Human Genetic Engineering | APNORC.org | APNORC.org

Americans favor the use of gene editing to prevent disease or disabilities, while there is strong opposition to using the technology to change a babys physical characteristics, such eye color or intelligence. Support for eradicating disease and disabilities was strong regardless of party identification, education or religious preference.The same holds true for the opposition to altering genes in order to change physical features or capabilities.

Americans hold similar views about the ethics of gene editing.About 6 in 10 consider editing the genes of embryos for the purpose of preventing or reducing the risk of disease to be morally acceptable.Fifty-four percent say using the technology to prevents a non-fatal condition such as blindness as morally acceptable.Two-thirds say it is morally unacceptable to use gene editing to change a babys physical features or characteristics.

What about altering an adults genetic material without changing the genes of their offspring?The idea of using gene editing technology to prevent or cure a genetic disorder in an adult is supported by 56 percent, opposed by 17 percent, and 27 percent neither favor nor oppose.

While Americans favor using gene editing to deal with physical ailments, there is less support for the use of taxpayer money to finance testing on human embryos to develop the technology. Overall, 48 percent oppose federal funding to test gene editing technology, while 26 percent favor it and 25 percent neither favor nor oppose. Republicans are particularly against using government money for the development of gene editing.

Regardless of support for the technology, there are some concerns about possible ramifications.Fifty-two percent say the unethical use of gene editing is very likely, and 45 percent think it's very likely the technology would have unintended effects on human evolution. Few think it's likely that most people would be able to afford the technology.

Most Americans say it is at least somewhat likely that the development of gene editing technology will lead to further medical advances, eliminate many genetic illnesses, and be adequately tested.

The nationwide poll was conducted December 13-16, 2018 using the AmeriSpeak Panel, the probability-based panel of NORC at the University of Chicago. Online and telephone interviews using landlines and cell phones were conducted with 1,067 adults. The margin of sampling error is plus or minus 4.1 percentage points.

Read the original:

Human Genetic Engineering | APNORC.org | APNORC.org

Human Genetic Engineering: Wrong | [site:name] | National …

(Ralwel/Dreamstime)Conservatives and progressives both have reasons for opposing it.

The genetic engineering of human beings has been a dream and a nightmare since scientists first speculated about it a century ago. Futurists and transhumanists have long thought that genetic engineering could radically improve the human race, extending our lifespans or boosting our intelligence, while more responsible scientists have suggested that genetic modification could be used to cure diseases like Huntingtons, Tay-Sachs, and other deadly inherited conditions.

Over the past few years, a new technology has emerged that seems to finally make precise genetic modifications of human beings possible. This week, scientists, ethicists, and policy experts from the American, Chinese, and British national academies of science are gathered for a conference in Washington, D.C., to discuss the prospects of editing human genes.

The new technology that has brought questions about genetically modifying humans back on the agenda is called CRISPR-Cas9. It stands above previous methods for genetic engineering in both its precision and its simplicity. CRISPR-Cas9 relies on a single enzyme system that can be guided by small strings of RNA molecules to any site in the genome. Older methods for genetic engineering required scientists to find or design new proteins to target different sites in the genome, a technically demanding and labor-intensive task. The RNA molecules that CRISPR-Cas9 relies on, on the other hand, can simply be ordered from any number of biotechnology companies.

What makes this new technology especially controversial is the prospect that it could be used to modify the human germline that is, that it could be used to make changes that would not only affect a particular patient but would also be passed on to that patients children, and so on through the generations. Modifying genes in a human embryo is one way to accomplish this, and speakers at the meeting also discussed a different form of germline engineering, one that involves modifying the stem cells that produce sperm. This can be done either by performing gene therapy on men directly or by extracting their stem cells and then genetically modifying them in the lab to produce genetically modified sperm that could be used for in vitro fertilization or artificial insemination.

RELATED: U.S. Prepares to Push Human Genetic Engineering

All too often, deliberations about new biotechnologies seem to focus on managing public opinion so that scientists wont have to worry about the pesky obstructions of democratic oversight or moral arguments. Those who take a strong moral stance against the manipulation of human genetics or the destruction of human embryos are generally not welcome at these kinds of meetings. After all, the suggestion that we should not pursue some scientific avenues because they represent the unjust exploitation of human beings spoils the whole idea of coming to a consensus about how best to move forward.

Deliberations about new biotechnologies seem to focus on managing public opinion so that scientists wont have to worry about the pesky obstructions of democratic oversight or moral arguments.

This consensus-based approach was well on display in the statement released by the meetings organizers recommending that modification of the germline not be done until the technology can be made safe and there is broad societal consensus about the appropriateness of the proposed application, and furthermore that as scientific knowledge advances and societal views evolve, the clinical use of germline editing should be revisited on a regular basis. Recommendations like these ignore the possibility that there might be some wisdom in the view that it is morally wrong to genetically design our children, or that some future consensus that we come to hold as our societal views evolve might be foolish and misguided. Whats more, the organizers recommended allowing the genetic modification of human embryos, on the condition that the modified cells should not be used to establish a pregnancy.

There were unfortunately no conservative or pro-life scholars at this meeting who might have pushed back against this technological boosterism and callous disregard for unborn human life. Yet the absence thus far of conservative and pro-life voices does not mean that everyone at the conference was resolutely in favor of genetic engineering. There were a number of liberal critics of biotechnology, notably Marcy Darnovsky of the Center for Genetics and Society, who made a compelling case against using gene editing to modify the human germline. On the other side were ethicists like John Harris, a utilitarian philosopher at Manchester University, who demanded that genetic engineering be made available with only minimal restrictions. Many of the scientists were very excited about what this technology might enable us to do, though some, like Eric Lander, a geneticist at MIT, expressed skepticism about whether the genetic modification of human embryos would have much practical use.

#share#The scientists speaking at the conference tend to see the moral issues in terms of individual patients. Their focus is on whether these new technologies can be safe and effective ways of treating disease and satisfying the preferences and desires of individuals. But progressive critics argue that these scientists are missing the broader social context in which the technologies would be implemented, and the ways in which biotechnology might contribute to the oppression of marginalized groups.

Both these perspectives can be valuable. Focusing on what is good for individual patients can be an important corrective to the tyrannical impulse to use medicine and public-health measures not for actual human beings, but for whatPaul Ramsey calledthat celebrated non-patient, the human species. But the progressives are also right that medical procedures, especially those dealing with reproduction, are not simply about the patient and the doctor: The child must also be considered, and we should remember as well the kinds of social and economic pressures that might be driving individuals to seek medical interventions to prevent the birth of a child with disabilities.

Conservatives and todays progressives ought to share a concern about the risks of a potential new type of eugenics to harm minorities and the disabled.

Both the scientists, with their emphasis on individuals, and the progressives, with their emphasis on group oppression, draw lessons from the dark history of eugenics, the Progressive Era movement to sterilize the unfit that had a baleful influence on the laws of many nations, including the United States, in the early 20th century. At the conference, science historian Daniel J. Kevles gave a presentation on the origins of eugenics in the sciences of genetics and statistics and discussed the crude racial stereotypes and prejudices held by many Americans in the early 1900s. He described how the eugenics movement harmed and oppressed racial minorities and people with disabilities. (Kevless bookIn the Name of Eugenicsis an excellent introduction to this dark chapter in our history.) Conservatives and todays progressives ought to share a concern about the risks of a potential new type of eugenics to harm minorities and the disabled.

But conservatives are uniquely suited to point out that gene editing unites two errors characteristic of our age: genetic perfectionism and an overemphasis on individual autonomy. First, we conservatives understand that the family is the foundational unit of society, and that its basic structure a married man and woman having children whom they love and care for unconditionally should not be tinkered with by social or biological engineers. The eugenics movement put an abstraction, the human gene pool, above that fundamental unit of society, the family.

Second, biotechnologies like gene editing risk combining the problem of genetic perfectionism with an extreme emphasis on individual autonomy. Gene editing is thought to offer a way for parents to maximize their control over the properties of their offspring, transforming a relationship that should be characterized by unconditional love and acceptance into one in which children are seen as products of their parents desires and wishes, to be provisionally accepted and molded in accord with parental preferences.

This is how we should look at the debates over emerging biotechnologies: by focusing on the relationship between parents and children, and on how that relationship might be undermined by increasing the power of parents to control the biological properties of their offspring. That this conservative insight has been largely absent from these debates over gene editing is unfortunate. Conservatives should be doing more to make their voices heard on this issue.

Follow this link:

Human Genetic Engineering: Wrong | [site:name] | National ...

Human Genetic Engineering – Popular Issues

Human Genetic Engineering - A Hot Issue!Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. GovernmentHuman genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The ProblemsThere are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final ThoughtHuman genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

What is your response?

Yes, today I am deciding to follow Jesus

Yes, I am already a follower of Jesus

I still have questions

Go here to read the rest:

Human Genetic Engineering - Popular Issues

Genomics and Human Genetic Engineering – ASME

Genomics is a hot market. A new research reportby Markets and Markets estimates that the global genome editing market is expected to reachabout $3.5 billionby 2019, up from $1.8 billion in 2014. This demand is driven by the growth of biotechnology and pharmaceutical R&D, as well as advances in technology. Cell-line engineering accounts for the greatest share of the overall genomics market.

The rapid evolution of genomics is, however, causing legal and ethical concerns, which could slow down the projected growth of the market. For example, the National Institutes of Healths National Human Genome Research Institute (NHGRI) has established its Ethical, Legal and Social Implications (ELSI) Research Program to address these issues. Privacy is a huge concernthe NHGRI maintains it is essential to develop, implement, evaluate, and refine new approaches and policies that recognize participants' interests in the privacy and use of the genomic and medical data, while simultaneously enabling broad access to these data to facilitate scientific discovery.

There is also the broader and more complex issue of how genomics impacts social beliefs and policies around the world regarding research and health. Genomics has profound implications for how we understand ourselves as individuals and as members of families, communities, and societyand even for how we understand what it means to be human, states NHGRI. Long-held beliefs about the continuum between health and disease may be transformed, as may concepts of free will and responsibility. These conceptual shifts have implications for current approaches to research, health and social policies.

Global genome editing market by region (top), and by application (bottom). Image: Markets and Markets

One of the newest genomic technologies that is causing considerable ethical consternation is CRISPR-cas9, which is expected to be the largest and fastest-growing segment of the global genome editing market over the next five years.

Developed by Jennifer Doudna, a professor of chemistry and of molecular and cell biologyat the University of California-Berkeley, CRISPR-cas9 simplifies gene editing for many types of cells including human egg, sperm, or embryo. The process has revolutionized the field of genome engineering and offers tremendous potential for editing genes that cause predisposition traits for certain diseases. Discovered as an adaptive immune system in bacteria for protection against bacteria-invading viruses, CRISPR-cas9 wasdeveloped as a way to target and edit genomes, reports Ryan Clarke on http://www.techcrunch.com. This process permanently modifies an organisms genome, so that each successive generation of offspring will carry the change.

