12345...10...

Public ETP Nanomedicine

19th – 23rd June 2016 in Druskininkai, Lithuania – 2nd International Conference on Current Trends in Cancer Theranostics. MEET LEADING SPECIALISTS IN BIOPHOTONICS, BIOIMAGING, AND NANOMEDICINE.

Save the Date ! CLINAM 2016 will take place in Basel on 26th to 29th June 2016

NANOTEXNOLOGY is the annual event that explores the opportunities in the emerging fields of Nanotechnologies & Organic Electronics.

SAVE THE DATE! The next annual event of ETPN will be held from Wednesday, October 12 to Friday, 14 October 2016 in Heraklion (Crete) in collaboration with FORTH.

More here:

Public ETP Nanomedicine

Nanomedicine Fact Sheet – Genome.gov | National Human …

Nanomedicine Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell’s broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

Top of page

A lot of things are small in today’s high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

Top of page

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

Top of page

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, “How many?” “How big?” and “How fast?” Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.

As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] has established a handful of nanomedicine centers. These centers are staffed by a highly interdisciplinary scientific crew, including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years was spent gathering extensive information about how molecular machines are built.

Once researchers had catalogued the interactions between and within molecules, they turned toward using that information to manipulate those molecular machines to treat specific diseases. For example, one center is trying to return at least limited vision to people who have lost their sight. Others are trying to develop treatments for severe neurological disorders, cancer, and a serious blood disorder.

The availability of innovative, body-friendly nanotools that depend on precise knowledge of how the body’s molecular machines work, will help scientists figure out how to build synthetic biological and biochemical devices that can help the cells in our bodies work the way they were meant to, returning the body to a healthier state.

Top of page

Last Updated: January 22, 2014

Go here to see the original:

Nanomedicine Fact Sheet – Genome.gov | National Human …

Nanomedicine Conferences| Nanotechnology conferences| 2016 …

Conference Series LLCinvites all the participants from all over the world to attend 10th International Conference on Nanomedicine and Nanotechnology in Health Care during July 25-27, 2016 at Avani Atrium, Bangkok, Thailand. It will include presentations and discussions to help attendees address the current trends and research on the applications of Nanomedicine and nanotechnology in healthcare. The theme of the conference is “Embarking Next Generation Delivery Vehicles for affordable Healthcare!”

Nanomedicineis innovating the healthcare industry and impacting our society, but is still in its infancy in clinical performance and applications. The aim of thisNanomedicine 2016conference is to bring together leading academic, clinical and industrial experts to discuss development of innovative cutting-edge Nanomedicine and challenges in Nanomedicine clinical translation.

Track 01:Nanomedicine

Nanomedicine applications in the field of medicine are vast. It helps in the detection, diagnosis, prevention, treatment and follow-up of many diseases.Personalized Nanomedicineis being applied in all the branches of medicine like Radiology, Neurology, Surgery, Pulmonology, Dentistry, Orthopaedics, Ophthalmology etc.Nanomedicine conferencesfocusses on how Nanomedicine can be the next delivery vehicle for making healthcare affordable.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting

Nanomaterials Conference April 21-23 2016, UAE; MedicalNanotechnologySummit June 9-11 2016, Dallas; Molecular Nanoscience Meeting September 26-28 2016, UK; Nanotechnology Expo November 10-12 2016, Australia; Nanotech Expo December 5-7 2016, USA; International Conference onNanoscienceand Nanotechnology (ICONN), 711 February 2016, Australia; International Conference onNanobiotechnology, Drug Delivery, and Tissue Engineering, 1st- 2ndApril 2016, Czech Republic; International Conference on Biotechnology, Bioengineering andNanoengineering, April 14-15, 2016, Portugal; Meeting and Expo onNanomaterialsand Nanotechnology, 25th – 27th April 2016, UAE;NANOTEXNOLOGY, 29 July, 2016, Greece, American Society For Nanomedicine, Washington, USA, Society for Personalized Nanomedicine, Florida, USA

Track 02: Nanomedicine and Drug delivery

There are a many ways thatnanotechnologycan make the delivery of drugs more systematic and accost effective treatment for the patient. Numerous biological materials like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles are under investigation for preparation of nanoparticles. The hazards that are introduced by usingnanoparticles for drug deliveryare more than that posed by conventional hazards imposed by chemical delivery.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Bioavailability and Bioequivalence Summit August 29-31, 2016, USA;Surgical OncologyConference during September 01-03, 2016, Brazil; Precision Medicine ConferenceNovember 03-05, 2016, USA; Translational MedicineConference November 17-19, 2016, USA;Mesothelioma Summit,November 03-04, 2016, Spain; International Conference onBiotechnologyand Nanotechnology, April 14-15, 2016, Portugal;Nanotech Conference & Exhibition, 01-03 June, 2016, France; Materials Scienceand Nanotechnology Conference July 28- 29, 2016, China; 7thInternationalnanotechnology Summit: fundamentals and applications, August 19-10, 2016 Hungary, Society for Personalized Nanomedicine, Florida, USA, European Society for Nanomedicine, Basel, Switzerland

Track 03:Nanomedicine and Nanotechnology

Nanomedicine is an emerging specialty born from Nanotechnology. Bothnanomedicine and nanotechnologyare emerging as the new direction in the diagnosis and drug therapy. Nanomedicine can change the face of healthcare in the future using nanotechnology.Nanomedicinehelps detect, repair, understand and control the human biological system. Nanomedicine can be used forpersonalized Nanomedicine.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Nanomaterials Conference April 21-23 2016, UAE; MedicalNanotechnologySummit June 9-11 2016, Dallas; Molecular Nanoscience Meeting September 26-28 2016, UK; Nanotechnology Expo November 10-12 2016, Australia; Nanotech Expo December 5-7 2016, USA; International Conference onNanoscienceand Nanotechnology (ICONN), 711 February 2016, Australia; International Conference onNanobiotechnology, Drug Delivery, and Tissue Engineering, 1st- 2ndApril 2016, Czech Republic, Biotechnology, Bioengineering andNanoengineering Conference, April 14-15, 2016, Portugal; Nanomaterials Conferenceand Nanotechnology, 25th – 27th April 2016, UAE;NANOTEXNOLOGY, 29 July, 2016, Greece, International Association of Nanotechnology, California, USA, French Society for Nanomedicine, Lille, France

Track 04:Nanomedicine and Nanobiotechnology

Nanobiotechnologyis the intersection of nanotechnology and biology. Nanobiotechnology has multitude of potentials for advancing medical science thereby improving health care practices around the world. Nanomedicine is used to treat diseases bygene therapy. Nano biotechnologies are being applied to molecular diagnostics and several technologies are in development.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

NanoConference June 20-21, 2016 Cape Town, South Africa; Medical NanotechnologyCongress and Expo June 9-11, 2016 Dallas, USA; Nanotechnology Congress June 27-29, 2016 Valencia, Spain; 11th Nanobiotechnology MeetingSeptember 26-28, 2016 London, UK: Nanotechnology Expo November 10-12, 2016 Melbourne, Australia: International Conference on NanotechnologyModellingand Simulation April 1-2, 2016 Prague, Czech Republic: The 5th Conference onNanomaterialsJanuary 14-16, 2016 Bangkok, Thailand: Nanotechnology Conference and Expo Baltimore, USA, 4th to 6th April 2016: 4thNanoscience Conference (ICNT2016) Kuala Lumpur, Malaysia, 28th – 29th January 2016: 4th Conference on Materials ScienceNew York, USA, American Nano Society, Florida, USA, Sustainable Nanotechnology Organization, Washington, USA

