Portal:Biotechnology – Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia

The Biotechnology Portal

Welcome to the Biotechnology portal. Biotechnology is a technology based on biology, especially when used in agriculture, food science, and medicine.

Of the many different definitions available, the one declared by the UN Convention on Biological Diversity is one of the broadest:

Refresh - Edit

Biotechnology subcategories:

edit

Agrobacterium tumefaciens is a species of bacteria that causes tumors (commonly known as 'galls' or 'crown galls') in dicots (Smith et al., 1907). This Gram-negative bacterium causes crown gall by inserting a small segment of DNA (known as the T-DNA, for 'transfer DNA') into the plant cell, which is incorporated at a semi-random location into the plant genome.

Agrobacterium is an alpha proteobacterium of the family Rhizobiaceae, which includes the nitrogen fixing legume symbionts. Unlike the nitrogen fixing symbionts, tumor producing Agrobacterium are parasitic and do not benefit the plant. The wide variety of plants affected by Agrobacterium makes it of great concern to the agriculture industry (Moore et al., 1997).

More:
Portal:Biotechnology - Wikipedia, the free encyclopedia

What is Biotechnology? | BIO

At its simplest, biotechnology is technology based on biology - biotechnology harnesses cellular and biomolecular processes to develop technologies and products that help improve our lives and the health of our planet. We have used the biological processes of microorganisms for more than 6,000 years to make useful food products, such as bread and cheese, and to preserve dairy products.

Modern biotechnology provides breakthrough products and technologies to combat debilitating and rare diseases, reduce our environmental footprint, feed the hungry, use less and cleaner energy, and have safer, cleaner and more efficient industrial manufacturing processes.

Currently, there are more than 250 biotechnology health care products and vaccines available to patients, many for previously untreatable diseases. More than 18 million farmers around the world use agricultural biotechnology to increase yields, prevent damage from insects and pests and reduce farming's impact on the environment. And more than 50 biorefineries are being built across North America to test and refine technologies to produce biofuels and chemicals from renewable biomass, which can help reduce greenhouse gas emissions.

Recent advances in biotechnology are helping us prepare for and meet societys most pressing challenges. Here's how:

Biotech is helping toheal the worldby harnessing nature's own toolbox and using our own genetic makeup to heal and guide lines of research by:

Biotech uses biological processes such as fermentation and harnesses biocatalysts such as enzymes, yeast, and other microbes to become microscopic manufacturing plants. Biotech is helping tofuel the worldby:

Biotech improves crop insect resistance, enhances crop herbicide tolerance and facilitates the use of more environmentally sustainable farming practices. Biotech is helping tofeed the worldby:

Source: Healing, Fueling, Feeding: How Biotechnology is Enriching Your Life

Here is the original post:
What is Biotechnology? | BIO

IVRI Indian Veterinary Research Institute Recruitment Notification Biotechnology field, Exam date – Video


IVRI Indian Veterinary Research Institute Recruitment Notification Biotechnology field, Exam date
Latest IVRI Indian Veterinary Research Institute Recruitment Notification 2015. Apply today for Jobs Careers at IVRI. The Govt jobs and Employment News channel from Freshersworld.com ...

By: Freshersworld

Link:
IVRI Indian Veterinary Research Institute Recruitment Notification Biotechnology field, Exam date - Video

Lubricin can play an important role in keeping joints agile

Some relief for people having problems with their hip joints!! Duke University researchers have developed a method which enables specific measurement of biomechanical properties of hip joints in the case of mice. They have found out that lubricin which is a joint fluid has an important role to play in keeping joints agile. This has helped to come to a conclusion that treatments designed for increasing lubricin levels could aid in stopping the deterioration of arthritic joints. Tests conducted on mice showed that arthritic joints of mice lacked the gene which controlled production of lubricin showed greater friction as compared to joints of other animals and even at molecular level it demonstrated that joint cartilage of mutant animals appeared less stiff and rougher. This has suggested to the researchers that there can be a loss of cartilage mechanical integrity without requiring lubricin. Stefan Zauscher, Professor, Pratt School said: Lubricin has been considered important, but the experiments had not been done. This is the first look at the effects on biomechanics of lubricin’s presence or absence All this has opened a new window of hope for joint patients.

Source:
http://www.biotechblog.org/rss.xml

Class12,Biology,Lec-9,Biotechnolgy Products,Transgenic Bacteria(Biotechnology) – Video


Class12,Biology,Lec-9,Biotechnolgy Products,Transgenic Bacteria(Biotechnology)
Class12,Biology,Lec-9,Biotechnolgy,Products,Transgenic Bacteria(Biotechnology)-English-Hindi Mix Covers Information about Biotechnological Products especially Transgenic Bacteria and how they...