These groundbreaking capabilities have resulted in numerous discussions about ethics of use for this technologyfor example, designing genetically perfect offspring. Ultimately social preferences could skew the genetic balance of the human species, warns Clarke.

Scientists are increasingly giving voice to similar concerns. As published in Science, a group of prominent scientists, including Doudna herself, urged that steps be taken to ensure the application of genome engineering technologiesincluding her own CRISPR-Cas9is done in a safe and ethical manner. In our view, writes Edward Lanphier, president and CEO of Sangamo BioSciences, in Nature, genome editing in human embryos using current technologies could have unpredictable effects on future generations. This makes it dangerous and ethically unacceptable. Such research could be exploited for non-therapeutic modifications.

In April 2015, researchers from Sun Yat-sen University in Guangzhou, China described their efforts at editing the genes of a human embryo. Using the CRISPR-cas9 system, this was the first-ever attempt to genome engineer a living human embryo. Results were highly inconsistent and included unexpected effects, such as random introduction of mutations. Out of the 86 total embryos utilized in the study, 71 survived the initial CRISPR snips, only 28 successfully spliced in the new DNA, and a small fraction of those splices actually generated a functional protein. The researchers stopped the study because the science is too immature.

This work prompted another vigorous round of debate in the scientific community regarding the ethicsof genetic manipulation. It did prompt the National Institutes of Health to announce it would not fund anyresearch that tampers with the human germ line. Despite the funding ban, the NIH also acknowledged the importance of the CRISPR-cas9 technology in a press release.

"This technology is also being used to develop the next generation of antimicrobials, which can specifically target harmful strains of bacteria and viruses," the NIH statement reads."In the first clinical application of genomic editing, a related genome editing technique (using a zinc finger nuclease) was used to create HIV-1 resistance in human immune cells, bringing HIV viral load down to undetectable levels in at least one individual. Advances in technology have given us an elegant new way of carrying out genome editing, but strong arguments against the use of gene-editing technologies in human embryos remain.

Mark Crawford is an independent writer.

Learn about the latest trends in medicine and biology at ASMEs Global Congress onNanoEngineering for Medicine and Biology.

NIH Statement

getmedia/fe344cf1-0d83-4d34-b80a-54240678fab2/Genomics-and-Human-Genetic-Engineering_thumb.jpg.aspx?width=60&height=60&ext=.jpg

See the original post:

Genomics and Human Genetic Engineering - ASME

Human Genetic Engineering Pros And Cons

Many human genetic engineering pros and cons are there that have stayed the same since its introduction to humanity. When the humans started harnessing the atomic powers, then just few years later they also start recognizing the effects of human genetic engineering on mankind. Many scientists have a belief that gene therapy can be a mainstream for saving lives of many people. A lot of human genetic engineering pros and cons have been involved since the evolution of genetic engineering. Mentioned below are some important advantages or pros of genetic engineering:

Other human genetic engineering pros and cons include the desirable characteristics in different plants and animals at the same time convenient. One can also do the manipulation of genes in trees or big plants. This will enable the trees to absorb increased amount of carbon dioxide, and it will reduce the effects of global warming. However, there is a question from critics that whether man has the right to do such manipulations or alterations in the genes of natural things.

With human genetic engineering, there is always a chance for altering the wheat plants genetics, which will then enable it to grow insulin. Human genetic engineering pros and cons have been among the concern of a lot of people involved in genetic engineering. Likewise the pros, certain cons are there of using the genetic engineering. Mentioned below are the cons of human genetic engineering:

The evolution of genetic engineering gets the consideration of being the biggest breakthroughs in the history of mankind after the evolution of atomic energy, and few other scientific discoveries. However, human genetic engineering pros and cons together have contributed a lot in creating a controversial image of it among the people.

All these eventualities have forced the government of many countries to make strict legislation laws to put restrictions on different experiment being made on human genetic engineering. They have made this decision by considering different human genetic engineering pros and cons.

Human Genetic Engineering Pros And Cons

3.12 (62.35%) 3288 votes

Read this article:

Human Genetic Engineering Pros And Cons

Human or Superhuman? – National Catholic Register

Church Teaching on Genetic Engineering: May 6 issue column.

Human genetic engineering has always been the stuff of science-fiction novels and blockbuster Hollywood films. Except that it is no longer confined to books and movies.

Scientists and doctors are already attempting to genetically alter human beings and our cells. And whether you realize it or not, you and your children are being bombarded in popular media with mixed messages on the ethics surrounding human genetic engineering.

So what does the Church say about the genetic engineering of humans?

The majority of Catholics would likely say that the Church opposes any genetic modification in humans. But that is not what our Church teaches. Actually, the Church does support human genetic engineering; it just has to be the right kind.

Surprised? Most Catholics probably are.

To understand Catholic Church teaching on genetic engineering, it is critical to understand an important distinction under the umbrella of genetic engineering: the difference between therapy and enhancement. It is a distinction that every Catholic should learn to identify, both in the real world and in fiction. Gene therapy and genetic enhancement are technically both genetic engineering, but there are important moral differences.

For decades, researchers have worked toward using genetic modification called gene therapy to cure devastating genetic diseases. Gene therapy delivers a copy of a normal gene into the cells of a patient in an attempt to correct a defective gene. This genetic alteration would then cure or slow the progress of that disease. In many cases, the added gene would produce a protein that is missing or not functioning in a patient because of a genetic mutation.

One of the best examples where researchers hope gene therapy will be able to treat genetic disease is Duchenne Muscular Dystrophy or DMD. DMD is an inherited disorder where a patient cannot make dystrophin, a protein that supports muscle tissue. DMD strikes in early childhood and slowly degrades all muscle tissue, including heart muscle. The average life expectancy of someone with DMD is only 30 years.

Over the last few years, researchers have been studying mice with DMD. They have been successful in inserting the normal dystrophin gene into the DNA of the mice. These genetically engineered mice were then able to produce eight times more dystrophin than mice with DMD. More dystrophin means more muscle, which, in the case of a devastating muscle-wasting disease like DMD, would be a lifesaver.

Almost immediately after the announcement of this breakthrough, the researchers were inundated with calls from bodybuilders and athletes who wanted to be genetically modified to make more muscle.

The callers essentially wanted to take the genetic engineering designed to treat a fatal disease and apply it to their already healthy bodies.

Genetically engineering a normal man who wants more muscle to improve his athletic ability is no longer gene therapy. Instead, it is genetic enhancement.

Genetic enhancement would take an otherwise healthy person and genetically modify him to be more than human, not just in strength, but also in intelligence, beauty or any other desirable trait.

So why is the distinction between gene therapy and genetic enhancement important? The Catholic Church is clear that gene therapy is good, while genetic enhancement is morally wrong.

Why? Because gene therapy seeks to return a patient to normal human functioning. Genetic enhancement, on the other hand, assumes that mans normal state is flawed and lacking, that mans natural biology needs enhancing. Genetic enhancement would intentionally and fundamentally alter a human being in ways not possible by nature, which means in ways God never intended.

The goal of medical intervention must always be the natural development of a human being, respecting the patients inherent dignity and worth. Enhancement destroys that inherent dignity by completely rejecting mankinds natural biology. From the Charter for Health Care Workers by the Pontifical Council for Pastoral Assistance:

In moral evaluation, a distinction must be made between strictly therapeutic manipulation, which aims to cure illnesses caused by genetic or chromosome anomalies (genetic therapy), and manipulation, altering the human genetic patrimony. A curative intervention, which is also called genetic surgery, will be considered desirable in principle, provided its purpose is the real promotion of the personal well-being of the individual, without damaging his integrity or worsening his condition of life.

On the other hand, interventions which are not directly curative, the purpose of which is the production of human beings selected according to sex or other predetermined qualities, which change the genotype of the individual and of the human species, are contrary to the personal dignity of the human being, to his integrity and to his identity. Therefore, they can be in no way justified on the pretext that they will produce some beneficial results for humanity in the future. No social or scientific usefulness and no ideological purpose could ever justify an intervention on the human genome unless it be therapeutic; that is, its finality must be the natural development of the human being.

So genetic engineering to cure or treat disease or disability is good.

Genetic engineering to change the fundamental nature of mankind, to take an otherwise healthy person and engineer him to be more than human is bad.

There is much misinformation surrounding the Catholic Churchs teaching on human genetic engineering. One example is in a piece in The New York Times by David Frum. Frum states that John Paul II supported genetic enhancement and, therefore, the Church does as well. Frum performs a sleight of hand, whether intentional or not. See if you can spot it:

The anti-abortion instincts of many conservatives naturally incline them to look at such [genetic engineering] techniques with suspicion and, indeed, it is certainly easy to imagine how they might be abused. Yet in an important address delivered as long ago as 1983, Pope John Paul II argued that genetic enhancement was permissible indeed, laudable even from a Catholic point of view, as long as it met certain basic moral rules. Among those rules: that these therapies be available to all.

Frum discusses enhancement and therapy as if they are the same. He equates them using the words therapies and enhancement interchangeably. Because John Paul II praised gene therapy, the assumption was that he must laud genetic enhancement as well. This confusion is common because, many argue, there is not a technical difference between therapy and enhancement, so lumping them together is acceptable.

Catholics must not fall into this trap. Philosophically, gene therapy and genetic enhancement are different. One seeks to return normal functioning; the other seeks to take normal functioning and alter it to be abnormal.

There are practical differences between therapy and enhancement as well. Genetic engineering has already had unintended consequences and unforeseen side effects. Gene-therapy trials to cure disease in humans have been going on for decades. All has not gone as planned. Some patients have developed cancer as a result of these attempts at genetically altering their cells.

In 1999, a boy named Jesse Gelsinger was injected with a virus designed to deliver a gene to treat a genetic liver disease. Jesse could have continued with his current treatment regime of medication, but he wanted to help others with the same disorder, so he enrolled in the trial. Tragically, Jesse died four days later from the gene therapy he received.

In 2007, 36-year-old mother Jolee Mohr died while participating in a gene-therapy trial. She had rheumatoid arthritis, and just after the gene therapy (also using a virus for delivery) was injected into her knee, she developed a sudden infection that caused organ failure. An investigation concluded that her death was likely not a direct result of the gene therapy, but some experts think that with something as treatable as rheumatoid arthritis she should never have been entered into such a trial. They argued that, because of the risks, gene therapy should only be used for treating life-threatening illness.

In other words, genetic engineering should only be tried in cases where the benefits will outweigh the risks, as in the treatment of life-threatening conditions. Currently, gene therapy is being undertaken because the risk of the genetic engineering is outweighed by the devastation of the disease it is attempting to cure. With the risks inherent in genetic modification, it should never be attempted on an otherwise healthy person.

You may be thinking that such risky enhancement experiments would never happen. Scientists and doctors would never attempt genetic modifications in healthy humans; human enhancements only exist in science fiction and will stay there. Except science and academia are already looking into it.

The National Institutes of Health (NIH) has awarded Maxwell Mehlman, director of the Law-Medicine Center at Case Western Reserve University School of Law, $773,000 to develop standards for tests on human subjects in genetic-enhancement research. Research that would take otherwise normal humans and make them smarter, stronger or better-looking. If the existing human-trial standards cannot meet the ethical conditions needed for genetic-enhancement research, Mehlman has been asked to recommend changes.