Track 05:Nanomedicine and Bioengineering

Nanomedicinehas a considerable role in Bioengineering. To design and construct an apt scaffold is the major challenge inRegenerative medicinetoday. The cell-cell and cell-matrix interactions in the biosystems happen at the nanoscale level. Therefore the application of nanotechnology at that level helps in modifying the cellular function to mimic the native tissue in a more appropriate way. The application ofBioengineeringhas transformed the designing the manufacturing of scaffolds and artificial grafts.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Stem Cell Research conference February 29-March 02 2016, USA, Bio banking ConferenceAugust 18-19 2016, USA; Regenerative Medicine Conference,September 12-14 2016, Germany; 6th Pharmacogenomics ConferenceSeptember 12-14, 2016, Berlin, Germany; Conference onRestorative MedicineOctober 24-26, 2016, USA ; Conference onRegeneration, January 10 14, 2016, USA; ISSCR Conference onNeural Degenerationand Disease, 18th Biotechnology Meeting, April 11-12, 2016, Italy; 14th European Symposium on Drug Delivery, 13th-15thApril 2016, The Netherlands Sustainable Nanotechnology Organization, Washington, USA, Asian Nanoscience and Nanotechnology Association, Kagawa, Japan

Track 06:Nanomedicine and Cancer

Cancer Nanomedicineaims to use the nanostructures and nanoscale processes for the prevention, detection, diagnosis and treatment of cancer and other concomitant areas. Even when molecular changes occur in a smaller percentage of cells, which may be cancer related targets.Nanomedicine in cancercan help in the sensitive detection of them. The use of Nanotechnology to combat cancer is still under development. Severalnanocarrierdrugs andnanotherapeuticsare available in market and some in Clinical trials.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

CancerDiagnostics Expo June 13-15 2016, Italy; Conference onCancer Immunologyand Immunotherapy July 28-30 2016, Australia;Cancer GenomicsSummit August 8-9 2016, USA; 12th Cancer TherapySummit September 26-28 2016, UK; International Conference onCervical CancerSeptember 22-23 2016, Austria; TheBiomarkerConference, 18th-19th February 2016, USA; Cancer Vaccines: Targeting Cancer Genes forImmunotherapy, March 610 2016, Canada; 18th Conference on Biotechnology Advances, April 11-12, 2016, Italy; 14th European Drug Delivery Summit, April 13-15 2016, The Netherlands; 18th InternationalCancer NanomedicineConference and Novel Drug Delivery Systems, April 22 – 23, 2016, United Kingdom, Asian Nanoscience and Nanotechnology Association, Kagawa, Japan, European Nanoscience and Nanotechnology Association, Bulgaria.

Track 07:Nanomedicine and Healthcare

Nanomedicineaffects almost all the aspects of healthcare. Nanomedicine helps to engineer novel and advanced tools for the treatment of various diseases and the improvement of human biosystems usingmolecular Nanotechnology. Cardiovascular diseases, Neurodegenerative disorders, Cancer, Diabetes, Infectious diseases, HIV/AIDS are the main diseases whose treatment can be benefitted by using nanomedicine.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Bioequivalence and Bioavailability Summit August 29-31, 2016, USA;Surgical OncologyConference during September 01-03, 2016, Brazil; Precision Medicine ConferenceNovember 03-05, 2016, USA; Translational MedicineConference November 17-19, 2016, USA;Mesothelioma Summit,November 03-04, 2016, Spain; International Conference onBiotechnologyand Nanotechnology, April 14-15, 2016, Portugal;Nanotech Conference & Exhibition, 01-03 June, 2016, France; Materials Scienceand Nanotechnology Conference July 28- 29, 2016, China; 7thInternationalnanotechnology Summit: fundamentals and applications, August 19-10, 2016 Hungary, Society for Personalized Nanomedicine, Florida, USA, European Society for Nanomedicine, Basel, Switzerland

Track 08:Nanomedicine and Healthcare Applications

Nanomedicineapplications in healthcare Industry are broad. It helps to engineer newNano medical devices, design nanoparticles for detection and drug delivery in cancer. Nanomedicine can be applied in allied areas of healthcare like Wound healing, Food Industry and Hair growth. Nanomedicine is being widely used forpublic health and Nutrition.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

NanoConference June 20-21, 2016 Cape Town, South Africa; Medical NanotechnologyCongress and Expo June 9-11, 2016 Dallas, USA; Nanotechnology Congress June 27-29, 2016 Valencia, Spain; 11th Nanobiotechnology MeetingSeptember 26-28, 2016 London, UK: Nanotechnology Expo November 10-12, 2016 Melbourne, Australia; International Conference on NanotechnologyModellingand Simulation April 1-2, 2016 Prague, Czech Republic: The 5th Conference onNanomaterialsJanuary 14-16, 2016 Bangkok, Thailand: Nanotechnology Conference and Expo Baltimore, USA, 4th to 6th April 2016: 4thNanoscience Conference (ICNT2016) Kuala Lumpur, Malaysia, 28th – 29th January 2016: 4th Conference on Materials ScienceNew York, USA, American Nano Society, Florida, USA, Sustainable Nanotechnology Organization, Washington, USA.

Track 09: Nanotechnology and Food

Nanotechnology has begun to find potential applications in the area of functional food by engineering biological molecules toward functions very different from those they have in nature, opening up a whole new area of research and development. Of course, there seems to be no limit to whatfood technologistsare prepared to do to our food and nanotechnology will give them a whole new set of tools to go to new extremes. Nanotechnology may revolutionize the food industry by providing stronger, high-barrier packaging materials, more potent antimicrobial agents, and a host of sensors which can detect trace contaminants, gasses or microbes in packaged foods.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Biopolymers Congress, August 01-03, 2016, UK; Conference onSustainable BioplasticsNovember 10-12, 2016, Spain; Biopolymers andBioplastics Summit, September 12-14, 2016, USA; Biofuelsand Bioenergy September 1-3, 2016, Brazil; Public HealthSummit March 10-12, 2016, Spain; 5th Annual PharmaceuticalMicrobiology Conference, 2021 January 2016, United Kingdom; 18th International Conference on Biomaterials,Colloidsand Nanomedicine, January 21-22, 2016, France; 13th National Conference and Technology Exhibition On Medical Devices &PlasticsDisposables, February 12-13, 2016, USA; 18th International Conference onToxicology, February 25 – 26, 2016; United Kingdom; Faraday Discussion:Nanoparticleswith Morphological and Functional Anisotropy, 46 July 2016, United Kingdom, Asian Nanoscience and Nanotechnology Association, Kagawa, Japan, European Nanoscience and Nanotechnology Association, Bulgaria