By: sci4you

Original post:
Class12,Biology,Lec-9,Biotechnolgy Products,Transgenic Bacteria(Biotechnology) - Video

Home – Biotechnology Programs

Skip to content Master of Science in Biotechnology

Teaching in Northeasterns Biotechnology master's program is an opportunity to transfer my knowledge in industry to bright young scientists. I hire some in co-op positions and watch them grow as professionals. There is nothing more rewarding than seeing your pupils become successful in what they were taught. - Greg Zarbis-Papastoitsis, VP Process & Manufacturing, Eleven Biotherapeutics

"The biotechnology master's degree program played a significant role in my development as a science professional. By the end of my co-op at EMD Serono, Inc., I was not only recognized as a valuable technical expert but also as a responsible professional the company needed." Shruti Pratapa, Research Associate, EMD Serono, Inc.

The Northeastern University MS in Biotechnology is a certified Professional Science Master's Degree program -- a unique and cutting-edge degree that combines advanced science education with opportunities to interact with leading practitioners in the biomedical and pharmaceutical community here in Boston and around the world.

360 Huntington Ave., Boston, Massachusetts 02115 617.373.2000 TTY 617.373.3768 2015 Northeastern University

See more here:
Home - Biotechnology Programs

Biotechnology Jobs on CareerBuilder.com

Job type: Full-Time

Explore a research opportunity that will allow for your great creativity, cause you to make a real difference in the world and dramatically acceler...

MI - Ann Arbor

Job type: Full-Time

Explore an engineering opportunitythat will allow for your great creativity, cause you to make a real differencein the world and dramatically accel...

MI - Ann Arbor

Job type: Full-Time | Pay: $30.00 - $50.00/hour

COMPUTER SYSTEMS VALIDATION ENGINEER ~ PHARMACEUTICAL MANUFACTURING We are now hiring an experienced computer systems validation resource for a lon...

NC - Cary

Job type: Full-Time | Pay: $75k - $110k/year

Join this "innovative" and "progressive"Biotechnology Sales organization as it expands it's sales force in the greater Tucson, AZ metro area! My c...

AZ - Tucson

Advertisement

Job type: Full-Time

Engineer must be a registered Professional Engineer with a PE license and experienced in design of pharmaceutical, biotechnology , FDA, life scienc...

MI - Detroit

Job type: Full-Time

There are excellent opportunities in Philadelpia and other cities for construction management professionals with a BS degree and experience in spec...

PA - Philadelphia

Job type: Full-Time

Cockram Construction is an international management-owned, construction services business with a history of over 150 years. We are, at heart, a con...

CA - South San Francisco

Job type: Full-Time

Following the requirements of cGMP Following Company safety policy and procedures Collecting drug substance donations and completing drug substance...

Job type: Full-Time

Description We are seeking to appoint a new Editor for Trends in Biotechnology , to be based in the Cell Press offices in Cambridge, MA. As Editor...

MA - Cambridge

Job type: Full-Time | Pay: $36k - $40k/year

Biotechnology/Science Recruiter | Search Consultant Are you someone who craves a position that will pay you for your talents, rather than your tenu...

MA - Cambridge

Job type: Full-Time

This position will be responsible for the Aseptic processing of Pharmaceutical components and products using cGMP standards while maintaining the p...

Job type: Full-Time

The CPM oversees all trial activities from start-up to delivery of the final study report. He/she is responsible for the qualities of all work done...

CA - San Marino

Job type: Full-Time

Primary Responsibilities and Accountabilities: Project manage an initiative to define and operationalize new processes to meet the Regulatory requi...

Job type: Full-Time

Cockram Construction is an international management-owned, construction services business with a history of over 150 years. We are, at heart, a con...

Job type: Full-Time | Pay: $80k - $150k/year

JOB TITLE: Sales Representative FLSA STATUS: Exempt DATE: October 8, 2015 DEPARTMENT: Sales & Marketing COMPANY SUMMARY Diagnostic Biosystems (DBS...

CA - Pleasanton

Job type: Full-Time

Company Overview Sancilioand Company, Inc. (SCI) is a biopharmaceutical company focused on AdvancedLipid Technology (ALT) and complimentary produc...

FL - West Palm Beach

Job type: Full-Time

Cockram Construction is an international management-owned, construction services business with a history of over 150 years. We are, at heart, a con...

CA - Thousand Oaks

Job type: Full-Time

Cockram Construction is an international management-owned, construction services business with a history of over 150 years. We are, at heart, a con...

CA - Oceanside

Job type: Full-Time

Laboratory Technician (Animal Lab Tech) Job Description BIOQUAL, Inc. is a biomedical research firm that is dedicated to providing quality research...

MD - Rockville

Job type: Contractor

Associate Process Scientist Description: Person will be part of Manufacturing Sciences and Technology team working on troubleshooting, developing a...

MA - Andover

Job type: Contractor | Pay: $30.00 - $50.00/hour

Joule Engineering is currentlylooking for Biomedical Engineers with the following experience. We willconsider candidateswhoare mid-seniorcareer...