In a recent paper in the journal Ethics, Policy & Environment, S. Matthew Liao, a professor of philosophy and bioethics at New York University, explored ways humanity can change its nature to combat climate change. One of the suggestions Liao discusses is to genetically engineer human eyes to be like cat eyes so we can all see in the dark. This would reduce the need for lighting and reduce energy usage. Liao also discusses genetically modifying our offspring to be smaller so they eat less and use fewer resources.

Of course, Liao insists these are just discussions of possibilities, but what begins as discussions among academics often becomes common among the masses.

Once gene therapy has been perfected and becomes a mainstream treatment for genetic disease, the cries for genetic enhancement will be deafening. The masses will scream that they can do to their bodies as they wish and they wish to no longer be simply human. They wish to be super human.

And with conscience clauses for medical professionals under attack, doctors and nurses may be unable to morally object to genetically altering their perfectly healthy patient or a parents perfectly healthy child.

It is important for Catholics to not turn their backs on technical advancements in biotechnology simply because the advancements are complex.

We can still influence the public consciousness when it comes to human genetic engineering. We are obliged to loudly draw the line between therapy and enhancement otherwise, society, like Frum, will confuse the two.

It is not too late to make sure medically relevant genetic engineering does not turn into engineering that forever changes the nature of man.

Rebecca Taylor is a clinicallaboratory specialist inmolecular biology.She writes about bioethics on her

blog Mary Meets Dolly.

Here is the original post:

Human or Superhuman? - National Catholic Register

Genetic engineering in science fiction – Wikipedia

In literature and especially in science fiction, genetic engineering has been used as a theme or a plot device in many stories.[1][2]

In his 1924 essay Daedalus, or Science and the Future, J. B. S. Haldane predicted a day when biologists would invent new algae to feed the world and ectogenetic children would be created and modified using eugenic selection. Aldous Huxley developed these ideas in a satirical direction for his 1932 novel Brave New World, in which ectogenetic embryos were developed in selected environments to create children of an 'Alpha', 'Beta', or 'Gamma' type.[3]

The advent of large-scale genetic engineering has increased its presence in fiction.[4][5] Genetics research consortia, such as the Wellcome Trust Sanger Institute, have felt the need to distinguish genetic engineering fact from fiction in explaining their work to the public,[1] and have explored the role that genetic engineering has played in the public perception of programs, such as the Human Genome Project.[6]

Beyond the usual library catalog classifications,[7] the Wellcome Trust Sanger Institute[1] and the NHGRI[6] have compiled catalogs of literature in various media with genetics and genetic engineering as a theme or plot device. Such compilations are also available at fan sites.[8]

In the 2000 television series Andromeda, the Nietzscheans (Homo sapiens invictus in Latin) are a race of genetically engineered humans who religiously follow the works of Friedrich Nietzsche, social Darwinism and Dawkinite genetic competitiveness. They claim to be physically perfect and are distinguished by bone blades protruding outwards from the wrist area.

In the book 2312 by Kim Stanley Robinson, genetic engineering of humans, plants and animals and how that affects a society spread over the solar system is explored.

In the Animorphs book series, race of aliens known as the Hork-Bajir were engineered by a race known as the Arns. Another race, the Iskhoots, are another example of genetic engineering. The outer body, the Isk, was created by the Yoort, who also modify themselves to be symbotic to the Isk. Also, a being known as the Ellimist has made species such as the Pemalites by this method.

In the 1983 film Anna to the Infinite Power, the main character was one of seven genetically cloned humans created by Anna Zimmerman as a way to groom a perfect person in her image. After her death, her work was carried on by her successor Dr. Henry Jelliff, who had other plans for the project. But in the end we learn that her original genetic creation, Michaela Dupont, has already acquired her creator's abilities, including how to build a genetic replicator from scratch.

The 1996 video game series Resident Evil involves the creation of genetically engineered viruses which turn humans and animals into organisms such as zombies, the Tyrants or Hunters by a worldwide pharmaceutical company called the Umbrella Corporation.

In the video game series BioShock, most of the enemies in both BioShock and BioShock 2, referred to as "splicers", as well as the player, gain superpowers and enhance their physical and mental capabilities by means of genetically engineered plasmids, created by use of ADAM stem cells secreted by a species of sea slug.[9]

The novel Beggars in Spain by Nancy Kress and its sequels are widely recognized by science fiction critics as among the most sophisticated fictional treatments of genetic engineering. They portray genetically-engineered characters whose abilities are far greater than those of ordinary humans (e.g. they are effectively immortal and they function without needing to sleep). At issue is what responsibility they have to use their abilities to help "normal" human beings. Kress explores libertarian and more collectivist philosophies, attempting to define the extent of people's mutual responsibility for each other's welfare.

In the Battletech science fiction series, the Clans have developed a genetic engineering program for their warriors, consisting of eugenics and the use of artificial wombs.

In The Champion Maker, a novel by Kevin Joseph, a track coach and a teenage phenom stumble upon a dark conspiracy involving genetic engineering while pursuing Olympic gold.

In the CoDominium series, the planet Sauron develops a supersoldier program. The result were the Sauron Cyborgs, and soldiers. The Cyborgs, who made up only a very small part of the population of Sauron, were part highly genetically engineered human, and part machine. Cyborgs held very high status in Sauron society.

Sauron soldiers, who made up the balance of the population, were the result of generations of genetic engineering. The Sauron soldiers had a variety of physical characteristics and abilities that made the soldiers the best in combat and survival in many hostile environments. For instance, their bones were stronger than unmodified humans. Their lungs extract oxygen more efficiently than normal unmodified humans, allowing them to exert themselves without getting short of breath, or function at high altitudes. Sauron soldiers also have the ability to change the focal length of their eyes, so that they can "zoom" in on a distant object, much like an eagle.

The alien Moties also have used genetic engineering.

In the science fiction series Crest of the Stars, the Abh are a race of genetically engineered humans, who continue to practice the technology. All Abh have been adapted to live in zero-gravity environments, with the same features such as beauty, long life, lifelong youthful appearance, blue hair, and a "space sensory organ".

In the 2000 TV series Dark Angel, the main character Max is one of a group of genetically engineered supersoldiers spliced with feline DNA.

In military science fiction 1993 television series Exosquad, the plot revolves around the conflict between Terrans (baseline humans) and Neosapiens, a race of genetically engineered sentient (and sterile) humanoids, who were originally bred for slave labour but revolted under the leadership of Phaeton and captured the Homeworlds (Earth, Venus and Mars). During the war, various sub-broods of Neosapiens were invented, such as, Neo Megas (intellectually superior to almost any being in the Solar System), Neo Warriors (cross-breeds with various animals) and Neo Lords (the ultimate supersoldiers).

Genetic modification is also found in the 2002 anime series Gundam SEED. It features enhanced humans called Coordinators who were created from ordinary humans through genetic modification.

In Marvel Comics, the 31st century adventurers called the Guardians of the Galaxy are genetically engineered residents of Mercury, Jupiter, and Pluto.

The 1997 film Gattaca deals with the idea of genetic engineering and eugenics as it projects what class relations would look like in a future society after a few generations of the possibility of genetic engineering.

In Marvel Comics, the Inhumans are the result of genetic engineering of early humans by the Kree alien race.

Rather than deliberate engineering, this 2017 novel by British author Steve Turnbull features a plague that carries genetic material across species, causing a wide variety of mutations. Human attempts to control this plague have resulted in a fascist dystopia.

In the Leviathan universe, a group known as the Darwinists use genetically engineered animals as weapons.

The 2000AD strip, Lobster Random features a former soldier-turned-torturer, who has been modified to not feel pain or need to sleep and has a pair of lobster claws grafted to his hips. This state has left him somewhat grouchy.

In Metal Gear Solid, the Genome Army were given gene therapy enhancements.

Also in the series, the Les Enfants Terribles project involved genetic engineering.

The Moreau series by S. Andrew Swann has as the central premise the proliferation of humanoid genetically-engineered animals. The name of the series (and of the creatures themselves) comes from the H. G. Wells novel The Island of Dr. Moreau. In the Wells novel, humanoid animals were created surgically, though this detail has been changed to be genetic manipulation in most film adaptations.

The Neanderthal Parallax novel by Robert J. Sawyer depicts a eugenic society that has benefitted immensely from the sterilization of dangerous criminals as well as preventing the 5% least intelligent from procreating for ten generations.

In the Neon Genesis Evangelion anime series, the character Rei Ayanami is implied to be a lab-created being combining human and angelic DNA. (compare to the Biblical Nephilim)

Genetic engineering (or something very like it) features prominently in Last and First Men, a 1930 novel by Olaf Stapledon.

Genetic engineering is depicted as widespread in the civilized world of Oryx and Crake. Prior to the apocalypse, though, its use among humans is not mentioned. Author Margaret Atwood describes many transgenic creatures such as Pigoons (though originally designed to be harvested for organs, post-apocalyptic-plague, they become more intelligent and vicious, traveling in packs), Snats (snake-rat hybrids who may or may not be extinct), wolvogs (wolf-dog hybrids), and the relatively harmless "rakunks" (skunk-raccoon hybrids, originally designed as pets with no scent glands).

In Plague, a 1979 film, a bacterium in an agricultural experiment accidentally escapes from a research laboratory in Canada, reaching the American Northeast and Great Britain.

Using a method similar to the DNA Resequencer from Stargate SG-1, and even called DNA Resequencing, the Operation Overdrive Power Rangers were given powers of superhuman strength, enhanced hearing, enhanced eyesight, super bouncing, super speed, and invisibility.

Quake II and Quake 4, released in 1997 and 2005, contain genetically-engineered Stroggs.

In the long-running 2006 series Rogue Trooper, the eponymous hero is a Genetic Infantryman, one of an elite group of supersoldiers genetically modified to resist the poisons left in the Nu-Earth atmosphere by decades of war. The original concept from the pages of 80s cult sci-fi comic 2000 AD (of Judge Dredd fame).

James Blish's The Seedling Stars (1956) is the classic story of controlled mutation for adaptability. In this novel (originally a series of short stories) the Adapted Men are reshaped human beings, designed for life on a variety of other planets. This is one of science fiction's most unreservedly optimistic accounts to date of technological efforts to reshape human beings.

In "The Man Who Grew Too Much" episode (2014), Sideshow Bob steals DNA from a GMO company, thus making himself the very first genetically engineered human, and attempts to combine his DNA with that of the smartest people ever to exist on Earth.

In Sleeper, a 1973 parody of many science fiction tropes, genetically modified crops are shown to grow gigantic.

The short-lived 1990s television series Space: Above and Beyond includes a race of genetically engineered and artificially gestated humans who are born at the physical age of 18, and are collectively known as In Vitros or sometimes, derogatorily, "tanks" or "nipple-necks". At the time of the series storyline, this artificial human race was integrated with the parent species, but significant discrimination still occurred.

