Back To The Future: The 2011 Nissan Leaf

A couple weeks back, I ranted a little about the real-world challenges of owning an EV. But what about the Nissan Leaf on its own merits? How does it stack up to any other ordinary commuter car you might consider buying? Pretty well, it turns out. Nissan has brought us the first mass-market

Genetic Treatment Offers Hope to Leukemia Patients

= Genetic Treatment Offers Hope to Leukemia Patients =

I'm excited about the prospect of restarting the Biomedical Engineering blog on CR4! So much of what happens in the world of research and biotechnology affects our lives on a daily basis that I would be hard pressed to find someone who doe

Cool Cars: 1941 Frank Curtis Buick Roadmaster

Just before World War II, racing car designer Frank Kurtis found a Buick - a 1941 Roadmaster with less than 500 miles on its 165-hp overhead-valve straight-eight - as a totaled wreck. He bought it, then stuffed it away for the duration of the war, while he managed Joel Thorne's machine shop. W

NASA Moon Mission in Final Preparations for September Launch

NASA's Gravity Recovery And Interior Laboratory (GRAIL) mission to study the moon is in final launch preparations for a scheduled Sept. 8 launch from Cape Canaveral Air Force Station in Florida.
GRAIL's twin spacecraft are tasked for a nine-month mission to explore Earth's nearest neighbor in unprecedented detail. They will determine the structure of the lunar interior from crust to core and advance our understanding of the thermal evolution of the moon.
"Yesterday's final encapsulation of the spacecraft is an important mission milestone," said David Lehman, GRAIL project manager for NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Our two spacecraft are now sitting comfortably inside the payload fairing which will protect them during ascent. Next time the GRAIL twins will see the light of day, they will be about 95 miles up and accelerating."
The spacecraft twins, GRAIL-A and GRAIL-B, will fly aboard a Delta II rocket launched from Florida. The twins' circuitous route to lunar orbit will take 3.5 months and cover approximately 2.6 million miles (4.2 million kilometers) for GRAIL-A, and 2.7 million miles (4.3 million kilometers) for GRAIL-B.
In lunar orbit, the spacecraft will transmit radio signals precisely defining the distance between them. Regional gravitational differences on the moon are expected to expand and contract that distance.
GRAIL scientists will use these accurate measurements to define the moon's gravity field. The data will allow mission scientists to understand what goes on below the surface of our natural satellite.
"GRAIL will unlock lunar mysteries and help us understand how the moon, Earth and other rocky planets evolved as well," said Maria Zuber, GRAIL principal investigator from the Massachusetts Institute of Technology in Cambridge.
GRAIL's launch period opens Sept. 8 and extends through Oct. 19. On each day, there are two separate launch opportunities separated by approximately 39 minutes. On Sept. 8, the first launch opportunity is 8:37 a.m. EDT (5:37 a.m. PDT); the second is 9:16 a.m. EDT (6:16 a.m. PDT).