Track 10:Nanomedicine and Nanotheranostics

Nanotheranosticscombine both the Non-invasive diagnosis and treatment of diseases and helps to monitor the drug release and dispersion of the drug, thereby increasing the effectiveness of therapy.Cancer nanotheranosticshold a great promise in improving the treatment outcomes in Cancer. Nanotheranostics are currently being used in theBiomarker Discovery. Nanotheranostics include both Genomics based theranostics and Proteomics based theranostics

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Pharmacology SummitAugust 08-10 2016, UK;Conference onClinical TrialsAugust 22-24 2016, USA; Neuropharmacology MeetingSeptember 15-17 2016, USA;PharmacovigilanceSummit September 19-21 2016 in Austria; Drug DiscoveryExpo October 24-26 2016, Turkey; 18th International Conference onBioengineering, Biotechnology and Nanotechnology, January 18 – 19, 2016, United Kingdom; 4thImmunogenicity& Immunotoxicity Conference January 25-26, 2016, USA; Genomics andpersonalized medicine conference, 07-11 February, 2016, Canada;Conference onAntibodiesas Drugs, 06-10 March, 2016, Canada; Pharmaceutical Sciences Congress, 28 August – 1 September 2016, Argentina, American Society For Nanomedicine , Washington, USA, Society for Personalized Nanomedicine, Florida, USA

Track 11: Nanomedicine and Nanobiology

Nano biologyis the branch where basic biology of the organism and nanotechnology meet. Nano biology helps in addressing the basic mechanisms of human health and diseases at the cellular and molecular level.Nano biologyapplied in microbiology is Nanomicrobiology. Recently certain nanoparticles are being designed to act against infections

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Conference onPharmaceutics March 07-09 2016, Spain; BiosimilarsCongress June 27-29, 2016 Valencia, Spain; Drug DeliverySummit June 30- July 02 2016, USA; Conference onPharmaceuticalRegulatory Affairs and IPR September 12-14 2016, USA; Asia Pacific MassSpectrometryCongress October 10-12 2016, Malaysia;Advanced MaterialsConference (IC2NAM), January 15th 2016; New Zealand; Modern PhenotypicDrug Discovery Summit: Defining the Path Forward, April 26, 2016; USA; 10th IEEE international Conference on Molecular Medicineand Engineering, 17-20 April 2016, Japan; 2ndDrug Delivery Meeting: Advanced Mechanisms & Product Design, May 18-19, 2016, 2016; 6th International Conference on Manipulation, Manufacturing and Measurement on theNanoscale, 18-22 July 2016, China, International Association of Nanotechnology, California, USA, French Society for Nanomedicine, Lille, France, , Asian Nanoscience and Nanotechnology Association, Kagawa, Japan, European Nanoscience and Nanotechnology Association, Bulgaria

Track 12:Nanomedicine and Nanopharmaceuticals

Nanopharmaceuticalssuch as liposomes,quantum dots, dendrimers,carbon nanotubesand polymeric nanoparticles have brought considerable changes in drug delivery and the medical system. Nanopharmaceuticals offer a great benefit for the patients in comparison with the conventional drugs. There are several advantages of these drugs such as enhanced oral bioavailability, improved dose proportionality, enhanced solubility and dissolution rate, suitability for administration and reduced food effects.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Conference onPharmaceutics March 07-09 2016, Spain; BiosimilarsCongress June 27-29, 2016 Valencia, Spain; Drug DeliverySummit June 30- July 02 2016, USA; Conference onRegulatory Affairs and IPR September 12-14 2016, USA; Asia Pacific MassSpectrometryCongress October 10-12 2016, Malaysia;Advanced MaterialsConference (IC2NAM), January 15th 2016; New Zealand; Modern PhenotypicDrug Discovery: Defining the Path Forward, April 26, 2016; USA; 10th IEEE international Conference on Molecular Medicineand Engineering, 17-20 April 2016, Japan; 2ndDrug Delivery Meeting: Advanced Mechanisms & Product Design, May 18-19, 2016, 2016; 6th International Conference on Manipulation, Manufacturing and Measurement on theNanoscale, 18-22 July 2016, China, International Association of Nanotechnology, California, USA, French Society for Nanomedicine, Lille, France.

Track 13:Nanomedicine and Nanotoxicology

Nanotoxicologyis intended to address the toxicological activities of nanoparticles and their products to determine whether and what extent they may pose a threat to the environment and to human health and defined as the study of the nature and mechanism of toxic effects of nanoscale materials/particles on living organisms and other biological systems. It also deals with the quantitative assessment of the severity and frequency of nanotoxic effects in relation to the exposure of the organisms. The knowledge from nanotoxicology study will be the base for designing safenanomaterialsandnanoproducts,and also direct used innanomedicalsciences.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Pharmacology andEthnopharmacology Conference May 02-04 2016, USA; Conference on Toxicogenomics June 09-10 2016, USA; Environmental ToxicologySummit August 25-26 2016, Brazil; BiosimilarsCongress September 12-14, 2016 USA; ToxicologySummit October 27-29 2016, Italy;Biosimilarsand Biologics Congress 1-2 February, 2016, Germany; The Oxford ChemicalImmunologyConference, 45 April 2016, United Kingdom; Toxicology and risk assessment conference, April 4-6, 2016; USA; 18th International Conference onBioinformaticsand Bioengineering, April 25-16, 2016, France; Toxicology Meeting, September 47, 2016, Turkey, Society for Personalized Nanomedicine, Florida, USA, European Society for Nanomedicine, Basel, Switzerland

Track 14:Nanomedicine and Nanomedical Devices

Nanomedical devicesshow great promise in various applications for health care. Many nano scale devices have already been approved by the FDA. Nano scale materials can be used as delivery mechanisms allowing cells to absorb therapeutics into the cell wall. Various nano materials are being researched for use in cancer therapeutics.Nanowiresand needles are being researched and developed for use in epilepsy and heart control.Nanosized surgical instrumentscan be used to perform microsurgeriesand better visualization of surgery.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Generic Drug Market Expo Oct 31- Nov 02 2016, Spain; Medical Devices Expo December 1-3 2016, USA; African Surgical and Medical Devices Expo June 20-21, 2016, South Africa; Conference on Biomaterials March 14-16 2016, UK; Bioavailability & Bioequivalence Summit August 29-31 2016, USA; Microbiology Summit, 2021 January 2016, United Kingdom; 18th International Conference on Biomaterials, Colloids and Nanomedicine, January 21-22, 2016, France; 13th Medical Devices Exhibition & Plastics Disposables, February 12-13, 2016, USA; 18th International Conference on Toxicology, February 25 – 26, 2016; United Kingdom; Faraday Discussion: Nanoparticles with Morphological and Functional Anisotropy, 46 July 2016, United Kingdom, International Association of Nanotechnology, California, USA, French Society for Nanomedicine, Lille, France

Track 15:Nanomedicine and Nanodiagnostics

The use of Nanotechnology in clinical diagnosis is termed asNano diagnostics. Diagnosis at the single cell level or molecular level can be possible through Nano diagnostics. They can even be incorporated even in the current diagnostic methods like Biochips.Nanobiosensorsare promising devices for Clinical applications.