NJ - Mahwah

Job type: Full-Time

A career in technology at Envision Pharma Group may be just what youre looking for. About Envision Pharma Group and Envision Technology Solutions...

CT - Glastonbury

Job type: Full-Time | Pay: $0 - $100k/year

Principal Biomedical Engineer Location: Houston, TX Salary & Benefits: Up to $100k per year with Comprehensive Benefits Package including matched 4...

TX - Houston

Job type: Full-Time

Clinical Pathologist CALLaboratory Services is a technology company that specializes in LaboratoryMedicine. CAL Laboratory Services was created wit...

Link:
Biotechnology Jobs on CareerBuilder.com

List of Companies in Biotechnology Sector

Biotechnology as the name implies is the combination of Bio and Technology. It is an area of biology which includes use of live organism and bio processes in engineering, technology. In short Biotechnology is technical application which can use live organism and biological system techniques to manufacture or change any product or process it for any specified type of use. Any Biotechnology Company or organization is a firm which uses biotechnology for manufacturing or designing any product or service.

List of Biotechnology Companies:

A. Companies in US

Abraxis Bioscience, Acorda Therapeutics, Alkermes, Amgen, Amylin Pharmaceuticals, Arena Pharmaceuticals, ArrayBioPharma, Avanir Pharmaceuticals, Biogen Idec, Carrington Laboratories, Celgene, Cephalon, Cerus, Coley Pharmaceutical Group, Cubist Pharmaceuticals, CuraGen, CV Therapeutics, Cytogen, Enzo Biochem, Enzon Pharmaceuticals, Genentech,GenVec, Genzyme, Gilead Sciences, Human Genome Sciences, Idenix Pharmaceuticals, Indevus Pharmaceuticals, InterMune, Inspire Pharmaceuticals, Imclone Systems, ImmunoGen, Isis Pharmaceuticals, Lexicon Pharmaceuticals, LifeCell, Ligand Pharmaceuticals, Maxygen, Medarex, Medivir Group, MedImmune, MGI Pharma, Micromet, Millennium Pharmaceuticals, Monogram Biosciences, Myriad Genetics, Nabi Bio pharmaceuticals, Nektar Therapeutics, Neurocrine Biosciences, NPSPharmaceuticals, Omrix Bio pharmaceuticals, Oscient Pharmaceuticals, OSI Pharmaceuticals, Palatin Technologies, PDLBioPharma, Pharmion, Progenics Pharmaceuticals, Regeneron Pharmaceuticals, Replidyne, Tanox, Targacept, Trimeris, United Therapeutics, Vertex Pharmaceuticals, ViaCell, ViroPharma, Xoma, ZymoGenetics.

B. Companies in India

Alembic Ltd, Amersham Pharmacia Biotech Asia-Pacific Ltd, Bharat Serums and Vaccines Ltd, Biocon, Biotech Consortium India Ltd, Brain Wave Bioinformatics Ltd, Catalyst Pharma Consulting, Chemitech Foundation, Colour-Chem Ltd, Dr Reddy’s Labs, Excel Industries Ltd, Haitanya Healthcare Ecom Ltd, Hi Tech Bio Labs, Landpower Biotech Ltd, Life Science Technology Lupin Ltd, Nicholas Piramal India Ltd, Ocimum Biosolutions Ltd, Serum Institute of India, Shantha Biotechnics Private Ltd.

C. Other companies

There are many other companies like Ambrilia Biopharma, AEterna Zentaris, Cangene, QLT, Bioniche Life Sciences (Canada),Protherics, Acambis, Vernalis (UK), Genmab, Bavarian Nordic (Denmark), Vitrolife (Sweden), MediGene, MorphoSys, GPC Biotech (Germany), Peptech, Life Therapeutics (Australia), IsoTis (Switzerland), Crucell (Netherlands), Sinovac Biotech (China),Innogenetics (Belgium) too in biotechnology.

Source:
http://www.biotechblog.org/rss.xml

Biotechnology – Center for Science in the Public Interest

The Agricultural Biotechnology Project addresses scientific concerns, government policies, and corporate practices pertaining to genetically engineered (GE) plants and animals that are released into the environment or that end up in our foods.

Download the CSPI Biotechnology Project brochure.

What is Genetic Engineering? Genetic engineering allows specific genes isolated from any organism (such as a bacterium) to be added to the genetic material of the same or a different organism (such as a corn plant). This technology differs from traditional plant and animal breeding in which the genes of only closely related organisms (such as a corn plant and its wild relatives) can be exchanged. As a result, GE foods can carry traits that were never previously in our foods. However, GE is just one of many different methods that scientists use to create improved varieties of plants and animals. Other laboratory methods to create genetic variety include chemical mutagenesis, x-ray mutagenesis, cell fusion, and artificial insemination.