Sunspot Breakthrough

Imagine forecasting a hurricane in Miami weeks before the storm was even a swirl of clouds off the coast of Africa—or predicting a tornado in Kansas from the flutter of a butterfly's wing in Texas. These are the kind of forecasts meteorologists can only dream about.
Could the dream come true? A new study by Stanford researchers suggests that such forecasts may one day be possible—not on Earth, but on the sun.
"We have learned to detect sunspots before they are visible to the human eye," says Stathis Ilonidis, a PhD student at Stanford University. "This could lead to significant advances in space weather forecasting."
Sunspots are the "butterfly's wings" of solar storms. Visible to the human eye as dark blemishes on the solar disk, sunspots are the starting points of explosive flares and coronal mass ejections (CMEs) that sometimes hit our planet 93 million miles away. Consequences range from Northern Lights to radio blackouts to power outages.
Astronomers have been studying sunspots for more than 400 years, and they have pieced together their basic characteristics: Sunspots are planet-sized islands of magnetism that float in solar plasma. Although the details are still debated, researchers generally agree that sunspots are born deep inside the sun via the action of the sun’s inner magnetic dynamo. From there they bob to the top, carried upward by magnetic buoyancy; a sunspot emerging at the stellar surface is a bit like a submarine emerging from the ocean depths.
In the August 19th issue of Science, Ilonidis and co-workers Junwei Zhao and Alexander Kosovichev announced that they can see some sunspots while they are still submerged.
Their analysis technique is called "time-distance helioseismology," and it is similar to an approach widely used in earthquake studies. Just as seismic waves traveling through the body of Earth reveal what is inside the planet, acoustic waves traveling through the body of the sun can reveal what is inside the star. Fortunately for helioseismologists, the sun has acoustic waves in abundance. The body of the sun is literally roaring with turbulent boiling motions. This sets the stage for early detection of sunspots.
"We can't actually hear these sounds across the gulf of space," explains Ilonidis, "but we can see the vibrations they make on the sun's surface." Instruments onboard two spacecraft, the venerable Solar and Heliospheric Observatory (SOHO) and the newer Solar Dynamics Observatory (SDO) constantly monitor the sun for acoustic activity.
Submerged sunspots have a detectable effect on the sun's inner acoustics—namely, sound waves travel faster through a sunspot than through the surrounding plasma. A big sunspot can leapfrog an acoustic wave by 12 to 16 seconds. "By measuring these time differences, we can find the hidden sunspot."
Ilonidis says the technique seems to be most sensitive to sunspots located about 60,000 km beneath the sun’s surface. The team isn't sure why that is "the magic distance," but it's a good distance because it gives them as much as two days advance notice that a spot is about to reach the surface.
"This is the first time anyone has been able to point to a blank patch of sun and say 'a sunspot is about to appear right there,'" says Ilonidis's thesis advisor Prof. Phil Scherrer of the Stanford Physics Department. "It's a big advance."
"There are limits to the technique," cautions Ilonidis. "We can say that a big sunspot is coming, but we cannot yet predict if a particular sunspot will produce an Earth-directed flare."
So far they have detected five emerging sunspots—four with SOHO and one with SDO. Of those five, two went on to produce X-class flares, the most powerful kind of solar explosion. This encourages the team to believe their technique can make a positive contribution to space weather forecasting. Because helioseismology is computationally intensive, regular monitoring of the whole sun is not yet possible—"we don’t have enough CPU cycles," says Ilonidis —but he believes it is just a matter of time before refinements in their algorithm allow routine detection of hidden sunspots.

For more information visit http://www.nasa.gov/mission_pages/sunearth/news/sunspot-breakthru.html