RelatedNanomedicine Conferences|Nano science Meeting |Healthcare Meeting:

Bioavailability and Bioequivalence Summit August 29-31, 2016, USA;Surgical OncologyConference during September 01-03, 2016, Brazil; Precision Medicine ConferenceNovember 03-05, 2016, USA; Translational MedicineConference November 17-19, 2016, USA;Mesothelioma Summit,November 03-04, 2016, Spain; International Conference onBiotechnologyand Nanotechnology, April 14-15, 2016, Portugal;Nanotech Conference & Exhibition, 01-03 June, 2016, France; Materials Scienceand Nanotechnology Conference July 28- 29, 2016, China; 7thInternationalnanotechnology Summit: fundamentals and applications, August 19-10, 2016 Hungary, Society for Personalized Nanomedicine, Florida, USA, European Society for Nanomedicine, Basel, Switzerland.

Track 15:Nanoethics and Regulations

Nanoethicsis the study ethical and social implications of nanotechnologys. It is an emerging but controversial field.Nanoethics is a debatable field.As the research is increasing on nanomedicine, there are certain regulations to increase their efficacy and address the associated safety issues. Other issues in nanoethics include areas likeresearch ethics, environment,global equity, economics, politics, national security, education, life extension and space exploration.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Generic Drug Market Expo Oct 31- Nov 02 2016, Spain; Medical Devices Expo December 1-3 2016, USA; African Surgical and Medical Devices Expo June 20-21, 2016, South Africa; Conference on Biomaterials March 14-16 2016, UK; Bioavailability & Bioequivalence Summit August 29-31 2016, USA; Microbiology Summit, 2021 January 2016, United Kingdom; 18th International Conference on Biomaterials, Colloids and Nanomedicine, January 21-22, 2016, France; 13th Medical Devices Exhibition & Plastics Disposables, February 12-13, 2016, USA; 18th International Conference on Toxicology, February 25 – 26, 2016; United Kingdom; Faraday Discussion: Nanoparticles with Morphological and Functional Anisotropy, 46 July 2016, United Kingdom, International Association of Nanotechnology, California, USA, French Society for Nanomedicine, Lille, France.

Track 17:Nanomedicine Technologies

Nanomedicine technologiescould find an enhanced position in various areas and applications of the healthcare sector including drug delivery, drug discovery, screening and development, diagnostics and medical devices.BIOMEMSrefers to the application of micro electromechanical systems to micro- and nanosystems for genomics, proteomics, drug-delivery analysis, molecular assembly, tissue engineering, biosensor development, nanoscale imaging, etc.Nanoroboticsrefers to the still largely theoretical nanotechnology engineering discipline of designing and building nanorobots. Different companies are developing novel technologies in Nanomedicine likeNanoTherm therapyandNanobody technology. Nanomedicine in drug discovery is playing a key role in the growing part of pharmaceutical research and development.

RelatedNanomedicine Conferences|Nanotechnology Conferences|Healthcare Meeting:

Pharmacology andEthnopharmacology Conference May 02-04 2016, USA; Conference on Toxicogenomics June 09-10 2016, USA; Environmental ToxicologySummit August 25-26 2016, Brazil; BiosimilarsCongress September 12-14, 2016 USA; ToxicologySummit October 27-29 2016, Italy;Biosimilarsand Biologics Congress 1-2 February, 2016, Germany; The Oxford ChemicalImmunologyConference, 45 April 2016, United Kingdom; Toxicology and risk assessment conference, April 4-6, 2016; USA; 18th International Conference onBioinformaticsand Bioengineering, April 25-16, 2016, France; Toxicology Meeting, September 47, 2016, Turkey, Society for Personalized Nanomedicine, Florida, USA, European Society for Nanomedicine, Basel, Switzerland.

Conference Series LLCinvites the contributors across the globe to participate in the premier International Conference on Nanomedicine and Nanotechnology in Health Care (Nanomedicine-2016), to discuss the theme: “Nanomedicine: The Remarkable Technology Thats Changing the Face of Healthcare The conference will be held at Avani Atrium, Bangkok, Thailand during July 25-27,2016.

Conference Series Llc organizes a conference series of 1000+ Global Events inclusive of 300+ Conferences, 500+ Upcoming and Previous Symposiums and Workshops in USA, Europe & Asia with support from 1000 more scientific societies and publishes 700+ Open access journals which contains over 30000 eminent personalities, reputed scientists as editorial board members

International Conference on Nanomedicine and Nanotechnology in Health Care (Nanomedicine 2016) aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results about all aspects of Nanomedicine in Healthcare. It also provides the premier interdisciplinary forum for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns, practical challenges encountered and the solutions adopted in the field of Nanomedicine. The conference program will cover a wide variety of topics relevant to the nanomedicine, including: nanomedicine in drug discover and delivery, nanodiagnostics, theranostics, applications of nanomedine in healthcare applications and disease treatments.

Why to attend?

With members from around the world focused on learning about nanomedicine and its advances; this is your best opportunity to reach the largest assemblage of participants from the Nanotechnology community. Conduct presentations, distribute information, meet with current and potential scientists, make a splash with new drug developments, and receive name recognition at this 3-day event.

Target Audience:

Nanomedicine Academia Professors , Medical professionals, Nanomedicine Department heads, Nanomedicine researchers, Nanomedicine CTOs, Nanomedicine product managers, business development managers, Entrepreneurs, Industry analysts, Investors, Students, Media representatives and decision makers from all corners of Nanoscience research area around the globe.

We therefore encourage all colleagues from all over the world to participate and help us to make this an unforgettable important and enjoyable meeting.

We look forward to seeing you in Bangkok, Thailand !!!

For more

10th International conference on Nanomedince and Nantotechnology in Healthcare

July 25-27, 2016 Bangkok, Thailand

Summary of Nanomedicine Conference:

Nanomedicine 2016 welcomes attendees, presenters, and exhibitors from all over the world to Bangkok, Thailand. We are delighted to invite you all to attend and register for the 10th International conference and exhibition on Nanomedicine and Nanotechnology in Healthcare which is going to be held during July 25-27, 2016 at Bangkok, Thailand. The organizing committee is gearing up for an exciting and informative conference program including plenary lectures, symposia, workshops on a variety of topics, poster presentations and various programs for participants from all over the world. We invite you to join us at the Nanomedicine-2016, where you will be sure to have a meaningful experience with scholars from around the world. All the members of Nanomedicine 2016 organizing committee look forward to meet in person.

Scope and Importance:

The emergence of nanomedicine and the application of nanomaterials in the healthcare industry will bring about groundbreaking improvements to the current therapeutic and diagnostic scenario. Some of the drivers of this market include increasing research funding, rising government support, improved regulatory framework, technological know-how and rising prevalence of chronic diseases such as diabetes, cancers, obesity, kidney disorders, orthopedic diseases and others.

Market Analysis:

In the past few years, the global nanomedicine market has witnessed an increasing use of novel nanomaterials and emergence of nanorobotics on a global front. The market has also observed a significant demand for personalized medicines due to its ability to treat patients based on customized treatments and other medical and genetic conditions.

Overall research in various disciplines:

The North American nanomedicine market held the majority of global market share in 2012 because of the rapidly growing nanomedicine market in the Asia-Pacific, Latin American and African region, presence of large number of patented nanomedicine products and favorable regulatory framework in the region. In addition, the presence of sophisticated healthcare infrastructure supports development of advanced products such as nano probes, nanorobots, monoclonal antibody based immunoassays and nanoparticle based imaging agents for early detection of diseases.