The Projects goals are to:

Biotechnology Project Positions:

1.) Foods and ingredients made from currently grown GE crops are safe to eat. That is the conclusion of the U.S. Food and Drug Administration, the National Academy of Sciences, the European Food Safety Authority, and numerous other international regulatory agencies and scientific bodies.

2.) GE crops grown in the U.S. and around the world provide tremendous benefits to farmers and the environment. Corn and cotton engineered with their own built-in pesticide have greatly reduced the amount of chemical insecticides sprayed by farmers in the United States, India, and China. Herbicide-tolerant soybeans have allowed farmers to use an environmentally safer herbicide (glyphosate), practice conservation-till agriculture, and save time. Corn engineered with a biological insecticide has reduced insect populations so that all corn farmers (biotech, non-GE conventional farmers, and organic farmers) benefit by using less chemical insecticide and having corn with less pest damage. Virus-resistant GE papayas saved the Hawaiian papaya industry from a deadly virus.

3.) The U.S. regulatory system for GE crops and animals needs improvement. Congress should establish at FDA a mandatory pre-market approval process for GE crops and provide explicit authority to regulate any environmental risks associated with GE animals. USDA needs to update its oversight of GE crops to include its noxious weed authority and to ensure that all GE crops are regulated.

4.) Sustainable practices are essential to achieving long-term benefits from GE crops. Resistant weeds and pests have developed because of misuse and overuse of GE crops by technology developers and farmers. Herbicide-tolerant crops must be grown in conjunction with integrated weed management techniques, with emphasis on rotation of crops and herbicides with different modes of action. Farmers growing Bt corn must use integrated pest management and crop rotation, and comply with refuge requirements to prevent development of pesticide-resistant pests.

5.) GE crops can play a positive role in the agriculture of developing countries. While GE crops are not a panacea for solving food insecurity or world hunger, they are an extremely powerful and beneficial tool scientists can use to create crop varieties helpful to farmers in developing countries. If GE crops are safe for humans and the environment, farmers in developing countries should be given the opportunity to decide for themselves whether to adopt such varieties.

Click here to download a brochure about the CSPI Biotechnology Project.

Go here to see the original:
Biotechnology - Center for Science in the Public Interest

Biotechnology – Biomedical – Industrial Enzymes

What is Biotechnology

Biotechnology is most briefly defined as the art of utilizing living organisms and their products for the production of food, drink, medicine or for other benefits to the human race, or other animal species.

Technically speaking, humans have been making use of biotechnology since they discovered farming, with the planting of seeds to control plant growth and crop production.

Animal breeding is also a form of biotechnology. More recently, cross-pollination of plants and cross-breeding of animals were macro-biological techniques in biotechnology, used to enhance product quality and/or meet specific requirements or standards.

The discovery of microorganisms and the subsequent burst of knowledge related to the causes of infectious diseases, antibiotics and immunizations could probably be counted among mans most significant, life-altering discoveries.

However, the most modern techniques in biotechnology owe their existence to the discovery of DNA and the protein products of genes, most importantly, enzymes. The discovery of the techniques essential for gene cloning allowed scientists to manipulate enzyme structure and function for specific purposes. Current scientific methods are more specific than historical techniques, as scientists now directly alter genetic material with atomic precision, using techniques otherwise known as recombinant DNA technology.

As technology advances, the many roles biotech plays in our lives increases. Since George Washington Carver, scientists have been learning how to use biochemicals isolated from plants, to produce chemical products for everyday use around the house, the first "green biotech products".

Since then, biotechnological advances can be found in nearly all sectors of industry. There are, of course, the obvious medical, pharmaceutical and food industries. Biotechnology is being used to determine cause and effect of various diseases and are used in the production of drugs.

The production of foods is enhanced by biotechnological advances that improve crop yields, introduce in-situ insect resistance and provide new ways of food preservation.

Other advances include packaging consisting of biomass plastics, or bioplastics, and built-in bioindicators for detecting contamination.

In the environmental sector, biotech has played a role in remediation of contaminated land, water and air, pest control, treatment of industrial effluents and emissions, and acid mine drainage. Bioremediation and phytoremediation are used to restore brownfields for redevelopment.

More:
Biotechnology - Biomedical - Industrial Enzymes

Salt Lake Community College – Biotechnology

What is Biotechnology?

Biotechnology is a group of related technologies that use biological agents in a broad spectrum of applications to provide goods and services. In only a few years, biotechnology has revolutionized many disciplines including:

The Biotechnology Technician Program provides students of diverse backgrounds with the knowledge and skills needed to perform competently in a life sciences laboratory environment. The industry is a large and growing contributor to regional and national economic output. As such, Biotechnology is an important emerging industry that is expected to contribute dramatically to the 21st century economy and is thus an excellent career choice for students.

