Stem cell gene therapy for sickle cell disease advances toward clinical trials

July 1, 2013 Researchers at UCLA's Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells (HSC) from the bone marrow of patients with sickle cell disease (SCD) to treat the disease. The study was led by Dr. Donald Kohn, professor of pediatrics and microbiology, immunology and molecular genetics in the life sciences.

Kohn introduced an anti-sickling gene into the HSC to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle. The breakthrough gene therapy technique for sickle cell disease is scheduled to begin clinical trials by early 2014. The study was published online in the Journal of Clinical Investigation.

Gene Therapy

Kohn's gene therapy approach using HSC from patient's own blood is a revolutionary alternative to current SCD treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into HSC. This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling HSC will be transplanted back into the patient's bone marrow and multiplies the corrected cells that make red blood cells without sickling.

"The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human SCD bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells." Kohn said.

Kohn and colleagues found that in the laboratory the HSC produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes. The success of this technique will allow Kohn to begin clinical trials in patients with SCD by early next year.

Sickle Cell Disease

Affecting more than 90,000 patients in the US, SCD mostly affects people of Sub-Saharan African descent. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable (like a plastic bag filled with corn oil), into a rigid sickle-shaped cell (like a corn flake). Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries and deprive the organs of oxygen, which causes organ dysfunction and failure.

Current treatments include transplanting patients with donor HSC, which is a potential cure for SCD, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

CIRM Disease Team Program

Follow this link:

Stem cell gene therapy for sickle cell disease advances toward clinical trials

Gene therapy cures a severe paediatric neurodegenerative disease in animal models

Public release date: 2-Jul-2013 [ | E-mail | Share ]

Contact: Ftima Bosch Fatima.bosch@uab.cat 34-935-814-182 Universitat Autonoma de Barcelona

Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or 5. They suffer neurodegeneration, causing mental retardation, aggressiveness, hyperactivity, sleep alterations, loss of speech and motor coordination, and they die in adolescence.

A team of researchers headed by the director of the UAB's Centre for Animal Biotechnology and Gene Therapy (CBATEG), Ftima Bosch, has developed a gene therapy treatment that cures this disease in animal models, with pre-clinical studies in mice and dogs. The treatment consists of a single surgical intervention in which an adenoassociated viral vector is injected into the cerebrospinal fluid, the liquid that surrounds the brain and the spinal cord. The virus, which is completely harmless, genetically modifies the cells of the brain and the spinal cord so that they produce sulfamidase, and then spreads to other parts of the body, like the liver, where it continues to induce production of the enzyme.

Once the enzyme's activity is restored, glycosaminoglican levels return to normal for life, their accumulation in cells disappears, along with the neuroinflammation and dysfunctions of the brain and other affected organs, and the animal's behaviour and its life expectancy return to normal. While mice with the disease lived only up to 14 months, those given the treatment survived as long as healthy ones.

This is a joint project between the UAB and the pharmaceutical company Esteve. The study has been published in the online edition of The Journal of Clinical Investigation.

###

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

See the article here:

Gene therapy cures a severe paediatric neurodegenerative disease in animal models

Gene therapy cures a severe pediatric neurodegenerative disease in animal models

July 2, 2013 A single session of a gene therapy developed by the Universitat Autnoma de Barcelona (UAB) cures Sanfilippo Syndrome A in animal models. This syndrome is a neurodegenerative disease that affects between 1 and 9 out of every 100,000 children, and causes the death of the child on reaching adolescence.

The study has been published in The Journal of Clinical Investigation.

Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or 5. They suffer neurodegeneration, causing mental retardation, aggressiveness, hyperactivity, sleep alterations, loss of speech and motor coordination, and they die in adolescence.

A team of researchers headed by the director of the UAB's Centre for Animal Biotechnology and Gene Therapy (CBATEG), Ftima Bosch, has developed a gene therapy treatment that cures this disease in animal models, with pre-clinical studies in mice and dogs. The treatment consists of a single surgical intervention in which an adenoassociated viral vector is injected into the cerebrospinal fluid, the liquid that surrounds the brain and the spinal cord. The virus, which is completely harmless, genetically modifies the cells of the brain and the spinal cord so that they produce sulfamidase, and then spreads to other parts of the body, like the liver, where it continues to induce production of the enzyme.

Once the enzyme's activity is restored, glycosaminoglican levels return to normal for life, their accumulation in cells disappears, along with the neuroinflammation and dysfunctions of the brain and other affected organs, and the animal's behaviour and its life expectancy return to normal. While mice with the disease lived only up to 14 months, those given the treatment survived as long as healthy ones.

This is a joint project between the UAB and the pharmaceutical company Esteve. The study has been published in the online edition of The Journal of Clinical Investigation.

Continue reading here:

Gene therapy cures a severe pediatric neurodegenerative disease in animal models

The future of technologies for planet and people. Futurist Gerd Leonhard talk at WFSF 2013 – Video


The future of technologies for planet and people. Futurist Gerd Leonhard talk at WFSF 2013
This is a self-produced video of my talk on Technology for People and the People at the World Future Studies Federation WFSF in Bucharest on June 27 2013, se...

By: Gerd Leonhard

The rest is here:

The future of technologies for planet and people. Futurist Gerd Leonhard talk at WFSF 2013 - Video