However, the Asia-Pacific region is expected to grow at a faster CAGR owing to presence of high unmet healthcare needs, research collaborations and increase in nanomedicine research funding in emerging economies such as China, India and other economies in the region. China is expected to surpass the United States in terms of nanotechnology funding in the near future, which indicates the growth offered by this region.

Nanomedicine study in various countries:

Companies involved in Nanomedicine:

GE Healthcare, Mallinckrodt plc, Nanosphere Inc., Pfizer Inc., Merck & Co Inc., Celgene Corporation, CombiMatrix Corporation, Abbott Laboratories are some of the major companies in the Nanomedicine market.

Why Bangkok, Thailand?

Bangkok is the cultural, economic and political capital of Thailand. The city features both old-world charm and modern convenience. Many visitors in Bangkok are overwhelmed by the sheer size of the city and the vast number of attractions it has to offer. Indeed, there are many sightseeing opportunities in Bangkok, spanning for more than two centuries of rapid development following the citys founding in 1782. As Bangkok is considered a transport hub and a popular travel destination in Asia, we believe it would be beneficial to all the delegates who are attending the conference.

At present the research on nanomedicine is currently less due to the unavailability of funds and lack of proper expertise. The Asia-Pacific region is expected to grow at a faster CAGR owing to presence of high unmet healthcare needs, research collaborations and increase in nanomedicine research funding in emerging economies such as China, India and other economies in the region. China is expected to surpass the United States.

Conference Highlights:

The rest is here:

Nanomedicine Conferences| Nanotechnology conferences| 2016 …

Nanomedicine Fact Sheet – Genome.gov

Nanomedicine Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell’s broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

Top of page

A lot of things are small in today’s high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

Top of page

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

Top of page

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, “How many?” “How big?” and “How fast?” Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.

As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] has established a handful of nanomedicine centers. These centers are staffed by a highly interdisciplinary scientific crew, including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years was spent gathering extensive information about how molecular machines are built.

Once researchers had catalogued the interactions between and within molecules, they turned toward using that information to manipulate those molecular machines to treat specific diseases. For example, one center is trying to return at least limited vision to people who have lost their sight. Others are trying to develop treatments for severe neurological disorders, cancer, and a serious blood disorder.

The availability of innovative, body-friendly nanotools that depend on precise knowledge of how the body’s molecular machines work, will help scientists figure out how to build synthetic biological and biochemical devices that can help the cells in our bodies work the way they were meant to, returning the body to a healthier state.

Top of page

Last Updated: January 22, 2014

Read this article:

Nanomedicine Fact Sheet – Genome.gov

Nanomedicine – ScienceDaily

Reference Terms

from Wikipedia, the free encyclopedia

Nanomedicine is the medical application of nanotechnology and related research.

It covers areas such as nanoparticle drug delivery and possible future applications of molecular nanotechnology (MNT) and nanovaccinology.

For more information, see the following related content on ScienceDaily:

Matter & Energy News

April 6, 2016

Latest Headlines

updated 12:56 pm ET

Featured Videos

from news services

Read the original:

Nanomedicine – ScienceDaily

Laboratory of Nanomedicine and Biomaterials

GDA 2014 Honoree: Dr. Omid Farokhzad Wall Street Journal Interview Cellular Surgeons: New Era of Nanomedicine New York Academy of Sciences Event ecancertv: Polymeric Nanoparticles for Medical Applications Our Research

Nanotechnology has generated a significant impact in nearly every aspect of science. Our research seeks novel nanomaterials and nanotechnologies in order to develop advanced drug delivery systems with the promise to improve health care. Highly interdisciplinary and translational, our research is focused on multifunctional, nanoparticle-based drug delivery systems. We seek to improve nanoparticle synthesis and formulation and its therapeutic efficacy. Additionally, we develop robust engineering processes to accelerate translation of nanoparticle-based drugs into the drug development pipeline. At the same time, we emphasize a fundamental understanding of the interface between nanomaterials and biological systems. Read our recent reviews below:

See below for some of our selected research articles. Click on images for more detail:

Transepithelial transport of fc-targeted nanoparticles by the neonatal fc receptor for oral delivery:

A study on the immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups:

Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection:

Synthesis of Size-Tunable Polymeric Nanoparticles Enabled by 3D Hydrodynamic Flow Focusing in Single-Layer Microchannels:

Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles:

Development of poly(ethylene glycol) with observable shedding:

Congratulations to Nazila Kamaly for her appointment as an Associate Professor at Technical University of Denmark (01/01/16)

Congratulations to Jun Wu for his appointment as a Professor at Sun Yat-sen University, China (01/01/16)

Congratulations to Christian Vilos for securing the Chilean Grant (Fondecyt)! (01/30/16)

Congratulations to Naomi Morales-Medina for securing an undergraduate National Aeronautic and Space Administration (NASA) Fellowship for minorities in STEM fields! (10/19/15)

Congratulations to Christian Vilos for his promotion to Associate Professor at Center for Integrative Medicine and Innovative Science (CIMIS) in Faculty of Medicine in Andres Bello University! (09/10/15)

Congratulations to Won Il Choi for securing a Senior Researcher position at the Korea Institute of Ceramic Engineering and Technology! (09/10/15)

Congratulations to Jining Huang for getting admission in the Bioengineering PhD Program at Caltech. (03/24/15)

Welcome Dr. Sejin Son to join our team! (10/31/14)

Welcome Dr. Dmitry Shvartsman to join our team! (09/19/14)

Welcome Dr. Harshal Zope to join our team! (06/15/14)

Welcome Dr Yanlan Liu, Dr. Xiaoding Xu and Dr. Arif Islam to join our team! (03/12/14)

Welcome Dr. Basit Yameen to join our team! (09/09/2013)

Congratulations to Dr. Archana Swami for her poster prize at the MIT Polymer Day Symposium! (05/02/2013)

Welcome Dr. Mikyung Yu, Dr. In-hyun Lee, Dr. Won IL Choi, Dr. Renata Leito and Dr. Cristian Vilos to join our team! (05/02/2013)

Congratulations to Dr. Archana Swami for receiving an ‘Outstanding Paper’ award from the ASME at NEMB2013! (31/01/2013)

Welcome Dr. Giuseppe Palmisano to join our team! (04/01/12)

Congratulations to Steffi Sunny for securing a PhD position on the Applied Science and Engineering PhD program at Harvard University! (04/01/12)

Congratulations to Shrey Sindhwani for securing a Physician Scientist Training Program (MD-PhD) position at the University of Toronto! (04/01/12)

Congratulations to Dr. Xiaoyang Xu on the award of his National Cancer Institute funded Ruth L. Kirschstein National Research Service Award Post-doctoral Fellowship! (01/03/2012)

Congratulations to Dr. Jinjun Shi on the award of his National Cancer Institute K99/R00 Career Award! (11/30/2011)

Congratulations to Dr. Jinjun Shi for his BWH Biomedical Research Institute award! (11/10/2011)

Welcome Dr. Nazila Kamaly to join our team! (01/25/2011)

Welcome Dr. Jun Wu, Dr. Xueqing Zhang and Changwei Ji to join our team! (11/15/2010)

Welcome Dr. Suresh Gadde to join our team! (12/15/2009)

Welcome Dr. Xiaoyang Xu to join our team! (10/19/09)

Welcome Dr. Archana Mukherjee to join our team! (08/19/09)

Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups, Salvador-Morales C, Zhang L, Langer et al, Biomaterials, 30 (2009) 2231.

Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection, Xiao Z, Levy-Nissenbaum E, Alexis F et al, ACS Nano, 6 (2012) 696.

Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels., Rhee M, Valencia M, Rodriguez MI et al, Advanced Materials, 23 (2011) H79.

Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles, Valencia PM, Hanewich-Hollatz MH, Gao W et al, Biomaterials, 23 (2011) 6226.

Poly (ethylene glycol) with Observabel Shedding, Valencia PM, Hanewich-Hollatz MH, Gao W et al, , 23 (2010) 6567.

Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile, Hrkach J, Von Hoff D, Ali MM et al, Science Translational Medicine, 4 (2012) 128ra39.

Targeted polymeric therapeutic nanoparticles: design, development and clinical translation, N Kamaly, Z Xiao, P Valencia et alChem. Soc. Rev, 41 (2012) 2971.

Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers, F. Gu, L. Zhang, B. A. Teply et alPNAS, 105 (2008) 2586.

Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, V Bagalkot, L Zhang, E Levy-Nissenbaum et alNano Lett., 7 (2007) 3065.

Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo, O. Farokhzad, J. Cheng, B. A. Teply, et al PNAS, 103 (2006) 6315.

Read more:

Laboratory of Nanomedicine and Biomaterials

NYCNMR: Home

In collaboration with the nearby Clinical Research Center of the University at Buffalo School of Medicine and Biomedical Sciences, the NYCNMR can undertake Phase 1, 2, and 3 clinical trials utilizing our proprietary nanomaterials.

Our primary goal in any partnership is to focus on the translation of nanotechnology to clinical applications leading to commercialization opportunities for economic development.

NYCNMR has extensive expertise in nanotechnologies and the areas oftherapeutics oncology, cardiology, neurology, and diagnostics.

Original post:

NYCNMR: Home

CLINAM – The Conference at a Glance

CLINAM 9 / 2016 Conference and Exhibition

European & Global Summit for Cutting-Edge Medicine

June 26 29, 2016

Clinical Nanomedicine and Targeted Medicine

Enabling Technologies for Personalized Medicine

Conference Venue: Congress Center, Messeplatz 21, 4058 Basel, Switzerland, Phone +41 58 206 28 28, This email address is being protected from spambots. You need JavaScript enabled to view it. Organizers Office:CLINAMFoundation, Alemannengasse 12, P.B. 4016 Basel Phone +41 61 695 93 95, This email address is being protected from spambots. You need JavaScript enabled to view it.

Scientific Committee

Prof. Dr.med.PatrickHunziker, University Hospital Basel (CH) (Chairman)

Prof. Dr.med. ChristophAlexiou, UniversityHospitalErlangen(D)

Prof. Dr. Lajos Balogh, Editor-in-Chief Nanomedicine,Nanotechnology in Biology and Medicine, Elsevier and Member of the Executive Board, American Society for Nanomedicine, Boston (USA)

Prof. Dr. GerdBinnig, Nobel Laureate, Munich(D)

Prof. Dr. Yechezkel Barenholz, HebrewUniversity, Hadassah Medical School, Jerusalem(IL)

Prof. Dr. med. Omid Farokhzad, Associate Professor and Director of Laboratory of Nanomedicine and Biomaterials, Harvard Medical School and Brigham and Women’s Hospital; Founder of BIND Therapeutics, Biosciences and Blend Therapeutics, Cambridge, Boston (USA)

Prof. Dr. med. Dong Soo Lee, PhD. Chairman Department of Nuclear Medicine Seoul National University Seoul, (KOR)

Dr. med. h.c. Beat Lffler, MA, European Foundation for Clinical Nanomedicine, Basel (CH)

Prof. Dr. Jan Mollenhauer, Lundbeckfonden Centerof Excellence NanoCAN, Universityof Southern Denmark, Odense (DK)

Prof. Dr. med. Marisa Papaluca Amati, European Medicines Agency, London (UK).

Prof. Dr. GertStorm, Institutefor Pharmaceutical Sciences, Utrecht University, (NL)

Prof. Dr. Viola Vogel, Laboratory for Biologically Oriented Materials, ETH, Zrich (CH)

In the previous eight years, the CLINAM Summit grew to the largest in its field with 12 presenting Noble Laureates and more than 500 participants from academia, industry, regulatory authorities and policy from over 40 different countries in Europe and worldwide. With this success and broad support by well beyond 20 renowned collaborating initiatives, the CLINAM-Summit is today one of the most important marketplaces for scientific exchange and discussions of regulatory, political and ethical aspects in this field of cutting-edge medicine.

In particular, the CLINAM Summit emerged as exquisite forum for translation from bench to bedside for European and international networking, for industrial collaboration between companies, with academia, and as point-of-contact with customers. The summit is presently the only place to meet the regulatory authorities from all continents to debate the needs of all stakeholders in the field with the legislators.

CLINAM 9/2016 continues with its successful tradition to cover the manifold interdisciplinary fields of Clinical and Targeted Nanomedicine in major and neglected diseases. As special focus area, CLINAM 09/2016 adds translation and enabling technologies, including, for example, cutting-edge molecular profiling, nano-scale analytics, single cell analysis, stem cell technologies, tissue engineering, in and ex vivo systems as well as in vitro substitute systems for efficacy and toxicity testing.

CLINAM 09/2016 covers the entire interdisciplinary spectrum of Nanomedicine and Targeted Medicine from new materials with potential medical applications and enabling technologies over diagnostic and therapeutic translation to clinical applications in infectious, inflammatory and neurodegenerative diseases, as well as diabetes, cancer and regenerative medicine to societal implications, strategical issues, and regulatory affairs. The conference is sub-divided into three different tracks running in parallel and provides ample possibilities for exhibitors as indicated by steadily increasing requests.

Track 1: Clinical and Targeted Nanomedicine Basic Research Disease Mechanisms and Personalized Medicine Regenerative Medicine Novel Therapeutic and Diagnostic Approaches Active and Passive Targeting Targeted Delivery (antibodies, affibodies, aptamers, and nano drug delivery devices) Accurin Technology Nano-Toxicology

Track 2: Clinical and Targeted Nanomedicine: Translation Unsolved Medical Problems Personalized Medicine and Theranostic Approaches Regenerative Medicine Advanced Breaking and Ongoing Clinical Trials Applied Nanomedical Diagnostics and Therapeutics

Track 3: Enabling Technologies Nanomaterial Analytics and Testing Molecular Profiling for Research and Efficacy/Toxicology Testing (Genomics, Proteomics, Glycomics, Lipidomics, Metabolomics) Functional Testing Assays and Platforms Single Cell Analyses Cell Tracking Stem Cell Biology and Engineering Technologies Microfluidics Tissue Engineering Tissues-on-a-Chip-Bioprinting In vivo Testing Novel Imaging Approaches Medical Devices

Track 4: Regulatory, Societal Affairs and Networking Regulatory Issues in Nanomedicine Strategy and Policy The Patients` Perspective Ethical Issues in Nanomedicine University Village Cutting-Edge EU-Project Presentations Networking for International Consortium Formation Regulatory Authorities Sessions

Based on last years exhibition it is expected to have about 30 Exhibitors at this Summit. Exhibitors can profit of the possibility to meet their target visitors on 1 single spot in Basel at CLINAM 9 / 2016. With its concept for the exhibition, the international CLINAM Summit becomes also the place for the pulse of the market and early sales in the field of cutting-edge medicine.