The Ultimate Life Form project that produced Shadow the Hedgehog and Biolizard in the Sonic the Hedgehog series was a genetic engineering project.

In the Star Trek universe, genetic engineering has featured in a couple of films, and a number of television episodes.

The Breen, the Dominion, Species 8472, the Xindi, and the Federation use technology with organic components.

Khan Noonien Singh, who appeared in Space Seed and Star Trek II: The Wrath of Khan, was a product of genetic engineering. His physical structure was modified to make him stronger and to give him greater stamina than a regular human. His mind was also enhanced. However, the creation of Khan would have serious consequences because the superior abilities given to him created superior ambition. Along with other enhanced individuals, they tried to take over the planet. When they were reawakened by the Enterprise, Khan set himself to taking over the universe. Later, he became consumed by grief and rage, and set himself on the goal of destroying Kirk.

Others of these genetically enhanced augments wreaked havoc in the 22nd century, and eventually some of their enhanced DNA was blended with Klingon DNA, creating the human-looking Klingons of the early 23rd century (See Star Trek: Enterprise episodes "Affliction" and "Divergence").

Because of the experiences with genetic engineering, the Federation had banned it except to correct genetic birth defects, but a number of parents still illegally subjected their children to genetic engineering for a variety of reasons. This often created brilliant but unstable individuals. Such children are not allowed to serve in Starfleet or practice medicine, though Julian Bashir is a notable exception to this. Despite the ban, the Federation allowed the Darwin station to conduct human genetic engineering, which resulted in a telepathic, telekentic humans with a very effective immune system.

In Attack of the Clones, the Kamino cloners who created the clone army for the Galactic Republic had used engineering to enhance their clones. They modified the genetic structure of all but one to accelerate their growth rate, make them less independent, and make them better suited to combat operations.

Later, the Yuuzhan Vong are a race who exclusively use organic technology and regard mechanical technology as heresy. Everything from starships to communications devices to weapons are bred and grown to suit their needs.

In the show Stargate SG-1, the DNA Resequencer was a device built by the Ancients, designed to make extreme upgrades to humans by realigning their DNA and upgrading their brain activity. The machine gave them superhuman abilities, such as telekensis, telepathy, precognition, superhuman senses, strength, and intellect, the power to heal at an incredible rate, and the power to heal others by touch.

In the futuristic tabletop and video game series, Warhammer 40,000, the Imperium of Man uses genetic engineering to enhance the abilities of various militant factions such as the Space Marines, the Thunder Warriors, and the Adeptus Custodes. In the case of Space Marines, a series of synthesized, metamorphosis-inducing organs, known as gene seed, is made from the genome of the twenty original Primarchs and used to start the transformation of these superhuman warriors.

At the same time, the Tau Empire uses a form of eugenic breeding to improve the physical and mental condition of its various castes.

In the e-book, Methuselah's Virus, an ageing pharmaceutical billionaire accidentally creates a contagious virus capable of infecting people with extreme longevity when his genetic engineering experiment goes wrong. The novel then examines the problem of what happens if Methuselah's Virus is at risk of spreading to everyone on the entire planet.

In World Hunger, author Brian Kenneth Swain paints the harrowing picture of a life sciences company that field tests a new strain of genetically modified crop, the unexpected side effect of which is the creation of several new species of large and very aggressive insects.

Genetic engineering is an essential theme of the illustrated book Man After Man: An Anthropology of the Future by Dougal Dixon, where it is used to colonize other star systems and save the humans of Earth from extinction.

The Survival Gene e-book contains the author Artsun Akopyan's idea that people can't preserve nature as it is forever, so they'll have to change their own genetics in the future or die. In the novel, wave genetics is used to save humankind and all life on Earth.

A series of books by David Brin in which humans have encountered the Five Galazies, a multitude of sentient species which all practice Uplift raising species to sapience through genetic engineering. Humans, believing they have risen to sapience through evolution alone, are seen as heretics. But they have some status because at the time of contact humans had already Uplifted two species chimpanzees and bottlenose dolphins.

Eugenics is a recurrent theme in science fiction, often with both dystopian and utopian elements. The two giant contributions in this field are the novel Brave New World (1932) by Aldous Huxley, which describes a society where control of human biology by the state results in permanent social stratification.

There tends to be a eugenic undercurrent in the science fiction concept of the supersoldier. Several depictions of these supersoldiers usually have them bred for combat or genetically selected for attributes that are beneficial to modern or future combat.

The Brave New World theme also plays a role in the 1997 film Gattaca, whose plot turns around reprogenetics, genetic testing, and the social consequences of eugenics. Boris Vian (under the pseudonym Vernon Sullivan) takes a more light-hearted approach in his novel Et on tuera tous les affreux ("And we'll kill all the ugly ones").

Other novels touching upon the subject include The Gate to Women's Country by Sheri S. Tepper and That Hideous Strength by C. S. Lewis. The Eugenics Wars are a significant part of the background story of the Star Trek universe (episodes "Space Seed", "Borderland", "Cold Station 12", "The Augments" and the film Star Trek II: The Wrath of Khan). Eugenics also plays a significant role in the Neanderthal Parallax trilogy where eugenics-practicing Neanderthals from a near-utopian parallel world create a gateway to earth. Cowl by Neal Asher describes the collapse of western civilization due to dysgenics. Also Eugenics is the name for the medical company in La Foire aux immortels book by Enki Bilal and on the Immortel (Ad Vitam) movie by the same author.

In Frank Herbert's Dune series of novels, selective breeding programs form a significant theme. Early in the series, the Bene Gesserit religious order manipulates breeding patterns over many generations in order to create the Kwisatz Haderach. In God Emperor of Dune, the emperor Leto II again manipulates human breeding in order to achieve his own ends. The Bene Tleilaxu also employed genetic engineering to create human beings with specific genetic attributes. The Dune series ended with causal determinism playing a large role in the development of behavior, but the eugenics theme remained a crucial part of the story.

In Orson Scott Card's novel Ender's Game, Ender is only allowed to be conceived because of a special government exception due to his parent's high intelligence and the extraordinary performance of his siblings. In Ender's Shadow, Bean is a test-tube baby and the result of a failed eugenics experiment aimed at creating child geniuses.

In the novels Methuselah's Children and Time Enough for Love by Robert A. Heinlein, a large trust fund is created to give financial encouragement to marriage among people (the Howard Families) whose parents and grandparents were long lived. The result is a subset of Earth's population who has significantly above-average life spans. Members of this group appear in many of the works by the same author.

In the 1982 Robert Heinlein novel Friday, the main character has been genetically engineered from multiple sets of donors, including, as she finds out later her boss. These enhancements give her superior strength, speed, eyesight in addition to healing and other advanced attributes. Creations like her are considered to be AP's (Artificial Person).

In Eoin Colfer's book The Supernaturalist, Ditto is a Bartoli Baby, which is the name for a failed experiment of the famed Dr. Bartoli. Bartoli tried to create a superior race of humans, but they ended in arrested development, with mutations including extrasensory perception and healing hands.

In Larry Niven's Ringworld series, the character Teela Brown is a result of several generations of winners of the "Birthright Lottery", a system which attempts to encourage lucky people to breed, treating good luck as a genetic trait.

In season 2 of Dark Angel, the main 'bad guy' Ames White is a member of a cult known as the Conclave which has infiltrated various levels of society to breed super-humans. They are trying to exterminate all the Transgenics, including the main character Max Guevara, whom they view as being genetically unclean for having some animal DNA spliced with human.

In the movie Immortel (Ad Vitam), Director/Writer Enki Bilal titled the name of the evil corrupt organization specializing in genetic manipulation, and some very disturbing genetic "enhancement" eugenics. Eugenics has come to be a powerful organization and uses people and mutants of "lesser" genetic stock as guinea pigs. The movie is based on the Nikopol trilogy in Heavy Metal comic books.

In the video game Grand Theft Auto: Vice City, a fictional character called Pastor Richards, a caricature of an extreme and insane televangelist, is featured as a guest on a discussion radio show about morality. On this show, he describes shooting people who do not agree with him and who are not "morally correct", which the show's host describes as "amateur eugenics".

In the 2006 Mike Judge film Idiocracy, a fictional character, pvt. Joe Bauers, aka Not Sure (played by Luke Wilson), awakens from a cryogenic stasis in the year 2505 into a world devastated by dysgenic degeneration. Bauers, who was chosen for his averageness, is discovered to be the smartest human alive and eventually becomes president of the United States.

The manga series Battle Angel Alita and its sequel Battle Angel Alita: Last Order (Gunnm and Gunnm: Last Order as it is known in Japan) by Yukito Kishiro, contains multiple references to the theme of eugenics. The most obvious is the sky city Tiphares (Salem in Japanese edition). Dr. Desty Nova, in the first series in Volume 9, reveals the eugenical nature of the city to Alita (Gally or Yoko) and it is further explored in the sequel series. A James Cameron movie based on the series is due for release on 2018.[10]

In the French 2000 police drama Crimson Rivers, inspectors Pierre Niemans (played by Jean Reno) and his colleague Max Kerkerian (Vincent Cassel) attempt to solve series of murders triggered by eugenics experiment that was going on for years in university town of Guernon.

In the Cosmic Era universe of the Gundam anime series (Mobile Suit Gundam SEED), war is fought between the normal human beings without genetic enhancements, also known as the Naturals, and the Coordinators, who are genetically enhanced. It explores the pros and cons as well as possible repercussions from Eugenics

The Khommites of planet Khomm practice this through the method of self-cloning, believing they are perfect.

The book Uglies, part of a four-book series by Scott Westerfeld, revolves around a girl named Tally who lives in a world where everyone at the age of sixteen receives extensive cosmetic surgery to turn into "Pretties" and join society. Although it deals with extreme cosmetic surgery, the utopian (or dystopian, depending on one's interpretation) ideals in the book are similar to those present in the books mentioned above.

View post:

Genetic engineering in science fiction - Wikipedia

Ethical Implications of Human Genetic Engineering | SAGE

DNA editing techniques have been available for decades and are crucial tools for understanding gene functions and molecular pathways. Recently, genome editing has stepped back into the limelight because of newer technologies that can quickly and efficiently modify genomes by introducing or genetically correcting mutations in human cells and animal models. These tools include Zinc Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and the most recent player to join the ranks, Clustered Regularly Interspaced Short Palindromic repeats (CRISPR) (here, here). In a short time span, CRISPR/Cas9 has completely revolutionized the understanding of protein function, disease modeling, and potential therapeutic applications.

BACKGROUND on CRISPR/Cas9

The CRISPR/Cas9 system functions similarly to ZFNs and TALENs, it also takes advantage of a cells DNA repair machinery to delete (knock-out) or add in (knock-in) sequences of DNA. However, CRISPR/Cas9 offers several advantages: it is easier to target a specific gene of interest since designing the required CRISPR component is simple and efficient, whereas generating ZFNs and TALENs is more time consuming; it is often more proficient in generating the desired recombination results; and it is exponentially more cost effective, so almost any laboratory in the world can use it. CRISPR/Cas9 has been shown to work in several model organisms, and consequently researchers are keen to apply this technology for modifying genetic mutations in humans with uncured diseases as well as in human embryos, which arouses many scientific and ethical considerations.