Aerogels: Thinner, Lighter, Stronger

Picture preparing a bowl full of a sweet, gelatin dessert. The gelatin powder is mixed with hot water, and then the mixture is cooled in a refrigerator until it sets. It is now a gel. If that wiggly gel were placed in an oven and all of the moisture dried out of it, all that would be left would be a pile of powder.
But imagine if the dried gelatin maintained its shape, even after the liquid had been removed. The structure of the gel would remain, but it would be extremely light due to low density. This is precisely how aerogels are made.
Aerogels are among the lightest solid materials known to man. They are created by combining a polymer with a solvent to form a gel, and then removing the liquid from the gel and replacing it with air. Aerogels are extremely porous and very low in density. They are solid to the touch. This translucent material is considered one of the finest insulation materials available.
Although aerogels were first invented in the 1930s, NASA's Glenn Research Center in Cleveland has invented groundbreaking methods of creating new types of aerogels that could change the way we think about insulation.
Aerogels' Porous Materials
Since their invention, aerogels have primarily been made of silica. The silica is combined with a solvent to create a gel. This gel is then subjected to supercritical fluid extraction. This supercritical fluid extraction involves introducing liquid carbon dioxide into the gel. The carbon dioxide surpasses its super critical point, where it can be either a gas or a liquid, and then is vented out. This exchange is performed multiple times to ensure that all liquids are removed from the gel. The resulting material is aerogel.
"That is the key step that makes an aerogel different from other porous materials," says Mary Ann Meador, a research chemical engineer and team lead for aerogels at Glenn. "Maintaining the gel structure is the most important thing."
Aerogels provide very effective insulation, because they are extremely porous and the pores are in the nanometer range. The nano pores aren't visible to the human eye. The existence of these pores makes the aerogel so adept at insulating.
"The pores are so small, and gas phase heat conduction is very poor," Meador says. "Molecules of air cannot travel through the aerogel, so there is poor heat transfer through the material."
Traditional silica-based aerogels have been successfully used in many applications, such as providing insulation on a Mars Rover. They have also been used in many commercial products. When aerogels are used for commercial purposes, they are typically in pellet form or in a composite with other materials. Aerogels have been combined with batting to create insulating "blankets," as well as filled in between panes of glass to create translucent panels for day-lighting applications.
Silica-based aerogels are very light, as they are about 95% porous. Silica aerogels are very useful, but they have limitations—they are very fragile.
Aerogel Innovations
NASA, along with industry partners, has investigated the use of different types of aerogels for multiple uses. With funding from NASA's Fundamental Aeronautics Program (Hypersonics and Subsonic Fixed Wing Projects) and the Exploration Systems Mission Directorate, NASA's Glenn Research Center has developed two cutting-edge methodologies that revolutionize aerogel technology.
The first innovation is a method of creating aerogels that are reinforced by polymers. The method changes the surface of the gel as it reacts with a polymer. The result is that the interior surface of the aerogel gets a thin layer of polymer, which greatly strengthens the aerogel.
"If you were to compare a polymer-enforced silica aerogel with the same density silica gel, the polymer enforced aerogel is about two orders of magnitude stronger," Meador says.
These polymer-enhanced aerogels offer the same insulation properties as typical aerogels and can be translucent. They share the same positive attributes of silica aerogels, and are much less fragile. The Glenn team has created many different aerogels featuring different polymers using their patented method. Glenn has also collaborated with Aspen Aerogel of Northborough, Mass. to create a polymer-enhanced aerogel that was combined with fibers to create a new product.
The second innovation is a method of creating aerogels made completely of polymers. These polymer-based aerogels are extremely strong and flexible. They can also be made into a bendable thin film.
Aerogels in Flight
The Glenn team is currently working on a NASA project called the Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The HIAD is an inflatable reentry vehicle that is folded and stowed inside a launch vehicle. Prior to entering the atmosphere, the HIAD is inflated and becomes rigid. This helps the spacecraft slow down, safely descend and land on Earth, Mars, or any other planet that has an atmosphere.
The HIAD enables larger masses to be carried through the atmosphere more slowly and safely, and it reduces the heat to which the vehicle is subjected. The HIAD is covered by a Flexible Thermal Protection System, which uses aerogels as an insulator to protect the payload.
The thin film polymer-based aerogel is well suited to the needs of the HIAD. The HIAD (funded by the Hypersonics Project of the Fundamental Aeronautics Program) is scheduled to flight test in 2012. An important component will be the Flexible Thermal Protection Systems (funded by the Hypersonics Project and the Space Technology Program under the NASA Chief Technologist). The Flexible Thermal Protection Systems use baseline aerogel insulation blankets, created by Aspen Aerogels. Subsequent test launches may include the new thin film polymer-based aerogel as an improvement over the baseline insulation.
"The project would like an aerogel that is more flexible, more foldable and doesn't dust, doesn't shed insulation particles, so it is not a hazard or messy to handle. In response to that, we started looking at different kinds of polymers and techniques that could make that sort of aerogel more flexible," Meador says.
The team determined that the presence of silica in an aerogel precluded the ability of an aerogel to be flexible, so they started exploring ways to create an aerogel made completely with polymers. They developed a method of creating polymer based aerogels that are completely flexible, and can be made into an extremely thin film—a capability not previous available. These aerogels are also stable even when subjected to high temperatures.
The polymer-based aerogel is 85-95% porous, meaning it offers the same advantages of traditional aerogels. It is equally light in weight, and has the same properties of thermal conductivity as silica based aerogels. But these aerogels offer unprecedented flexibility, along with their durability and strength, and the ability to be made into a thin film.
"I was amazed and surprised when we determined it could be made into a flexible thin film," Meador says. "It was a 'whoa' moment! It was better than we expected."
Aerogel Applications
The thin films, which are fabricated through a collaboration with the University of Akron in Akron, Ohio, have also been sent to other government agencies and NASA centers, which has garnered interest in the technology.
"Usually when people see them, they say 'Wow, this is an aerogel?'" Meador says.
Other NASA centers have expressed interest in further exploring these thin polymer aerogels, for applications like cryogenics or in the next space suit. Polymer aerogels are ideally suited for use in a vacuum, like in space, as well as in different gravity scenarios, such as the moon or other planets.
Governmental agencies are also interested in exploring the thin polymer aerogels for use in shelter applications, such as insulated tents. Industry has also taken notice, with possible applications in refrigeration, building and construction, updating historical structures, and many other insulation needs, especially when there isn't a lot of room and smaller, more effective insulation is needed.
Aerogels and the Future
Polymer-enhanced aerogels and polymer-based aerogels have numerous potential applications, both in space, on distant planets and on our own Earth. They are light, durable and extremely effective at insulating and preventing heat transfer. NASA has taken aerogels to the next level, beyond what was previously imagined, and uncovered a world of possibilities for this versatile material.