Deadline April 25, 2016 for oral Presentations Deadline for Poster Only Submission is May 15, 2016. Later submitted Posters can still be accepted but will not be included in the Summit-Proceedings. (See instruction in Folder on Page 25).

For full programme download the PDF Folder

Registration Fees (For Exhibition Pricing Look Folder, Page 25)

The European Foundation for Clinical Nanomedicine is a non-profit institution aiming at advancing medicine to the benefit of individuals and society through the application of nanoscience. Aiming at prevention, diagnosis, and therapy through nanomedicine as well as at exploration of its implications, the Foundation reaches its goals through support of clinically focussed research and of interaction and information flow between clinicians, researchers, the public, and other stakeholders. The recognition of the large future impact of nanoscience on medicine and the observed rapid advance of medical applications of nanoscience have been the main reasons for the creation of the Foundation.

Nanotechnology is generally considered as the key technology of the 21st century. It is an interdisciplinary scientific field focusing on methods, materials, and tools on the nanometer scale, i.e. one millionth of a millimeter. The application of this science to medicine seeks to benefit patients by providing prevention, early diagnosis, and effective treatment for prevalent, for disabling, and for currently incurable medical conditions.

Original post:

CLINAM – The Conference at a Glance

Nanomedicine Group

The nanomedicine grouporiginated from the laboratory of Dr. Alexander (“Sasha”) Kabanov at the UNMC Department of Pharmaceutical Sciences in 1994. The first trainees of this laboratory, Dr. Serguei Vinogradov, Dr. Tatiana Bronich and Dr. Elena Batrakova, subsequently assumed faculty positions in the department. Dr. Joe Vetro joined the department in 2004 as a new faculty recruit. These individualswent on tolead independent research projects andactively collaborated tosupport a joint nanomedicine group seminar to foster creative environment, exchange of ideas, and interdisciplinary education of students and postdoctoral scientists. This group evolved into the Center for Drug Delivery and Nanomedicine (CDDN) and the associated COBRE Nebraska Center for Nanomedicine (NCN),with Dr. Kabanov serving both asDirector. Following Dr. Kabanov’s departure for a new position at the University of North Carolina at Chapel Hill, Dr. Tatiana Bronichhas taken on leadership of the Nanomedicine group as well as Directorship of the NCN, and continues to serve as CDDN Associate Director while a recruitment search is underway for the CDDN’s new Director.

Visit link:

Nanomedicine Group

Nanomedicine NEJM

Our apologies. An error occurred while setting your user cookie. Please set your browser to accept cookies to continue.

NEJM.org uses cookies to improve performance by remembering your session ID when you navigate from page to page. This cookie stores just a session ID; no other information is captured. Accepting the NEJM cookie is necessary to use the website.

1-800-843-6356 | nejmcust@mms.org

See more here:

Nanomedicine NEJM

MSc Nanomedicine – Swansea University

The programme is modular and structured in three levels, each building on the next. You can elect to take either the full Master’s programme or the Postgraduate Certificate or Diploma, depending on need and circumstances.

The programme is designed to allow you to complete either as full time or part time study. For part-time students, each of the three components are scheduled to take a year each to complete.

The programme will give you generic evidence based practice training with additional modules exploring:

See the original post:

MSc Nanomedicine – Swansea University

Nanotechnology and Medicine / Nanotechnology Medical …

Nanotechnology involves manipulating properties and structures at the nanoscale, often involving dimensions that are just tiny fractions of the width of a human hair. Nanotechnology is already being used in products in its passive form, such as cosmetics and sunscreens, and it is expected that in the coming decades, new phases of products, such as better batteries and improved electronics equipment, will be developed and have far-reaching implications.

One area of nanotechnology application that holds the promise of providing great benefits for society in the future is in the realm of medicine. Nanotechnology is already being used as the basis for new, more effective drug delivery systems and is in early stage development as scaffolding in nerve regeneration research. Moreover, the National Cancer Institute has created the Alliance for Nanotechnology in Cancer in the hope that investments in this branch of nanomedicine could lead to breakthroughs in terms of detecting, diagnosing, and treating various forms of cancer.

Nanotechnology medical developments over the coming years will have a wide variety of uses and could potentially save a great number of lives. Nanotechnology is already moving from being used in passive structures to active structures, through more targeted drug therapies or smart drugs. These new drug therapies have already been shown to cause fewer side effects and be more effective than traditional therapies. In the future, nanotechnology will also aid in the formation of molecular systems that may be strikingly similar to living systems. These molecular structures could be the basis for the regeneration or replacement of body parts that are currently lost to infection, accident, or disease. These predictions for the future have great significance not only in encouraging nanotechnology research and development but also in determining a means of oversight. The number of products approaching the FDA approval and review process is likely to grow as time moves forward and as new nanotechnology medical applications are developed.

To better understand current and future applications of nanotechnology in various fields of medicine, the project has developed two web-based resources that track medical developments focused on cancer and drug delivery systems.

See the article here:

Nanotechnology and Medicine / Nanotechnology Medical …

Adjuvant Vaccine Development – University of Michigan

During the 1990s, we developed a composite material that resulted in a new class of antimicrobial agents with activity against grampositive bacteria and spores, fungi and viruses. These nanoemulsions are oil-in-water, nanoscale (

While originally developed as microbicidal agents, studies fortuitously demonstrated that nanoemulsions are a promising new type of adjuvant for nasopharyngeal vaccines. Work was being performed to show that placing nanoemulsion into the nares of mice could protect them from subsequent respiratory challenge with an LD90 of Influenza virus. The mice were successfully protected from challenge even two hours after the material was placed into the nares. However, when challenged with live virus three weeks later, the same animals were protected from Influenza pneumonitis without nanoemulsion prophylaxis, and were shown to have high titers of anti-influenza antibodies. Subsequent studies documented that placing Influenza virus in the nares with nanoemulsion on only a single occasion produced strong protective immunity. (Myc A, Kukowska-Latallo JF, Bielinska AU, Cao P, Myc PP, Janczak K, Sturm T, Grabinski MS, Young K, Chang J, Hamouda T, Olszewski MA and Baker JR, Jr: Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine 21(25-26); 2003, 3801-3814).

