researchers, clinicians,corporations, medical schools, government entities and the interested public. The reports are available free of charge through the ORSF web site.

ABOUT OCULAR RESEARCH SYMPOSIA FOUNDATION, INC.

The Ocular Research Symposia Foundation emerged from the Drabkin Research Symposia, held from 2002 to 2011. Founded by Robert Drabkin, the early symposia were presented biennially through The Washington Advisory Group. When this advisory group disbanded, ORSF was incorporated in California with ongoing support from the Drabkin Foundation, continuing the catalytic role of the symposia breaking down academic silos and making the exchange of critical information possible. Tax deductible donations to the organization go toward programming future meetings, inviting experts to the symposia, publishing reports, and spreading information throughout the ocular research field. This month, the Foundation was pleased to receive a small peer review grant for this symposium from the California Institute of Regenerative Medicine.

Read more:

Sight Restoration Through Stem Cell Therapy - Subject of June Symposium of Experts

Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Phoenix, Arizona (PRWEB) March 30, 2015

Arizona Pain Specialists, are now offering stem cell therapy to help patients avoid hip and knee replacement. The outpatient treatments at Arizona Pain Stem Cell Institute have been exceptionally effective and are administered by Board Certified pain doctors at ten locations Valleywide. Call (602) 507-6550 for more information and scheduling.

Over the past few years, stem cell therapy for hip and knee arthritis has become mainstream. The treatment involves either bone marrow derived or amniotic derived stem cells, neither of which involve fetal tissue. The previous ethical concerns over fetal tissue and embryonic stem cells are not an issue with these treatments, as neither are involved.

The stem cell procedures are outpatient and exceptionally low risk. The stem cells, growth factors, and additional proteins in the treatments are essential for the regeneration and repair of damaged soft tissues such as tendons, ligaments and arthritic cartilage.

Although hip and knee replacement have shown exceptionally good resuts, they are not risk free procedures. They are also not meant to last forever and should be avoided until absolutely necessary.

The procedures are available throughout the Valley with Arizona Pain Specialists highly skilled, Board Certified pain management doctors in Phoenix, Scottsdale, Mesa, East Valley and West Valley. Simply call (602) 507-6550. Research studies are available as well.

See more here:

Arizona Pain Stem Cell Institute Now Offering Stem Cell Therapy to Help Patients Avoid Hip and Knee Replacement

Center of Regenerative Orthopedics in South Florida Now Offering Stem Cell Therapy to Help Avoid Hip and Knee …

Pompano Beach, Florida (PRWEB) March 30, 2015

The top stem cell therapy practice in South Florida, Center of Regenerative Orthopedics, is now offering procedures to help patients avoid the need for hip and knee replacement. The procedures are partially covered by insurance and are offered by a highly skilled, Board Certified Orthopedic doctor in an outpatient setting. Call (954) 399-6945 for more information and scheduling.

Stem cell procedures for joint arthritis and pain are now mainstream and represent a cutting edge option for patients. Most nonoperative joint treatments do not actually alter the course of the disease, rather, simply act as a proverbial bandaid for relief. Stem cells, on the other hand, have the capacity to actually repair and regenerate damaged tissue such as cartilage, tendon and ligament.

Degenerative and rheumatoid arthritis affects tens of millions of Americans. Stem cell procedures have been showing excellent results for pain relief and functional improvements in small studies. By having the procedures partially covered by insurance, it makes them convenient for the general public to obtain the cutting edge option.

Joint replacement should be considered a last resort option for treatment. While typically successful, there are potential complications and they are not meant to last forever. In addition, there is minimal downtime after the stem cell procedures. Joint replacements take months to recover from afterwards.

Center of Regenerative Orthopedics is located in Pompano Beach, and sees patients throughout South Florida as well as from all over the United States. Call (954) 399-6945 to schedule with the top stem cell clinic in South Florida.

Read more:

Center of Regenerative Orthopedics in South Florida Now Offering Stem Cell Therapy to Help Avoid Hip and Knee ...

Stem-cell therapy for dogs draws support, detractors

Deltona retiree Paul Jaynes was heartbroken when his 9-year-old Labrador, Cookie, suddenly stopped walking last year. The once-athletic dog struggled to stand and, if she moved at all, collapsed after a few steps.

He carried his 90-pound companion to his truck, drove her to the vet and braced himself for the bad news. Surely she couldn't live like this.

Instead, his veterinarian told him about a newly available procedure involving stem cells. In a single day, the vet said, they could remove the cells from Cookie's fatty tissues, process them and re-inject them into her joints. She could go home immediately.

"It was very dramatic," Jaynes says. "The day after surgery, she was standing. She was hesitant, but she was standing and walking a little. I thought: 'Are you kidding me?' Within a week, she was almost back to her old self."

That was last September, and six months later Cookie is still going strong, Jaynes says. While he has no doubts about the treatment, though, some veterinarians worry that marketing of stem-cell therapy for animals has gotten ahead of the scientific research needed to validate its use.

The results, while sometimes promising, are not universal.