Human embryonic gene editing

Genome editing technologies have come a long way and have already advanced towards mammalian models and clinical trials in humans. Recently, genetic modification of human embryos using CRISPR/Cas9 technology was achieved by the Huang laboratory in China in April 2015. They genetically modified un-viable embryos obtained from an in vitro fertilization clinic. These embryos were fertilized with two different sources of sperm, thus impairing their development. In this study, the Huang group repaired a mutation in the human -globin gene (HBB) that causes the blood disorder -thalassaemia. The CRISPR/Cas9 system and a donor DNA sequence containing the normal, healthy version of the HBB were injected into 86 embryos. A total of four embryos successfully integrated the corrected version of the HBB at the appropriate site. However, the authors reported a high number of off-target effects, meaning that CRISPR/Cas9 modified other locations in the genome; a non-ideal situation that could cause the disruption of other essential gene functions. The study demonstrated two important findings: genetic engineering is possible in human embryos and the CRISPR/Cas9 system requires essential improvements before it can be used in future studies on human embryos. More importantly, these results force scientists to question the future and the implications of such a powerful technology. Should we accept genetic engineering of human embryos? If yes, when and in what capacity should we accept it?

Current guidelines and regulation

Scientists in the United States are addressing the need for regulation of human embryonic gene editing. On April 29th, the US National Institute of Health (NIH) director, Dr. Francis Collins, released a statement emphasizing the bureaus policy against funding research involving genome editing of human embryos and the ethical concerns regarding this technology. However, the policy does not necessarily cover privately funded projects.

Safety regarding genetic engineering is a major concern and Huangs publication highlights this point. However, this publication forces the community to address whether scientists should use non-viable or discarded embryos to improve the efficiency and efficacy of the CRISPR/Cas9 system. The CRISPR/Cas9 system was developed for human genome targeting in 2012 and since then has seen rapid improvements. If it is decided that unviable embryos can be used for this type of research, the next step for US lawmakers is to evaluate new guidelines for the funding and safety of genetic engineering in these embryos.

Ethical concerns

While the interest and use of CRISPR/Cas9 has exploded since its discovery in 2012, prominent scientists in the field have already initiated conversations regarding the ethical implications that arise when modifying the human genome. Preventing genetic diseases by human genetic engineering is inevitable. The slippery slope is when/if we start to use it for cosmetic changes such as eye color or for improving a desired athletic trait. A perfect example is surgery, which we have performed for hundred years for disease purposes and is now widely used as a cosmetic tool. Opening the doors for genetic engineering of human embryos could with time lead to manipulate genetics for desirable traits, raising the fear of creating a eugenic driven human population.

Who are we to manipulate nature? However, for all those who suffer from genetic diseases the answer is not so simples; if we can safely prevent severe genetic diseases and create healthy humans, why not manipulate nature? Have we not already done this in other animal populations? At this time the long term effects of genome editing remain unknown, raising additional questions. As the field progresses, with appropriate regulations and guidelines it will eventually co-exist alongside other major controversial topics including nuclear power and genetically modified organisms. Since ethics are different across the world, creating international guidelines will be a challenge, but a necessity. Strict regulations are in place for nuclear power, the same should be possible for genetic engineering of human embryos. To outlaw genetic engineering entirely will be potentially declining a place at the discussion table, as the further utilization of CRISPR/Cas9 technology is unlikely to be abandoned.

This fall The National Academy of Sciences and National Academy of Medicine, together with CRISPR/Cas9 discoverers Dr. Jennifer Doudna, Dr. Emmanuelle Charpentier, and other leading scientist within the field are organizing an international summit to consider all aspects (both ethical and scientific) of human genetic engineering to develop standard guidelines and policies for practicing human genome editing. The NIH already has guidelines in place, and will potentially add more as a result of this summit. It is expected that other countries will have varying guidelines for human genomic engineering. Also, to avoid fear and misunderstanding, scientists will need to convey human genome editing in a responsible manner to the general human population. This summit is a step in the right direction encouraging caution and regulations. Hence, there is now a need for a timely but thoughtful set of guidelines for the general scientific community as well as for the broader human community.

Go here to see the original:

Ethical Implications of Human Genetic Engineering | SAGE

Pros and Cons of Genetic Engineering in Humans

The human body is not perfect. Some are created with inherent faults and others break down before their time. Science has the potential to make good these problems by altering how humans are made. This is genetic engineering, and this article looks at the pros and cons of the technology in humans

This is part one of a two-part series. Here I will look at a definition of genetic engineering and the pros of human genetic engineering. In part two the cons and the ethics of human genetic engineering are discussed.

Before weighing up the pros and cons of genetic engineering in humans, it's worth taking the time to understand just what is meant by the idea. Simply put, it's a way of manipulating our genes in such a way as to make our bodies better. This alteration of a genome could take place in the sperm and egg cells. This is known as germline gene therapy and would alter the traits that a child is born with. The changes would be inheritable and passed down through the generations. It is currently illegal in many countries.

The other way to change our genome is to swap our bad genes for good ones - in cells other than the sex cells. This is known as somatic cell gene therapy. This is where a functioning gene could be fired into our bodies on a viral vector to carry out the functions that a faulty gene is unable to. This technology is permitted, though it has enjoyed a very limited success rate so far (largely because it is technically very difficult). Nonetheless, it still holds out a great deal of promise.

There are many potential advantages to being able to alter the cells in our bodies genetically.

To make disease a thing of the past

Most people on the planet die of disease or have family members that do. Very few of us will just pop up to bed one night and gently close our eyes for the last time. Our genomes are not as robust as we would like them to be and genetic mutations either directly cause a disease such as Cystic fibrosis, or they contribute to it greatly i.e. Alzheimer's. Or in the case of some conditions such as the heart disease Cardiomyopathy, genetic mutations can make our bodies more susceptible to attack from viruses or our own immune system. If the full benefits of gene therapy are ever realised we can replace the dud genes with correctly functioning copies.

To extend life spans

Having enjoyed life, most of us want to cling on to it for as long as possible. The genetic engineering of humans has the potential to greatly increase our life spans. Some estimates reckon that 100-150 years could be the norm. Of course gene therapy for a fatal condition will increase the lifespan of the patient but we're also talking about genetic modifications of healthy people to give them a longer life. Once we fully understand the genetics of ageing it may be possible to slow down or reverse some of the cellular mechanisms that lead to our decline - for example by preventing telomeres at the ends of chromosomes from shortening. Telomere shortening is known to contribute to cell senescence.

Better pharmaceuticals

The knowledge gained by working out genetic solutions for the above could help with the design of better pharmaceutical products that are able to target specifically genetic mutations in each individual.

So What's the Downside?

As deliriously exciting as some people believe genetic engineering to be - there are several downsides and ethical dilemmas. Click the link to read the cons.

This two part series explores some of the pros and cons of human genetic engineering.

Continued here:

Pros and Cons of Genetic Engineering in Humans

Benefits of Human Genetic Engineering – Popular Issues

QUESTION: What are the benefits of human genetic engineering?

ANSWER:

The benefits of human genetic engineering can be found in the headlines nearly every day. With the successful cloning of mammals and the completion of the Human Genome Project, scientists all over the world are aggressively researching the many different facets of human genetic engineering. These continuing breakthroughs have allowed science to more deeply understand DNA and its role in medicine, pharmacology, reproductive technology, and countless other fields.

The most promising benefit of human genetic engineering is gene therapy. Gene therapy is the medical treatment of a disease by repairing or replacing defective genes or introducing therapeutic genes to fight the disease. Over the past ten years, certain autoimmune diseases and heart disease have been treated with gene therapy. Many diseases, such as Huntington's disease, ALS (Lou Gehrig's disease), and cystic fibrosis are caused by a defective gene. The hope is that soon, through genetic engineering, a cure can be found for these diseases by either inserting a corrected gene, modifying the defective gene, or even performing genetic surgery. Eventually the hope is to completely eliminate certain genetic diseases as well as treat non-genetic diseases with an appropriate gene therapy.

Currently, many pregnant women elect to have their fetuses screened for genetic defects. The results of these screenings can allow the parents and their physician to prepare for the arrival of a child who may have special needs before, during, and after delivery. One possible future benefit of human genetic engineering is that, with gene therapy, a fetus w/ a genetic defect could be treated and even cured before it is born. There is also current research into gene therapy for embryos before they are implanted into the mother through in-vitro fertilization.

Another benefit of genetic engineering is the creation pharmaceutical products that are superior to their predecessors. These new pharmaceuticals are created through cloning certain genes. Currently on the market are bio-engineered insulin (which was previously obtained from sheep or cows) and human growth hormone (which in the past was obtained from cadavers) as well as bio-engineered hormones and blood clotting factors. The hope in the future is to be able to create plants or fruits that contain a certain drug by manipulating their genes in the laboratory.

The field of human genetic engineering is growing and changing at a tremendous pace. With these changes come several benefits and risks. These benefits and risks must be weighed in light of their moral, spiritual, legal, and ethical perspectives. The potential power of human genetic engineering comes with great responsibility.

What is your response?

Yes, today I am deciding to follow Jesus

Yes, I am already a follower of Jesus

I still have questions

Continued here:

Benefits of Human Genetic Engineering - Popular Issues

Pros and Cons of Genetic Engineering in Humans – Bright Hub

The human body is not perfect. Some are created with inherent faults and others break down before their time. Science has the potential to make good these problems by altering how humans are made. This is genetic engineering, and this article looks at the pros and cons of the technology in humans

This is part one of a two-part series. Here I will look at a definition of genetic engineering and the pros of human genetic engineering. In part two the cons and the ethics of human genetic engineering are discussed.

Before weighing up the pros and cons of genetic engineering in humans, it's worth taking the time to understand just what is meant by the idea. Simply put, it's a way of manipulating our genes in such a way as to make our bodies better. This alteration of a genome could take place in the sperm and egg cells. This is known as germline gene therapy and would alter the traits that a child is born with. The changes would be inheritable and passed down through the generations. It is currently illegal in many countries.

The other way to change our genome is to swap our bad genes for good ones - in cells other than the sex cells. This is known as somatic cell gene therapy. This is where a functioning gene could be fired into our bodies on a viral vector to carry out the functions that a faulty gene is unable to. This technology is permitted, though it has enjoyed a very limited success rate so far (largely because it is technically very difficult). Nonetheless, it still holds out a great deal of promise.

To make disease a thing of the past

Most people on the planet die of disease or have family members that do. Very few of us will just pop up to bed one night and gently close our eyes for the last time. Our genomes are not as robust as we would like them to be and genetic mutations either directly cause a disease such as Cystic fibrosis, or they contribute to it greatly i.e. Alzheimer's. Or in the case of some conditions such as the heart disease Cardiomyopathy, genetic mutations can make our bodies more susceptible to attack from viruses or our own immune system. If the full benefits of gene therapy are ever realised we can replace the dud genes with correctly functioning copies.