Program personnel seek to foster a sense of excitement for scientific discovery, teamwork, critical thinking, effective communication, and a positive attitude in students. In addition, partnerships with local industries provide students with the most current and cutting edge knowledge and techniques in the field. The program provides hands-on experience with over 100 hours spent in the laboratory, beginning in the first semester.

DNA manipulation and analysis

Expression and purification of proteins

Cell culture techniques

Enzyme and antibody assays

Lab safety

Critical thinking and problem solving

Continue reading here:
Salt Lake Community College - Biotechnology

History of biotechnology – Wikipedia, the free encyclopedia

Biotechnology is the application of scientific and engineering principles to the processing of materials by biological agents to provide goods and services.[1] From its inception, biotechnology has maintained a close relationship with society. Although now most often associated with the development of drugs, historically biotechnology has been principally associated with food, addressing such issues as malnutrition and famine. The history of biotechnology begins with zymotechnology, which commenced with a focus on brewing techniques for beer. By World War I, however, zymotechnology would expand to tackle larger industrial issues, and the potential of industrial fermentation gave rise to biotechnology. However, both the single-cell protein and gasohol projects failed to progress due to varying issues including public resistance, a changing economic scene, and shifts in political power.

Yet the formation of a new field, genetic engineering, would soon bring biotechnology to the forefront of science in society, and the intimate relationship between the scientific community, the public, and the government would ensue. These debates gained exposure in 1975 at the Asilomar Conference, where Joshua Lederberg was the most outspoken supporter for this emerging field in biotechnology. By as early as 1978, with the synthesis of synthetic human insulin, Lederberg's claims would prove valid, and the biotechnology industry grew rapidly. Each new scientific advance became a media event designed to capture public support, and by the 1980s, biotechnology grew into a promising real industry. In 1988, only five proteins from genetically engineered cells had been approved as drugs by the United States Food and Drug Administration (FDA), but this number would skyrocket to over 125 by the end of the 1990s.

The field of genetic engineering remains a heated topic of discussion in today's society with the advent of gene therapy, stem cell research, cloning, and genetically modified food. While it seems only natural nowadays to link pharmaceutical drugs as solutions to health and societal problems, this relationship of biotechnology serving social needs began centuries ago.

Biotechnology arose from the field of zymotechnology or zymurgy, which began as a search for a better understanding of industrial fermentation, particularly beer. Beer was an important industrial, and not just social, commodity. In late 19th century Germany, brewing contributed as much to the gross national product as steel, and taxes on alcohol proved to be significant sources of revenue to the government.[2] In the 1860s, institutes and remunerative consultancies were dedicated to the technology of brewing. The most famous was the private Carlsberg Institute, founded in 1875, which employed Emil Christian Hansen, who pioneered the pure yeast process for the reliable production of consistent beer. Less well known were private consultancies that advised the brewing industry. One of these, the Zymotechnic Institute, was established in Chicago by the German-born chemist John Ewald Siebel.

The heyday and expansion of zymotechnology came in World War I in response to industrial needs to support the war. Max Delbrck grew yeast on an immense scale during the war to meet 60 percent of Germany's animal feed needs.[3] Compounds of another fermentation product, lactic acid, made up for a lack of hydraulic fluid, glycerol. On the Allied side the Russian chemist Chaim Weizmann used starch to eliminate Britain's shortage of acetone, a key raw material in explosives, by fermenting maize to acetone. The industrial potential of fermentation was outgrowing its traditional home in brewing, and "zymotechnology" soon gave way to "biotechnology."

With food shortages spreading and resources fading, some dreamed of a new industrial solution. The Hungarian Kroly Ereky coined the word "biotechnology" in Hungary during 1919 to describe a technology based on converting raw materials into a more useful product. He built a slaughterhouse for a thousand pigs and also a fattening farm with space for 50,000 pigs, raising over 100,000 pigs a year. The enterprise was enormous, becoming one of the largest and most profitable meat and fat operations in the world. In a book entitled Biotechnologie, Ereky further developed a theme that would be reiterated through the 20th century: biotechnology could provide solutions to societal crises, such as food and energy shortages. For Ereky, the term "biotechnologie" indicated the process by which raw materials could be biologically upgraded into socially useful products.[4]

This catchword spread quickly after the First World War, as "biotechnology" entered German dictionaries and was taken up abroad by business-hungry private consultancies as far away as the United States. In Chicago, for example, the coming of prohibition at the end of World War I encouraged biological industries to create opportunities for new fermentation products, in particular a market for nonalcoholic drinks. Emil Siebel, the son of the founder of the Zymotechnic Institute, broke away from his father's company to establish his own called the "Bureau of Biotechnology," which specifically offered expertise in fermented nonalcoholic drinks.[5]

The belief that the needs of an industrial society could be met by fermenting agricultural waste was an important ingredient of the "chemurgic movement."[6] Fermentation-based processes generated products of ever-growing utility. In the 1940s, penicillin was the most dramatic. While it was discovered in England, it was produced industrially in the U.S. using a deep fermentation process originally developed in Peoria, Illinois. The enormous profits and the public expectations penicillin engendered caused a radical shift in the standing of the pharmaceutical industry. Doctors used the phrase "miracle drug", and the historian of its wartime use, David Adams, has suggested that to the public penicillin represented the perfect health that went together with the car and the dream house of wartime American advertising.[7] In the 1950s, steroids were synthesized using fermentation technology. In particular, cortisone promised the same revolutionary ability to change medicine as penicillin had.