"Most of what you hear is anecdotal 'Oh, I tried this, and it helped my dog,'" says Dr. Jeffrey Peck, a veterinary surgeon at Affiliated Veterinary Specialists, based in Maitland. "This has grown in its marketing exponentially greater than it has grown in evidence."

Much of his practice is in orthopedics typically, dogs with hip dysplasia or arthritis. He tried using stem-cell therapy with his patients in 2008 but dropped it after a dozen cases in which he saw no improvement.

"I don't refuse to do it if a client really wants to try, but I give them my disclaimer," he says. "I tell them: 'I don't think I'm going to hurt anything. But I doubt I'm going to help anything either.'"

At $1,400 to $3,000 for the procedure, most pet owners opt out, he says.

See the rest here:

Stem-cell therapy for dogs draws support, detractors

"The Stem Cell Show": Premiering on TalkRadio 790 KABC – Sundays @ 4pm, Hosted by Dr. Thomas A. Gionis, Surgeon-in …

Los Angeles, California (PRWEB) March 28, 2015

Stem cells remain a fascination to the general public and to the medical profession as well.

While millions of dollars are being spent by most States each year on stem cell research, and while the National Institute of Health (NIH) spends $1 Billion dollars per year on stem cell research (Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC); (2015, February 5); http://report.nih.gov/categorical_spending.aspx), both the lay public and medical professionals continue to wonder: Where are we? How much have we learned? Are we making progress introducing stem cell therapy to the public?

Dr. Gionis will explore the many facets, intrigue and complexities of stem cells and stem cell therapy.

Dr. Gionis will have a frank and open discussion on the type of progress being made in advancing stem cell biology and therapy from the bench to the bedside. He will explore the current law regarding stem cell practice; both state law and federal law. The doctor will also investigate how new therapies like stem cell therapies get approved and the role of the FDA, an IRB, and the role of the US Department of Health, Office of Human Research Protections (OHRP) in the provision of such approval.

The doctor will explore the different types of stem cells with respect to their potential uses. And, he will look at new and emerging stem cell therapies which are being considered to address various medical infirmities such as Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine).

The format of The Stem Cell Show will be Questions and Answers, as well as Interviews of key thought leaders and researchers currently engaged in stem cell therapy both nationally and internationally.

The spirit of The Stem Cell Show will be that of honest, open and vibrant discussion in an effort to advance the publics health, well-being, and the amelioration of devastating chronic disease. To get more information, visit TheStemCellShow.com or call 949-679-3889.

Follow this link:

"The Stem Cell Show": Premiering on TalkRadio 790 KABC - Sundays @ 4pm, Hosted by Dr. Thomas A. Gionis, Surgeon-in ...

On stem cell therapy, benefits

Chia medical tourism--stroke--stem cell therapy 3.flv

Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, t...

Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, t...

Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, t...

Millions of stem cells derived from the bone marrow of healthy adult donors have been implanted in the brains of two stroke survivors at UPMC, as part of a t...

Visit our website "http://www.rejuvenare.com/ or contact us directly at (407) 255-2348 or email "info@rejuvenare.com". Stem cell therapy for stroke. Learn mo...

Many of our patients travel to Guangzhou from all over the world for medical treatment and tourism. China medical tourism can help with becoming a patient, t...

Brando, a 9 year-old German Shepard received combination stem cell therapy today at Paradise Animal Clinic by Dr. Jose Gorostiza (surgeon) and Dr. Jaime Paus...

http://www.chineitsang.co/chi-nei-tsang-1-massage-course-with-sarina-stone/112/

http://www.euromedic4arab.com/ cancer treatment in germany breast cancer treatment in germany prostate cancer treatment in germany cancer treatment in german...

See the original post:

On stem cell therapy, benefits

No stem cell treatment for public servant's dodgy knee

A federal public servant has lost a legal bid to have taxpayers pay for experimental stem cell treatment on his dodgy knees.

The Administrative Appeals Tribunal has knocked back an appeal by Customs officer Vic Kaplicas to force insurer Comcare to pay $13,400 for the new treatment, instead saying he could have a tried-and-tested double knee replacement.

But the 49-year-old border official says he worries he cannot pass his department's fitness tests if he undergoes the knee replacements, which will leave him unable to run.

Advertisement

The former triathlete, who had to give up his sport because of his bad knees, said he was keen to avoid the "radical but effective" replacements for as long as possible.

Mr Kaplicas hurt his left knee working at Sydney's Mascot Airport in 2000, then injured his right knee 10 years later at Kingsford-Smith.

He managed the pain in his knees, which have since developed osteoarthritis, for years using over-the-counter painkillers, physio, exercises and injections but Mr Kaplicas' doctors say a more permanent solution is now needed.

In June 2012, Sydney knee specialist Sam Sorrenti asked Comcare to pay for bilateral knee stem cell assisted arthroscopic surgery for Mr Kaplicas.

The cost of the procedure was estimated at $13,464.00 for arthroscopy, stem cell harvesting and injection, and a "HiQCell procedure".

Dr Sorrenti said the knee replacements were not a good idea for a man of Mr Kaplicas' age, arguing the new knees would last 15 years at best, were intended for older people who are less concerned with physical activity, and left no further options.

See the rest here:

No stem cell treatment for public servant's dodgy knee