To extend life spans

Having enjoyed life, most of us want to cling on to it for as long as possible. The genetic engineering of humans has the potential to greatly increase our life spans. Some estimates reckon that 100-150 years could be the norm. Of course gene therapy for a fatal condition will increase the lifespan of the patient but we're also talking about genetic modifications of healthy people to give them a longer life. Once we fully understand the genetics of ageing it may be possible to slow down or reverse some of the cellular mechanisms that lead to our decline - for example by preventing telomeres at the ends of chromosomes from shortening. Telomere shortening is known to contribute to cell senescence.

Better pharmaceuticals

The knowledge gained by working out genetic solutions for the above could help with the design of better pharmaceutical products that are able to target specifically genetic mutations in each individual.

So What's the Downside?

As deliriously exciting as some people believe genetic engineering to be - there are several downsides and ethical dilemmas. Click the link to read the cons.

This two part series explores some of the pros and cons of human genetic engineering.

More here:

Pros and Cons of Genetic Engineering in Humans - Bright Hub

Societal Consequences of Human Genetic Engineering …

Section 15 of NOVAs program, Cracking the Code of Life, utilizes popular film and television scenarios to relate to its audience the potential possibilities of future genetic modification of humans. In a scene from GATTACA, the doctor explains the process of choosing simply the best of the two parents DNA to create their child in a petri dish. According to Francis Collins, former director of the National Human Genome Research Institute (NHGRI) and current director of the National Institutes of Health (NIH), that technology is right in front of us or almost in front of us.

[http://www.stumbleupon.com/su/1EdlIO/www.wickedreport.com/genetic-errors/]

The advancement of research in genetic modification raises ethical concerns of how this information technology will be used in the future. Who will regulate which genes are modified and which are not? If law prohibits genetic modification except in cases of modifying mutations that cause diseases, how will the law regulator, presumably the government, define a disease? What will be the standards for disease severity? Will the law provide genetic modification for mutated genes like BRCA but not for blindness or alcoholism? How will they decide which diseases are more important or more severe than others?

Society as a whole can generally agree that using genetic modification to help prevent incurable diseases like cancer, diabetes, and Tay Sachs disease, is highly favorable. Potential prevention of these diseases could save thousands of people pain, suffering, anxiety, and, on a more superficial level, millions of dollars. The line begins to blur when society examines the possibility of using this genetic modification technology not only to prevent disease, but to make their children genetically different to enhance their performance.

If society decides that anyone who can afford genetic modification can take advantage of its benefits, will parents begin to alter the characteristics of their future children? Program host Robert Krulwich asks, what parent wouldnt want to introduce a child that would at least be where all the other kids could be?

All parents want their children to have the best possible start to life and have the best advantages that they can provide. I wonder how far some parents would go to secure the best genetic start for their children. If genetic modification becomes a public option, it will probably only be available to those who can afford it. Because of the inevitability of its high cost, the only people who would be able to afford to create genetically perfect children would be those in the highest percentile of wealth. Therefore, if only a certain group with a specific socio-economic status could even have access to this science, the gap between social classes will increase not only because of a disparity of wealth, but also because of a disparity in gene perfection. The definition of elite will encompass human perfection through genetic modification.

The First Genetically Modified Human Embryo

Defying nature to build super-humans is not a real concern until science has proven that this is possible, and currently this technology is not perfected. Science should be allowed to progress and discoveries should not be hindered or stopped. However, it is important for society to decide now how they will deal with the ultimate results of future scientific research.

By: Elizabeth S.

Like Loading...

Related

~ by elizabethstinson on January 31, 2010.

Posted in Ethics of science, Genetic engineering, Science and humanitiesTags: Ethics of Genetics, Gattaca, Genetic engineering, genetic modification, Nova Cracking the Code of Life

Link:

Societal Consequences of Human Genetic Engineering ...

Human Genetic Engineering Cons: Why This Branch of Science …

A Slippery Slope? Ethics of Human Genetic Engineering

To say that genetic engineering has attracted some controversy would be an understatement. There are many cries that scientists are 'playing God' and that it will lead to a two-tier society - the genetically haves and the have-nots. But is this any different to the cries of horror and fears of Frankenstein's monster that greeted Louise Brown, the first child to be born by IVF treatment? There was great uproar in the late 1970's but IVF is now a common, if expensive, fertility treatment. And there aren't any monsters stalking the Earth.

Having said that, genetic engineering does hold the potential that parents could (if the technology worked) assemble their kids genetically, to be smarter, to be more athletic or have a particular hair or eye colour. Though it's rather fanciful to suggest that intelligence could be improved by the substitution of a gene, it may be found that there are several genes that are more commonly expressed in the genomes of intelligent people than those with more limited intellectual capacity. And parents might want to engineer an embryo to house a greater number of these genes. It is this genetic engineering of humans that so frightens people, that we could somehow design the human race. Though some people point out other potential benefits. What if it turned out that there were sets of genes that were commonly expressed in criminals - could we tackle crime by weeding out those genes?

The technology is nowhere near there yet, but a tiny number of parents undergoing IVF have selected their embryos to be free from genetic mutations that have blighted generations of their family. In the UK in January 2009 a mother gave birth to a girl whose embryo had been selected to be free from a genetic form of breast cancer. Some see this as a slippery slope towards a eugenic future, others view it as a valuable use of genetic engineering to prevent disease from striking someone down.

Society will decide how it uses this technology, and it is for governments to weigh up the pros and cons of genetic engineering in humans to see what may be carried out and what should be illegal. They will be prompted by public understanding, desire and concern. It therefore behoves all of us to understand what scientists are trying to accomplish and what they are not trying to do. We must all become better informed, to equip ourselves with more information and to know the difference between science fiction and science fact.

See more here:

Human Genetic Engineering Cons: Why This Branch of Science ...

Human Genetics Alert – The Threat of Human Genetic Engineering

David King

The main debate around human genetics currently centres on the ethics of genetic testing, and possibilities for genetic discrimination and selective eugenics. But while ethicists and the media constantly re-hash these issues, a small group of scientists and publicists are working towards an even more frightening prospect: the intentional genetic engineering of human beings. Just as Ian Wilmut presented us with the first clone of an adult mammal, Dolly, as a fait accompli, so these scientists aim to set in place the tools of a new techno-eugenics, before the public has ever had a chance to decide whether this is the direction we want to go in. The publicists, meanwhile are trying to convince us that these developments are inevitable. The Campaign Against Human Genetic Engineering, has been set up in response to this threat.

Currently, genetic engineering is only applied to non-reproductive cells (this is known as 'gene therapy') in order to treat diseases in a single patient, rather than in all their descendants. Gene therapy is still very unsuccessful, and we are often told that the prospect of reproductive genetic engineering is remote. In fact, the basic technologies for human genetic engineering (HGE) have been available for some time and at present are being refined and improved in a number of ways. We should not make the same mistake that was made with cloning, and assume that the issue is one for the far future.

In the first instance, the likely justifications of HGE will be medical. One major step towards reproductive genetic engineering is the proposal by US gene therapy pioneer, French Anderson, to begin doing gene therapy on foetuses, to treat certain genetic diseases. Although not directly targeted at reproductive cells, Anderson's proposed technique poses a relatively high risk that genes will be 'inadvertently' altered in the reproductive cells of the foetus, as well as in the blood cells which he wants to fix. Thus, if he is allowed to go ahead, the descendants of the foetus will be genetically engineered in every cell of their body. Another scientist, James Grifo of New York University is transferring cell nuclei from the eggs of older to younger women, using similar techniques to those used in cloning. He aims to overcome certain fertility problems, but the result would be babies with three genetic parents, arguably a form of HGE. In addition to the two normal parents, these babies will have mitochondria (gene-containing subcellular bodies which control energy production in cells) from the younger woman.

Anderson is a declared advocate of HGE for medical purposes, and was a speaker at a symposium last year at UCLA, at which advocates of HGE set out their stall. At the symposium, which was attended by nearly 1,000 people, James Watson, of DNA discovery fame, advocated the use of HGE not merely for medical purposes, but for 'enhancement': 'And the other thing, because no one really has the guts to say it, I mean, if we could make better human beings by knowing how to add genes, why shouldn't we do it?'

In his recent book, Re-Making Eden (1998), Princeton biologist, Lee Silver celebrates the coming future of human 'enhancement', in which the health, appearance, personality, cognitive ability, sensory capacity, and life-span of our children all become artifacts of genetic engineering, literally selected from a catalog. Silver acknowledges that the costs of these technologies will limit their full use to only a small 'elite', so that over time society will segregate into the "GenRich" and the "Naturals":

"The GenRich - who account for 10 percent of the American population - all carry synthetic genes... that were created in the laboratory ...All aspects of the economy, the media, the entertainment industry, and the knowledge industry are controlled by members of the GenRich class...Naturals work as low-paid service providers or as labourers, and their children go to public schools... If the accumulation of genetic knowledge and advances in genetic enhancement technology continue ... the GenRich class and the Natural class will become...entirely separate species with no ability to cross-breed, and with as much romantic interest in each other as a current human would have for a chimpanzee."

Silver, another speaker at the UCLA symposium, believes that these trends should not and cannot be stopped, because to do so would infringe on liberty.

Most scientists say that what is preventing them from embarking on HGE is the risk that the process will itself generate new mutations, which will be passed on to future generations. Official scientific and ethical bodies tend to rely on this as the basis for forbidding attempts at HGE, rather than any principled opposition to the idea.

In my view, we should not allow ourselves to be lulled into a false sense of security by this argument. Experience with genetically engineered crops, for example, shows that we are unlikely ever to arrive at a situation when we can be sure that the risks are zero. Instead, when scientists are ready to proceed, we will be told that the risks are 'acceptable', compared to the benefits. Meanwhile, there will be people telling us loudly that since they are taking the risks with their children, we have no right to interfere.

One of the flaws in the argument of those who support the possibility of HGE for medical purposes is that there seem to be very few good examples where it is the only solution to the medical problem of genetic disease. The main advantage of HGE is said to be the elimination of disease genes from a family. Yet in nearly all cases, existing technologies of prenatal and preimplantation genetic testing of embryos allow the avoidance of actual disease. There are only a few very rare cases where HGE is the only option.

Furthermore, there is always another solution for those couples who are certain to produce a genetically disabled child and cannot, or do not want to deal with this possibility. They can choose not to have children, to adopt a child, or to use donor eggs or sperm. Parenthood is not the only way to create fulfilment through close, intimate and long lasting relationships with children. The question we have to ask is whether we should develop the technology for HGE, in order to satisfy a very small number of people.

Although the arguments for the first uses of HGE will be medical, in fact the main market for the technology will be 'enhancement'. Once it was available, how would it be possible to ensure that HGE was used for purely medical purposes? The same problem applies to prenatal genetic screening and to somatic gene therapy, and not only are there no accepted criteria for deciding what constitutes a medical condition, but in a free market society there seems to be no convincing mechanism for arriving at such decision. The best answer that conventional medical ethics seems to have is to `leave it up to the parents', ie. to market forces.