Even greater expectations of biotechnology were raised during the 1960s by a process that grew single-cell protein. When the so-called protein gap threatened world hunger, producing food locally by growing it from waste seemed to offer a solution. It was the possibilities of growing microorganisms on oil that captured the imagination of scientists, policy makers, and commerce.[8] Major companies such as British Petroleum (BP) staked their futures on it. In 1962, BP built a pilot plant at Cap de Lavera in Southern France to publicize its product, Toprina.[9] Initial research work at Lavera was done by Alfred Champagnat,[10] In 1963, construction started on BP's second pilot plant at Grangemouth Oil Refinery in Britain.[10]

As there was no well-accepted term to describe the new foods, in 1966 the term "single-cell protein" (SCP) was coined at MIT to provide an acceptable and exciting new title, avoiding the unpleasant connotations of microbial or bacterial.[9]

The "food from oil" idea became quite popular by the 1970s, when facilities for growing yeast fed by n-paraffins were built in a number of countries. The Soviets were particularly enthusiastic, opening large "BVK" (belkovo-vitaminny kontsentrat, i.e., "protein-vitamin concentrate") plants next to their oil refineries in Kstovo (1973) [11][12][13] and Kirishi (1974).[14]

By the late 1970s, however, the cultural climate had completely changed, as the growth in SCP interest had taken place against a shifting economic and cultural scene (136). First, the price of oil rose catastrophically in 1974, so that its cost per barrel was five times greater than it had been two years earlier. Second, despite continuing hunger around the world, anticipated demand also began to shift from humans to animals. The program had begun with the vision of growing food for Third World people, yet the product was instead launched as an animal food for the developed world. The rapidly rising demand for animal feed made that market appear economically more attractive. The ultimate downfall of the SCP project, however, came from public resistance.[15]

This was particularly vocal in Japan, where production came closest to fruition. For all their enthusiasm for innovation and traditional interest in microbiologically produced foods, the Japanese were the first to ban the production of single-cell proteins. The Japanese ultimately were unable to separate the idea of their new "natural" foods from the far from natural connotation of oil.[15] These arguments were made against a background of suspicion of heavy industry in which anxiety over minute traces of petroleum was expressed. Thus, public resistance to an unnatural product led to the end of the SCP project as an attempt to solve world hunger.

Also, in 1989 in the USSR, the public environmental concerns made the government decide to close down (or convert to different technologies) all 8 paraffin-fed-yeast plants that the Soviet Ministry of Microbiological Industry had by that time.[14]

In the late 1970s, biotechnology offered another possible solution to a societal crisis. The escalation in the price of oil in 1974 increased the cost of the Western world's energy tenfold.[16] In response, the U.S. government promoted the production of gasohol, gasoline with 10 percent alcohol added, as an answer to the energy crisis.[7] In 1979, when the Soviet Union sent troops to Afghanistan, the Carter administration cut off its supplies to agricultural produce in retaliation, creating a surplus of agriculture in the U.S. As a result, fermenting the agricultural surpluses to synthesize fuel seemed to be an economical solution to the shortage of oil threatened by the Iran-Iraq war. Before the new direction could be taken, however, the political wind changed again: the Reagan administration came to power in January 1981 and, with the declining oil prices of the 1980s, ended support for the gasohol industry before it was born.[17]

Biotechnology seemed to be the solution for major social problems, including world hunger and energy crises. In the 1960s, radical measures would be needed to meet world starvation, and biotechnology seemed to provide an answer. However, the solutions proved to be too expensive and socially unacceptable, and solving world hunger through SCP food was dismissed. In the 1970s, the food crisis was succeeded by the energy crisis, and here too, biotechnology seemed to provide an answer. But once again, costs proved prohibitive as oil prices slumped in the 1980s. Thus, in practice, the implications of biotechnology were not fully realized in these situations. But this would soon change with the rise of genetic engineering.

The origins of biotechnology culminated with the birth of genetic engineering. There were two key events that have come to be seen as scientific breakthroughs beginning the era that would unite genetics with biotechnology. One was the 1953 discovery of the structure of DNA, by Watson and Crick, and the other was the 1973 discovery by Cohen and Boyer of a recombinant DNA technique by which a section of DNA was cut from the plasmid of an E. coli bacterium and transferred into the DNA of another.[18] This approach could, in principle, enable bacteria to adopt the genes and produce proteins of other organisms, including humans. Popularly referred to as "genetic engineering," it came to be defined as the basis of new biotechnology.

