Workington Comets star in horror crash

Last updated at 11:12, Wednesday, 17 September 2014

Workington Comets have been dealt a huge blow after in-form rider Kyle Howarth was injured in a horror crash on Monday night.

Kyle Howarth

The 20-year-old was injured while riding for Elite League side Coventry Bees in their home match against Poole Pirates live in front of the Sky Sports cameras.

Howarth, who is from Manchester, was rushed to hospital after landing awkwardly following a collision in heat one of the meeting.

The rider has said he has broken bones in his vertebrae and broken his eye socket in two places.

It is understood that he was briefly unconscious while on the track.

Howarth provided an update on his injuries and posted a picture of himself in hospital on his Facebook page.

He said: Thanks every one for the kind messages. Im a bit battered and bruised. Still in Coventry Hospital. Broken my eye socket in two places and some vertebrae.

It is not clear at this stage how severe the breaks are.

Here is the original post:

Workington Comets star in horror crash

The future of permanent, fully integrated prosthetic limbs and bionic implants

Despite many incredible advances, the functionality of prosthetic limbs remains limited. Theres no mystery why any kind of arm or leg that you strap on to the soft exterior surfaces of your body and remove just as handily will always remain a foreign contrivance with only mortal power. In order to wield any artificial limb with full strength and confidence we are going to need to plug it in properly, so that it becomes a real part of our musculoskeletal system. Researchers at the Royal National Orthopedic hospital have now created an implant that does just that by interfacing a leg prosthesis directly toyourendoskeleton.

Bighorn sheep ram their heads together with impact forces exceeding 3400 newtons. Imagine if these guys, or perhaps giant elk, had to torque each other about on antlers held in place only by a cup and harness. Nobody would get the girl. Prosthetic designers know this and have finally begun to do what has to be done. A technique known as osseointegration was initially developed[PDF] by various researchers, primarily to bond titanium implants to bone in the arm. The grand view is that once bone-implant continuity is achieved, the groundwork is there for overlying muscularization, sensory investment, and nervous motor control to be extended to the new machine-organ.

The realization that artificial arms strong enough to walk on are not the major design point has led to the leg becoming the new driver for widespread realization of the technology. The hugely successful Flex-foot, made famous by double-amputee Oscar Pistorius, demonstrates that the material construction of the implant itself is not the limiting factor in design or performance. Properly securing a Flex-foot that is required to absorb and deliver Olympic forces requires several hours of assembly and fitting. It no doubt is also unbearable to wear it longer term, even when not under load. Now infamous for other reasons, Oscar (pictured right) did not have the ideal implant on hand when the time came to stand up to an intruder.

The prosthetic leg recently implanted in medical trials by the Royal National researchers was developed by Stanmore Implants. Itcalls its device the ITAP (Intraosseous Transcutaneous Amputation Prosthesis). The inspiration for it came from a curious paper published some time ago in Journal of Anatomy titled Natures answer to breaching the skin barrier. It describes the innovations used by mammals to create a strong and antiseptic bone-to-skin interface in other words, antlers. The researchers dissected the subcutaneous antler bone of red deer 20 of them actually and they found that they have highly porous geometry. This enables the surrounding soft tissue layers to grow directly into the bone where it can be stabilized.

Even the strongest soft-to-hard interface will eventually be compromised if it is not impervious to bacteria and viruses. As we know, skin breaches, even in the dry places likeunder your nails,are uniquely susceptible to infection. Interfaces that are moist, such as the gums or eyes, require extra accommodations and immune surveillance to keep them secure. By mimicking the antler construction, researchers were able to design implants that can form a tight seal with the surface and deeper level tissue and therefore keep infection out.

Read:Brown University creates first wireless, implanted brain-computer interface

Titanium implants that bond to bone typically have special coatings to increase surface area and adherence. One such surface treatment used is hydroxyapatite (HA), the main component of bone mineral itself. HA was shown to attract fibroblasts, the types of cells that manufacture the collagen which increases strength and elasticity in subdermal tissue. In the ITAP implant, a 40mm titanium alloy (Ti6Al4V) pin is coated with HA on the bone-anchored region below the skin. Above the skin, the surface treatment transitions into a DLC coating (diamond-like coating) on the smooth external part that is polished to prevent bacterial colonization. For the exit wound point, a technique known as marsupialization (presumably after the skin pouch of marsupials) was used. Here a circular cut is made in the skin and the epidermal layer is bonded along the edges. Provided that the underlying fibroblast layer is intact, the epidermal cells of the skin surface will be prevented from migrating down around the implant shaft and compromising the integrity of the seal.