Existing trends leave little doubt about what to expect. Sophisticated medical technology and medical personnel are already employed in increasingly fashionable cosmetic surgery. Another example is the use of genetically engineered human growth hormone (HGH), developed to remedy the medical condition of growth hormone deficiency. Because of aggressive marketing by its manufacturers, HGH is routinely prescribed in the USA to normal short children with no hormone deficiency. If these pressures already exist, how much stronger will they be for a technology with as great a power to manipulate human life as HGE?

Germ line manipulation opens up, for the first time in human history, the possibility of consciously designing human beings, in a myriad of different ways. I am not generally happy about using the concept of playing God, but it is difficult to avoid in this case. The advocates of genetic engineering point out that humans constantly 'play God', in a sense, by interfering with nature. Yet the environmental crisis has forced us to realise that many of the ways we already do this are not wise, destroy the environment and cannot be sustained. Furthermore, HGE is not just a continuation of existing trends. Once we begin to consciously design ourselves, we will have entered a completely new era of human history, in which human subjects, rather than being accepted as they are will become just another kind of object, shaped according to parental whims and market forces.

In essence, the vision of the advocates of HGE is a sanitised version of the old eugenics doctrines, updated for the 1990s. Instead of 'elimination of the unfit', HGE is presented as a tool to end, once and for all, the suffering associated with genetic diseases. And in place of 'improving the race', the 1990s emphasis is on freedom of choice, where 'reproductive rights' become consumer rights to choose the characteristics of your child. No doubt the resulting eugenic society would be a little less brutal than those of earlier this century. On the other hand the capabilities of geneticists are much greater now than they were then. Unrestrained, HGE is perfectly capable of producing Lee Silver's dystopia.

In most cases, the public's function with respect to science is to consume its products, or to pay to clean up the mess. But with HGE, there is still time to prevent it, before it becomes reality. We need an international ban on HGE and cloning. There is a good chance this can be achieved, since both are already illegal in many countries. Of course it may be impossible to prevent a scientist, somewhere, from attempting to clone or genetically engineer humans. But there is a great difference between a society which would jail such a scientist and one which would permit HGE to become widespread and respectable. If we fail to act now, we will only have ourselves to blame.

Go here to read the rest:

Human Genetics Alert - The Threat of Human Genetic Engineering

New Hampshire biologist reacts to gene-editing discovery – The Union Leader

By KIMBERLY HOUGHTON Union Leader Correspondent August 14. 2017 11:06PM

This sequence of images shows the development of embryos after being injected with a biological kit to edit their DNA, removing a genetic mutation known to cause hypertrophic cardiomyopathy.(Oregon Health & Science University)

Bryan Luikart, an associate professor of molecular and systems biology at Geisel School of Medicine at Dartmouth College.

It is pretty amazing. It is a super-exciting time to be a scientist right now, said Bryan Luikart, an associate professor of molecular and systems biology at Geisel School of Medicine at Dartmouth College.

The study, which was published in the journal Nature, was detailed in a New York Times report. According to the article, Oregon researchers reported they repaired dozens of human embryos, fixing a mutation that causes a common heart condition that can lead to sudden death later in life.

The way they have dodged some ethical considerations is that they didnt go on to have that embryo grow into a person, said Luikart, explaining that if the embryos with the repaired mutation did have the opportunity to develop, they would be free of the heart condition.

At the Geisel School of Medicine at Dartmouth, Luikart and his colleagues have already been using this concept with mouse embryos, focusing specifically on autism.

Researchers are using the gene-editing method called CRISPR-Cas9 in hopes of trying to more fully understand autism, which he said is the most critical step in eventually finding a cure.

I think the CRISPR is a tremendous breakthrough. The question really is where and when do you want to use it, Luikart said. I have no ethical concerns using it as a tool to better understand biology.

The new milestone, an example of human genetic engineering, does carry ethical concerns that Luikart said will trigger some debates. He acknowledged that while the advancement of gene-editing technology could eventually stop unwanted hereditary conditions, it also allows for creating babies with smarter, stronger or more attractive traits.

The ability to do that is now within our grasp more than it has ever been, he said.

More importantly, the breakthrough could ultimately eliminate diseases, Luikart said. As the technology advances, he said, genetic diseases that are passed down to children may be corrected before the child receives them.

He used another example of a brain tumor, which often returns after it is surgically removed. Now, once the brain tumor is removed, there is the possibility of placing something in the space to edit and fix the mutation that causes the brain tumor in the first place if physicians are able to find the right cell to edit, Luikart said.

People are definitely thinking along those lines, or cutting the HIV genome, said Luikart, who predicts that those advancements will occur in mice within the next decade, and the ability to do that in humans is definitely there.

The big question is whether that can occur without some sort of side effect that was not predicted, he said.

Columbia University Medical Center posted an article earlier this year warning that CRISPR gene editing can cause hundreds of unintended mutations, based on a study published recently in Nature Methods.

This past May, MilliporeSigma announced it has developed a new genome editing tool that makes CRISPR more efficient, flexible and specific, giving researchers more experimental options and faster results that can accelerate drug development and access to new therapies, according to a release.

CRISPR genome editing technology is advancing treatment options for some of the toughest medical conditions faced today, including chronic illnesses and cancers for which there are limited or no treatment options, states the release, adding the applications of CRISPR are far ranging from identifying genes associated with cancer to reversing mutations that cause blindness.

It is pretty big news, Luikart said.

khoughton@newstote.com

Health Hanover

Continue reading here:

New Hampshire biologist reacts to gene-editing discovery - The Union Leader

Human Genetic Engineering Facts

Names of a lot of scientists come to notice whenever there are talks about Human Genetic Engineering Facts. Two scientists namely Stanley Cohen and Herbert Boyer discovered a technique for cloning using DNA. These two have contributed a lot in Human Genetic Engineering studies. This stage was the discovery of science for historians. It was also the beginning of advanced sciences.

Two other popular scientists involved in studying Human Genetic Engineering Facts were Cohen and Boyer. They made proper use of enzymes with the purpose of cutting bacteria plasmid in slices.

A different DNA strand was required for placing these slices. DNA strands can be obtained from that particular bacteria plasmid. Cohen and Boyer, together with their efforts, proved that it is quite possible to manipulate or mix the genes. DNA mapping has made it easier for the scientists to do the genes manipulation.

Human Genetic Engineering Facts have emerged a lot in this area of work. With the emergence of these facts it became possible for scientists to develop insulin that can be used in the treatment of patients that suffer from diabetes. The technique can also be used for creating insulin that can be given to patients suffering from ailments in their kidney.

The invention of genetic therapy also involves the use of this technique. White blood cells present in humans can be altered genetically. This is the situation in people that have defects in the immune system. Altered blood cells can easily be reinserted for improvements in the immune system.

Agricultural benefits of Human Genetic Engineering

Crops can be modified with the help of genetic engineering. This is an important advantage or factor contributing in the vast scope of Human Genetic Engineering Facts . Gene therapy will alter or change the genes, and this will keep the vegetable and fruits resistant from any kind of disease. Human Genetic Engineering Facts have inspired many scientists. Farmers have also been impressed with the effect that it lays on the growth of fruits and vegetables. Many additional benefits are there for using gene therapy in agricultural activities. It will increase the production by making minimum investment.

Many otherHuman Genetic Engineering Facts are there that can leave positive impact on agricultural development. This can be done in order to fulfill the demand of food items. It will also result in reducing the use of insecticides, and fertilizers at the same time convenient. All these factors will contribute together for reducing the amount of pollution caused from the fertilizers. It will also increase the level of health among people.

Other benefits

Human Genetic Engineering Facts can also lead to generate breeds that will bring diversity among the animals that have been modified genetically. It will keep animals away from any kind of danger. Gene therapy will increase the strength of the animals to a great extent. This will also enable them to cope with the ever changing environment. Animals that have genetically altered genes will stay away from deadly diseases.

Human Genetic Engineering Facts

1.86 (37.22%) 388 votes

Read the original here:

Human Genetic Engineering Facts

Human Nature on Collision Course with Genetic Engineering …

Human Nature on Collision Course with Genetic Engineering

Human genetic engineering could be the next major battleground for the global conservation movement, according to a series of reports in the latest issue of World Watch magazine, published by the Worldwatch Institute, a Washington, D.C.-based research organization. While previous struggles have involved protecting ecosystems and human societies from the unpredicted consequences of new technologies, this fight over high-risk applications of human genetic engineering is a struggle over who will decide what it means to be human.

Many countries have already banned reproductive cloning, and the U.N. is working on a global treaty to ban it, but even more powerful and much more dangerous are the related technologies to modify the genes we pass on to our children, says Ed Ayres, Editor of World Watch magazine. The contributors to this special issue call on the U.N. and national governments to ban the technology known as inheritable genetic modification.

Many uses of human genetic technology could be beneficial to society, but as political scientist Francis Fukuyama writes in the magazine, our understanding of the relationship between our genes and whatever improvements we might seek for our children (and their descendants) is dangerously deficient. Fukuyama warns that the victim of a failed experiment will not be an ecosystem, but a human child whose parents, seeking to give her greater intelligence, will saddle her with a greater propensity for cancer, or prolonged debility in old age, or some other completely unanticipated side effect that may emerge only after the experimenters have passed from the scene.

Human genetic engineering has ramifications that reach far beyond the life of a single child. Several contributors highlight the disastrous results of the last serious effort to engineer genetic perfection. In the early part of the 20th century, scientists and politicians in the United States relied on the alleged science of eugenics to justify the forced sterilization of tens of thousands of people who were judged to be feebleminded, mentally defective, or epileptics. Hitler passed his own sterilization law soon after taking office in 1933, heading down the path toward the Holocaust. The U.S. biotechnology industry-which dominates the global industry-has become an increasingly powerful economic and political force, with revenues growing fivefold between 1989 ($5 billion) and 2000 ($25 billion). Aided by the equally rapid revolution in computing, laboratories that once took two months to sequence 150 nucleotides can now process over 30 million in a day, and at a small fraction of the earlier cost. The number of patents pending for human DNA sequences has gone from 4,000 in 1991, to 500,000 in 1998, to several million today.

We are publishing this special issue because we dont want to lose the opportunity to decide openly and democratically how this rapidly developing technology is used, says Ayres. This isnt a fight about saving whales, or the last rain forests, or even the health of people living today. The question is whether we can save ourselves from ourselves, to know and respect what we do not know, and to put the breaks on potentially dangerous forms of human genetic engineering.

Excerpts from the authors of the Beyond Cloning issue of World Watch

About World Watch magazine: This bimonthly magazine is published by the Worldwatch Institute, an independent research organization, based in Washington, DC. Launched in 1988, the magazine has won the Alternative Press Award for investigative journalism, the Project Censored Award, and a number of Utne Reader awards. Recent editions have featured articles on the imminent disappearance of more than half of the worlds languages, airport sprawl, and the rapid growth of organic farming. Please visit: http://www.worldwatch.org/mag/.