For more information visit http://www.nasa.gov/topics/technology/features/aerogels.html

New Rover Snapshots Capture Endeavour Crater Vistas

NASA's Mars Exploration Rover Opportunity has captured new images of intriguing Martian terrain from a small crater near the rim of the large Endeavour crater. The rover arrived at the 13-mile-diameter (21-kilometer-diameter) Endeavour on Aug. 9, after a journey of almost three years.
Opportunity is now examining the ejected material from the small crater, named "Odyssey." The rover is approaching a large block of ejecta for investigation with tools on the rover's robotic arm.
Opportunity and Spirit completed their three-month prime missions on Mars in April 2004. Both rovers continued for years of bonus, extended missions. Both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Spirit ended communications in March 2010.

For more information visit http://www.nasa.gov/mission_pages/mer/news/mer20110819.html

A Cosmic Inkblot Test

If this were an inkblot test, you might see a bow tie or a butterfly depending on your personality. An astronomer would likely see the remains of a dying star scattered about space -- precisely what this is. NASA's Spitzer Space Telescope captured this infrared view of what's called a planetary nebula, which is a cloud of material expelled by a burnt out star, called a white dwarf. This object is named the Dumbbell nebula after its resemblance to the exercise equipment in visible-light views.
"It is interesting how different Spitzer's view of the Dumbbell looks compared to optical images," said Dr. Joseph Hora, the principal investigator of the observations from the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass.
In Spitzer's infrared view, the diffuse green glow, which is brightest near the center, is probably from hot gas atoms being heated by the ultraviolet light from the central white dwarf. A collection of clumps fill the central part of the nebula, and red-colored radial spokes extend well beyond. Astronomers think these features represent molecules of hydrogen gas, mixed with traces of heavier elements. Despite being broken apart by the ultraviolet light from the central white dwarf, much of this molecular material may survive intact and mix back into interstellar gas clouds, helping to fuel the next generation of stars.

For more information visit http://www.nasa.gov/mission_pages/spitzer/news/spitzer20110810.html

Tvoop’s Users Can Now Upload, Share and Monetize Their Video Content – PR Web (press release)


PR Web (press release)
Tvoop's Users Can Now Upload, Share and Monetize Their Video Content
PR Web (press release)
This feature is developed with anyone in mind, who would like to monetize on their self-made videos and/or recordings of their live streaming, which becomes available immediately after the live streaming is over. This feature enables individual as well ...

and more »

Panasonic Lumix DMC-FX90 Wi-Fi Touchscreen Camera Official – SlashGear


imaging resource (press release)
Panasonic Lumix DMC-FX90 Wi-Fi Touchscreen Camera Official
SlashGear
Newness fills its innards, however, and the aesthetic appeal certainly is at a peak – would you mind carrying around such a device? This device will allow you to upload (should you have a connected Wi-Fi signal) photos and video to YouTube, Flickr, ...
Panasonic unleashes Lumix X lenses and FZ150 cameraAmateur Photographer

all 208 news articles »

MP3Tunes Ruling Also Opens Door For Online Video Storage Services? – ReelSEO Online Video News


ReelSEO Online Video News
MP3Tunes Ruling Also Opens Door For Online Video Storage Services?
ReelSEO Online Video News
Another major point in the ruling is that the online lockers need not maintain multiple copies of each of the files, deduplication, therefore, one copy of a piece of content is enough for everyone that owns it to stream it without having to upload ...