Genetic engineering proved to be a topic that thrust biotechnology into the public scene, and the interaction between scientists, politicians, and the public defined the work that was accomplished in this area. Technical developments during this time were revolutionary and at times frightening. In December 1967, the first heart transplant by Christian Barnard reminded the public that the physical identity of a person was becoming increasingly problematic. While poetic imagination had always seen the heart at the center of the soul, now there was the prospect of individuals being defined by other people's hearts.[19] During the same month, Arthur Kornberg announced that he had managed to biochemically replicate a viral gene. "Life had been synthesized," said the head of the National Institutes of Health.[19] Genetic engineering was now on the scientific agenda, as it was becoming possible to identify genetic characteristics with diseases such as beta thalassemia and sickle-cell anemia.

Responses to scientific achievements were colored by cultural skepticism. Scientists and their expertise were looked upon with suspicion. In 1968, an immensely popular work, The Biological Time Bomb, was written by the British journalist Gordon Rattray Taylor. The author's preface saw Kornberg's discovery of replicating a viral gene as a route to lethal doomsday bugs. The publisher's blurb for the book warned that within ten years, "You may marry a semi-artificial man or womanchoose your children's sextune out painchange your memoriesand live to be 150 if the scientific revolution doesnt destroy us first."[20] The book ended with a chapter called "The Future If Any." While it is rare for current science to be represented in the movies, in this period of "Star Trek", science fiction and science fact seemed to be converging. "Cloning" became a popular word in the media. Woody Allen satirized the cloning of a person from a nose in his 1973 movie Sleeper, and cloning Adolf Hitler from surviving cells was the theme of the 1976 novel by Ira Levin, The Boys from Brazil.[21]

In response to these public concerns, scientists, industry, and governments increasingly linked the power of recombinant DNA to the immensely practical functions that biotechnology promised. One of the key scientific figures that attempted to highlight the promising aspects of genetic engineering was Joshua Lederberg, a Stanford professor and Nobel laureate. While in the 1960s "genetic engineering" described eugenics and work involving the manipulation of the human genome, Lederberg stressed research that would involve microbes instead.[22] Lederberg emphasized the importance of focusing on curing living people. Lederberg's 1963 paper, "Biological Future of Man" suggested that, while molecular biology might one day make it possible to change the human genotype, "what we have overlooked is euphenics, the engineering of human development."[23] Lederberg constructed the word "euphenics" to emphasize changing the phenotype after conception rather than the genotype which would affect future generations.

With the discovery of recombinant DNA by Cohen and Boyer in 1973, the idea that genetic engineering would have major human and societal consequences was born. In July 1974, a group of eminent molecular biologists headed by Paul Berg wrote to Science suggesting that the consequences of this work were so potentially destructive that there should be a pause until its implications had been thought through.[24] This suggestion was explored at a meeting in February 1975 at California's Monterey Peninsula, forever immortalized by the location, Asilomar. Its historic outcome was an unprecedented call for a halt in research until it could be regulated in such a way that the public need not be anxious, and it led to a 16-month moratorium until National Institutes of Health (NIH) guidelines were established.

Joshua Lederberg was the leading exception in emphasizing, as he had for years, the potential benefits. At Asilomar, in an atmosphere favoring control and regulation, he circulated a paper countering the pessimism and fears of misuses with the benefits conferred by successful use. He described "an early chance for a technology of untold importance for diagnostic and therapeutic medicine: the ready production of an unlimited variety of human proteins. Analogous applications may be foreseen in fermentation process for cheaply manufacturing essential nutrients, and in the improvement of microbes for the production of antibiotics and of special industrial chemicals."[25] In June 1976, the 16-month moratorium on research expired with the Director's Advisory Committee (DAC) publication of the NIH guidelines of good practice. They defined the risks of certain kinds of experiments and the appropriate physical conditions for their pursuit, as well as a list of things too dangerous to perform at all. Moreover, modified organisms were not to be tested outside the confines of a laboratory or allowed into the environment.[18]

Atypical as Lederberg was at Asilomar, his optimistic vision of genetic engineering would soon lead to the development of the biotechnology industry. Over the next two years, as public concern over the dangers of recombinant DNA research grew, so too did interest in its technical and practical applications. Curing genetic diseases remained in the realms of science fiction, but it appeared that producing human simple proteins could be good business. Insulin, one of the smaller, best characterized and understood proteins, had been used in treating type 1 diabetes for a half century. It had been extracted from animals in a chemically slightly different form from the human product. Yet, if one could produce synthetic human insulin, one could meet an existing demand with a product whose approval would be relatively easy to obtain from regulators. In the period 1975 to 1977, synthetic "human" insulin represented the aspirations for new products that could be made with the new biotechnology. Microbial production of synthetic human insulin was finally announced in September 1978 and was produced by a startup company, Genentech.,[26] although that company did not commercialize the product themselves, instead, it licensed the production method to Eli Lilly and Company. 1978 also saw the first application for a patent on a gene, the gene which produces human growth hormone, by the University of California, thus introducing the legal principle that genes could be patented. Since that filing, almost 20% of the more than 20,000 genes in the human DNA have been patented.[27]