The Worldwatch Institute is an independent research organization that works for an environmentally sustainable and socially just society, in which the needs of all people are met without threatening the health of the natural environment or the well-being of future generations. By providing compelling, accessible, and fact-based analysis of critical global issues, Worldwatch informs people around the world about the complex interactions between people, nature, and economies. Worldwatch focuses on the underlying causes of and practical solutions to the worlds problems, in order to inspire people to demand new policies, investment patterns, and lifestyle choices. For more information, visit: http://www.worldwatch.org.

Disclaimer: Please note that the statement by eight leaders of environmental NGOs, which appears on page 25 of the magazine, represents the views of the individuals quoted, not necessarily of the organizations they lead.

Original post:

Human Nature on Collision Course with Genetic Engineering ...

The ethics of creating GMO humans | The Spokesman-Review – The Spokesman-Review

(PHOTO)

Los Angeles Times (TNS)

The following editorial appeared in the Los Angeles Times on Friday, Aug. 4:

-

In a process that can be likened to the creation of GMO crops, scientists have edited genes in human embryos in order to eliminate a mutation that causes thickening of the heart wall. The embryos were created solely for the scientists study and will not be implanted. Nonetheless, the research offers hope that in years ahead, science could prevent many serious genetic diseases at the stage in which people are a microscopic cluster of cells in a petri dish. Whats more, because those edited genes would be carried forth into new generations, the disease might eventually be eliminated altogether.

Is this a glorious new frontier or a troubling situation? Unequivocally, the answer is yes to both.

The research results by an international team of U.S., Chinese and South Korean scientists were enormously exciting medically. Beyond the technical achievement involved, the teams work hastened the arrival of a revolutionary form of treatment: removing genes that can lead inexorably to suffering and premature death.

Public policy and the field of bioethics have not caught up with the science of genetic intervention.

But there is also a great deal we still dont know about how minor issues might become major ones as people pass on edited DNA to their offspring, and as people who have had some genes altered reproduce with people who have had other genes altered. Weve seen how selectively breeding to produce one trait can unexpectedly produce other, less desirable outcomes. Remember how growers were able to create tomatoes that were more uniformly red, but in the process, they turned off the gene that gave tomatoes flavor?

Another major issue is the ethics of adjusting humans genetically to fit a favored outcome. Today its heritable disease, but what might be seen as undesirable traits in the future that people might want to eliminate? Short stature? Introverted personality? Klutziness?

To be sure, its not as though everyone is likely to line up for gene-edited offspring rather than just having babies, at least for the foreseeable future. The procedure can be performed only on in vitro embryos and requires precision timing.

But even with this early study, problematic issues already are evident. Gene editing isnt the only method to protect against certain hereditary conditions such as hypertrophic cardiomyopathy, which was edited out in this study. Children stand a 50 percent chance of inheriting the condition; if a couple produces several embryos through in vitro fertilization, half of those already would theoretically be free of the mutation, and those are the ones that would be selected for implantation. Gene editing made the process more efficient, but it did not offer hope where there was none, Jennifer Doudna, a molecular and cell biologist at the University of California at Berkeley, observed.

In fact, six months ago, the National Academies of Science, Engineering and Medicine recommended that scientists involved in germline editing that is, making changes that would be passed down to future generations should limit their work to diseases for which there are no other reasonable treatments. The most recent embryo study began before that recommendation was delivered.

Thats emblematic of the real problem: Public policy and the field of bioethics have not caught up with the science of genetic intervention. Yes, federal money cant be spent on research involving human embryos even when they are still at the stage of a clump of undifferentiated cells. FDA approval would be needed for any actual human therapies, which would be years off.

Still, the technology is advancing more rapidly than societys discussions about human genetic engineering, the specter of eugenics and even the seemingly mundane topics of who will own the patents on customized genes and who will have access to gene editing once it is approved.

The answers arent easy, but the discussions have to take place and decisions need to be made, probably through an international convention that includes governments, researchers, physicians and consumer advocates. Taking the research to the next level should mean experimentation with animals rather than humans. They should then be followed for generations to see whether unexpected health issues arise. Gene editing on humans should be introduced one step at a time, starting with the most disastrous diseases and conditions that cannot be tackled in any other way, then tracked long term to ensure safety.

We all would love to eliminate disabling deformities, painful conditions that shorten lives or genetic mutations that predispose us to various fatal diseases. Although science has a long way to go before such miracles are achieved, research is moving fast. Its paramount that we get human gene editing right rather than just getting it soon.

-

)2017 Los Angeles Times

Visit the Los Angeles Times at http://www.latimes.com

Distributed by Tribune Content Agency, LLC.

-

PHOTO (for help with images, contact 312-222-4194):

Topics: t000026911,g000065558,g000362661,g000066164

AP-WF-08-04-17 0109GMT

Published Aug. 5, 2017, midnight

More here:

The ethics of creating GMO humans | The Spokesman-Review - The Spokesman-Review

Human Genetic Engineering Cons

Many Human Genetic Engineering Cons are there that can stop a person from getting through the entire gene therapy. It is a process in which there is a modification or change in the genes of a human. The aim or objective of using Human Genetic Engineering is to choose newborn phenotype or to change or alter the existing phenotype of an adult or an already grown child. Human Genetic Engineering has shown a lot of promise for curing cystic fibrosis. It is a kind of genetic disease that exist in humans. It will increase the level of immunity in people. Increased immunity will make them resistant to several severe diseases.

There is also a speculation that Human Genetic Engineering can be used in other area of work. It can be used for making changes in the physical appearances. Metabolism may notice some improvements. Human Genetic Engineering Cons can be seen on the mental abilities of a human.

However, it can make certain improvements in the intelligence level. Human Genetic Engineering has made a lot of contributions in the field of advanced medical sciences. There is not much data about Human Genetic Engineering Cons . One can easily think of it as a successful invention in the field of medical science.

Gene therapy can be used for curing several deadly diseases. Many diseases are there that have no cure, so this is a helpful invention in this field. It can lead to various health benefits. Genetic engineering can also lead to population free from any diseases. However, some Human Genetic Engineering Cons are also there that can trouble human beings.

This is because of the complications involved in human genes. A person has multiple physical attributes that differ from each other, so chances are there that these attributes get controlled by only one gene sequence. This helps the scientists to make changes or alteration in only one gene at a time and the remaining multiple sequences of genes will automatically be altered.

Scientists involved in this alteration process also noticed that whenever a DNA strand gets a new gene, then it becomes difficult for the DNA strand to make a decision about where the new gene will be settled. It is one of the factors that contribute to Human Genetic Engineering Cons. With the help of genetic engineering scientists will find no difficulty at the time of altering a part of DNA in a human. This will keep them resistant or away from any genetic disease or effects. These effects might be there on the reproductive cells of a person.

For an instance, it these reproductive cells are there on parents that their children will automatically acquire the effects of genetics. Such Human Genetic Engineering Cons can cause few genetic diseases on humans. Chances of errors are always there in making use of genetic engineering for human cloning, agriculture, and in any other related field. Entire human generation can lead to mutation if these Human Genetic Engineering Cons do get removed at their earliest.

Human Genetic Engineering Cons

1.39 (27.87%) 6001 votes

More:

Human Genetic Engineering Cons

The Scopes Monkey Trial and global warming: Same playbook, different football – Baptist News Global

A business owner, a school superintendent and a lawyer walk into a bar . Sounds like the beginning of a lame joke, right? Well, it was definitely a joke even worse than the kind of joke that might illicit an eye roll from spouse or friends. Ninety-two years ago this week, one of the greatest legal farces in history commenced in the small town of Dayton, Tenn. It all started at a drug store lunch counter as many things do in a small town when a manager at a local company met with the school superintendent and a local attorney. The story goes that the businessman, George Rappleyea of the Cumberland Coal and Iron Company, hatched a plan designed to bring much needed publicity to Dayton. So, you must wondering, what kind of publicity campaign did they devise? They, of course, decided to bring suit against a 24-year-old substitute teacher named John T. Scopes, for unwittingly teaching evolution in science class.

Pit fundamentalist Christians against modernist ones. Place science and the Bible itself on trial. Drive a wedge between conservative people of faith and the scientific community. Create a cloud of doubt and fear about scientific claims, and instead of encouraging people to study and wrestle with the claims themselves, encourage a spirit of bitter resentment and dismissal. Create a media driven campaign to discredit scientists, thereby discrediting science in general. Make sure all this is started and largely funded by a leader in the fossil fuels industry. Make sure the ACLU (among others) is on the side of the liberal, anti-God movement.

Now, instead of the Scopes Monkey Trial, think global warming and climate change. Its the same playbook, folks. As people of faith we should be able to recognize and name a farce when we see one, and stand up for truth in the face of propaganda meant to drive a wedge between good people of faith. Care for creation may well be the most pressing ethical and theological issue of our time, and the church cannot allow disinformation and indoctrination to rule the day.

We live in a time of seemingly unprecedented political division, and many organizations and movements decry the changes in our culture, and the progress we are making. Harry Emerson Fosdick said in his famous sermon, Shall the Fundamentalists Win, The new knowledge and the old faith cannot be left antagonistic or even disparate, as though a man on Saturday could use one set of regulative ideas for his life and on Sunday could change gears to another altogether. We must be able to think our modern life clear through in Christian terms, and to do that we also must be able to think our Christian faith clear through in modern terms. Think that sounds tough in modern times? How about postmodern times?

Many of the same challenges that existed in the last century persist today. Pastors in churches across the country face the challenge of placing faith in the contemporary context a context marked by sweeping and rapid change. One peer-reviewed article I recently read cites that the only cross-segment of American society that has grown in its distrust of science since the late 1970s is Protestant Evangelicals. Let that sink in for a minute. Think about how that fact impacts our political climate. Think about how that fact impacts our planetary climate. Simply astounding.

Interesting, is it not, that the rise of evangelical distrust in science itself coincides with the rise of the so-called Moral Majority and the culture wars of the 1980s and 90s?

Its been nearly a hundred years since The State of Tennessee v. John Thomas Scopes, but for many, science (or the Bible depending on your perspective) remain on trial. As Christians, we (perhaps) still struggle to speak of faith and science in ways that dont alienate or divide people in our churches. In 1925, the conversation was about the future of education and about the nature of religion, focusing largely on the history of humanity. Today the conversation between science and faith revolves around the future of the planet, the ethics of human genetic engineering, human sexuality, and the nature of religion itself, focusing largely on the future of humanity.

The conversations between science and faith will never go away. As scientific knowledge exponentially proliferates at unprecedented rates, those of us in faith communities need to strongly consider how we are called to respond to the discoveries and claims of the scientific community. I fear many are still living in 1925.

Related story:Millennials not OK with conventional science vs. religion debates, experts say

Related opinion:Genius hesitates, both in science and religion | Scott Dickison

OPINION: Views expressed in Baptist News Global columns and commentaries are solely those of the authors.

Link:

The Scopes Monkey Trial and global warming: Same playbook, different football - Baptist News Global