Mice were vaccinated one time with nanoemulsion alone, formaldehyde-killed virus, formaldehyde-killed virus-nanoemulsion, or virus/nanoemulsion mixture. Sera were collected on day 20 of the experiment for the assessment of IgG. Antibodies levels were expressed as an index of the geometric mean +/- SD for each experimental group. P-value was calculated using Student’s t-test with C-Cochran and Cox correction. Symbol (*) depicts significance (P

Mice immunized intranasally with the virus/nanoemulsion mixture did not show signs of illness, and their core body temperatures were within normal range for 14 days. Moreover, the lungs of immunized animals appeared grossly normal, and histological examination showed no indication of influenza pneumonitis or upper airway inflammation. These results show that nanoemulsions can inactivate virus without causing upper or lower airway mucosal toxicity in treated animals.

As current approaches to vaccination for a number of viral agents have drawbacks due to the use of live virus, complex vaccination protocols or the addition of adjuvants unacceptable for humans, we have continued our determination whether mixing nanoemulsion with specific viral agents will provide a rapid and effective means for a killed virus vaccine for certain viral agents.

Instead of virus, we have also used purified recombinant proteins placed in the nanoemulsion to document that this mixture induced mucosal immunity and systemic TH1 responses. This was of interest, as there was no toxin or other component other than the nanoemulsion (diluted 100 fold in saline) and the recombinant protein antigen. Given the safety profile of the nanoemulsion, these findings supported the further investigation of nanoemulsions as clinically useful nasopharyngeal adjuvants for humans.

MNiMBs has been fortunate to be well funded in pursuing nanoemulsions as a mucosal vaccine adjuvant. MNiMBS Scientists are currently funded to pursue nanoemulsion based vaccines for:

Click each link for more details on specific vaccines being developed.

We have promising results for an HIV adjuvant vaccine.

MNiMBs is also in the process of developing programs for:

To learn more about nanoemulsions click here MNiMBS welcomes collaborative partners and encourages communication between groups. Those people interested in collaborating are encouraged to contact MINanotech@umich.edu for further discussion.

Read more here:

Adjuvant Vaccine Development – University of Michigan

nanomedicine: nanotechnology for cancer treatment – YouTube

Solving radiotherapy s biggest limitation. Medicine is now using physics every day to treat cancer patients. Nanotechnologies or Nanomedicine can help clinicians deliver safer and more efficient treatments by shifting the intended effect from the macroscopic to the subcellular level. http://www.nanobiotix.com http://www.laurentlevy.com

Excerpt from:

nanomedicine: nanotechnology for cancer treatment – YouTube

Micro and nanotechnologies are revolutionising medicine …

http://ec.europa.eu/nanotechnology/in… Micro and nanotechnologies are revolutionising medicine ‘Almost invisible’ tools are being developed by European researchers to discover diseases earlier and to treat patients better. The miniaturisation of instruments to micro and nano dimensions promises to make our future lives safer and cleaner. A team of European researchers from the Fraunhofer Institute for Biomedical Technologies Institute near Saarbruecken is using nanotechnology to improve diagnostic capabilities. In the “Adonis”-project, nano-sized gold particles are used to detect prostate cancer cells at an early stage.

More:

Micro and nanotechnologies are revolutionising medicine …

Wiley Interdisciplinary Reviews: Nanomedicine and …

Impact Factor: 4.239 Read, cite the journal, or submit your paper to keep contributing to the success of WIREs Nanomedicine and Nanobiotechnology

NanoMedicine-2013 is a dedicated event for the nanotech community and aims to offer professionals in the field a multidisciplinary platform to learn more about the latest scientific updates and industrial standards. Nanomedicine-2013 will consist of six tracks covering current advances in many aspects of nano-medicine R & D and business. The conference will consist of keynote forum, panel discussions, free communication, poster presentations and an exhibition. Through these dynamic scientific and social events, you will have many opportunities to network and to form potential business collaborations with participants from all over the world.

From 2012 (Volume 4), access to the full content of WIREs Nanomedicine and Nanobiotechnology is through a subscription only. Subscribe here or use our easy online library recommendation form to recommend this title to your librarian today.

If your institution opted-in last year, you will retain access to content back to 2009, including all of our special collections.

Never miss an issue! Get the table of contents emailed to your inbox for free each time an issue is published online. Under Journal Tools:

And don’t forget to follow us on

!

For the latest information and further resources related to WIREs Nanomedicine and Nanobiotechnology and other WIREs titles, please visit the WIREs website.

This WIREs website offers downloadable PowerPoint presentations of article figures in the Images tab of every article.

Readers may download slides in PowerPoint format for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Cold Spring Harbor Asia is pleased to announce the CSH Asia / ICMS (The International Cancer Microenvironment Society) Joint Conference on Tumor Microenvironment which will be held at the Suzhou Dushu Lake Conference Center in Suzhou, China. The conference will begin at 6:00pm on the evening of Tuesday November 13, and will conclude after lunch on Saturday November 17, 2012

Read more from the original source:

Wiley Interdisciplinary Reviews: Nanomedicine and …

Nanobiotechnology – Wikipedia, the free encyclopedia

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology.[1] Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created.[2] However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it.

The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.[3]

Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.[4]

The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological “machines” work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.[5][6] Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.[7]

In other words, nanobiotechnology is essentially miniaturized biotechnology, whereas bionanotechnology is a specific application of nanotechnology. For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology.

The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.

Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties(e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms s.a. mechanosensing), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing). The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology.

Nano-biotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with biosensors, particularly where photonics, chemistry, biology, biophysics, nano-medicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual polarization interferometry, are another example.

Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.

Nanomedicine is a field of medical science whose applications are increasing more and more thanks to nanorobots and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have done many improvements in the different devices and systems required to develop nanorobots. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy have been controlled, reduced and even eliminated, so some years from now, cancer patients will be offered an alternative to treat this disease instead of chemotherapy, which causes secondary effects such as hair lose, fatigue or nausea killing not only cancerous cells but also the healthy ones. At a clinical level, cancer treatment with nanomedicine will consist on the supply of nanorobots to the patient through an injection that will seek for cancerous cells leaving untouched the healthy ones. Patients that will be treated through nanomedicine will not notice the presence of this nanomachines inside them; the only thing that is going to be noticeable is the progressive improvement of their health.[8]

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of biochemicals and organic salts.[9]

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of Nanobacteria (25-200nm sized) as is done by NanoBiotech Pharma.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology.[10] All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the “natural” form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as “organic merging with synthetic.” Colonies of live neurons can live together on a biochip device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system – a logical component for molecular computing. Ned Seeman – a researcher at New York University – along with other researchers are currently researching concepts that are similar to each other.[11]

DNA nanotechnology is one important example of bionanotechnology.[12] The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties.[13]Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering.[14]

This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. dual polarization interferometry, recombinant DNA methods, etc.), theory (e.g. statistical mechanics, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation, supercomputing).

Read more here:

Nanobiotechnology – Wikipedia, the free encyclopedia

Nanomedicinelab

Chemistry – A European Journal, 2015, in press

ACS Nano, 2015, in press

Carbon, 2015, in press

Biochemical Biophysical Research Communications, 2015, in press

ACS Nano, 2015, in press

Bioconjugate Chemistry, 2015, in press

Chemical Science, 2015, in press

ACS Nano, 2015, 9 (5):46864697

Advanced Materials, 2015, 27:29812988

Nanoscale, 2015, 7:6432-6435

Follow this link:

Nanomedicinelab


12345...10...