The radical shift in the connotation of "genetic engineering" from an emphasis on the inherited characteristics of people to the commercial production of proteins and therapeutic drugs was nurtured by Joshua Lederberg. His broad concerns since the 1960s had been stimulated by enthusiasm for science and its potential medical benefits. Countering calls for strict regulation, he expressed a vision of potential utility. Against a belief that new techniques would entail unmentionable and uncontrollable consequences for humanity and the environment, a growing consensus on the economic value of recombinant DNA emerged.

With ancestral roots in industrial microbiology that date back centuries, the new biotechnology industry grew rapidly beginning in the mid-1970s. Each new scientific advance became a media event designed to capture investment confidence and public support.[28] Although market expectations and social benefits of new products were frequently overstated, many people were prepared to see genetic engineering as the next great advance in technological progress. By the 1980s, biotechnology characterized a nascent real industry, providing titles for emerging trade organizations such as the Biotechnology Industry Organization (BIO).

The main focus of attention after insulin were the potential profit makers in the pharmaceutical industry: human growth hormone and what promised to be a miraculous cure for viral diseases, interferon. Cancer was a central target in the 1970s because increasingly the disease was linked to viruses.[29] By 1980, a new company, Biogen, had produced interferon through recombinant DNA. The emergence of interferon and the possibility of curing cancer raised money in the community for research and increased the enthusiasm of an otherwise uncertain and tentative society. Moreover, to the 1970s plight of cancer was added AIDS in the 1980s, offering an enormous potential market for a successful therapy, and more immediately, a market for diagnostic tests based on monoclonal antibodies.[30] By 1988, only five proteins from genetically engineered cells had been approved as drugs by the United States Food and Drug Administration (FDA): synthetic insulin, human growth hormone, hepatitis B vaccine, alpha-interferon, and tissue plasminogen activator (TPa), for lysis of blood clots. By the end of the 1990s, however, 125 more genetically engineered drugs would be approved.[30]

Genetic engineering also reached the agricultural front as well. There was tremendous progress since the market introduction of the genetically engineered Flavr Savr tomato in 1994.[31] Ernst and Young reported that in 1998, 30% of the U.S. soybean crop was expected to be from genetically engineered seeds. In 1998, about 30% of the US cotton and corn crops were also expected to be products of genetic engineering.[31]

Genetic engineering in biotechnology stimulated hopes for both therapeutic proteins, drugs and biological organisms themselves, such as seeds, pesticides, engineered yeasts, and modified human cells for treating genetic diseases. From the perspective of its commercial promoters, scientific breakthroughs, industrial commitment, and official support were finally coming together, and biotechnology became a normal part of business. No longer were the proponents for the economic and technological significance of biotechnology the iconoclasts.[32] Their message had finally become accepted and incorporated into the policies of governments and industry.

According to Burrill and Company, an industry investment bank, over $350 billion has been invested in biotech since the emergence of the industry, and global revenues rose from $23 billion in 2000 to more than $50 billion in 2005. The greatest growth has been in Latin America but all regions of the world have shown strong growth trends. By 2007 and into 2008, though, a downturn in the fortunes of biotech emerged, at least in the United Kingdom, as the result of declining investment in the face of failure of biotech pipelines to deliver and a consequent downturn in return on investment.[33]

There has been little innovation in the traditional pharmaceutical industry over the past decade and biopharmaceuticals are now achieving the fastest rates of growth against this background, particularly in breast cancer treatment. Biopharmaceuticals typically treat sub-sets of the total population with a disease whereas traditional drugs are developed to treat the population as a whole. However, one of the great difficulties with traditional drugs are the toxic side effects the incidence of which can be unpredictable in individual patients.

Read the original:
History of biotechnology - Wikipedia, the free encyclopedia

OneStart Europe 2015 Semi-finalist: Shyden Biotechnology – Shyam Masrani – Video


OneStart Europe 2015 Semi-finalist: Shyden Biotechnology - Shyam Masrani
OneStart, co-organised by SR One and the Oxbridge Biotech Roundtable, is the world #39;s largest life science startup accelerator programme. Learn how you can get extended mentoring and win ...

By: OxbridgeBiotech

View post:
OneStart Europe 2015 Semi-finalist: Shyden Biotechnology - Shyam Masrani - Video