Stanmore Implants main line of business is making products for internal fixation of bone that has been compromised by injury or cancer. Itsexperience in designed devices that incorporate HA to control bone growth makes itwell-poised for the trans-skeletal (transhuman?) device market. In addition to the new ITAP implants, it hasalso developed an intriguing space-age method for elongating bone. The movie below shows how itsextendible prostheses implanted into long bones works. It usesan integral 12000:1 reduction drive that is electromagnetically lengthened by the remote force of an external rotating magnetic field, without the need for additional surgery or anesthetic.

Next page: Towards permanent bionic limbs, implants, and other transhumanist wonders

Original post:

The future of permanent, fully integrated prosthetic limbs and bionic implants

Stem cell harvesting methods used by Sydney doctor Ralph Bright untested by clinical trials

ABC Ralph Bright harvests stem cells using the liposuction.

Serious questions have been raised about a stem cell doctor working in Western Sydney who charges $9,000 per procedure and uses methods that are untested by clinical trials.

An investigation by the ABC's 7.30 program has revealed that Dr Ralph Bright bought his liposuction-based technology from an American company.

The US company is now the subject of a multi-million dollar fraud action, which has revealed the cells being marketed as live were in fact dead.

Dr Bright, of Macquarie Stem Cells, is a former GP and self-taught cosmetic surgeon.

He has been working with stem cells for four years, treating more than 400 patients, including the late model Charlotte Dawson, cricketer Geoff Lawson and Olympic volleyballer Kerri Pottharst.

Dr Bright has licensed his methods to other practitioners around the country and because they use the patients' own cells he is not regulated by the Therapeutic Goods Administration (TGA).

Stem cells are often hailed as a miracle cure, but the nation's top stem cell scientists are warning that buyers should beware of these sorts of procedures, which are yet to be subjected to clinical trials.

Professor of Stem Cell Science at the University of Melbourne, Martin Pera, said almost all stem cell therapy was experimental.

"Actually, this whole science of cell therapy is relatively new and it's very, very important to understand that," he said.

See the original post:

Stem cell harvesting methods used by Sydney doctor Ralph Bright untested by clinical trials

Stem cells treatment used by Sydney doctor Ralph Bright 'untested' by clinical trials

ABC Ralph Bright harvests stem cells using the liposuction.

Serious questions have been raised about a stem cell doctor working in Western Sydney who charges $9,000 per procedure and uses methods that are untested by clinical trials.

An investigation by the ABC's 7.30 program has revealed that Dr Ralph Bright bought his liposuction-based technology from an American company.

The US company is now the subject of a multi-million dollar fraud action, which has revealed the cells being marketed as live were in fact dead.

Dr Bright, of Macquarie Stem Cells, is a former GP and self-taught cosmetic surgeon.

He has been working with stem cells for four years, treating more than 400 patients, including the late model Charlotte Dawson, cricketer Geoff Lawson and Olympic volleyballer Kerri Pottharst.

Dr Bright has licensed his methods to other practitioners around the country and because they use the patients' own cells he is not regulated by the Therapeutic Goods Administration (TGA).

Stem cells are often hailed as a miracle cure, but the nation's top stem cell scientists are warning that buyers should beware of these sorts of procedures, which are yet to be subjected to clinical trials.

Professor of Stem Cell Science at the University of Melbourne, Martin Pera, said almost all stem cell therapy was experimental.

"Actually, this whole science of cell therapy is relatively new and it's very, very important to understand that," he said.

Originally posted here:

Stem cells treatment used by Sydney doctor Ralph Bright 'untested' by clinical trials

Stem Cell Therapy helps dogs achieve better quality of life

If your beloved pets can no longer play fetch because they suffer from chronic hip or back pain, then you might be interested in a stem cell procedure. Its minimally invasive and its growing in popularity in Central Pennsylvania.

Ben, the Akita, is undergoing stem cell surgery to reverse his chronic arthritis in his hip.

Veterinarian, Dr. Roger Horst, of Mercersburg Animal Clinic says, It just makes it more comfortable for them to be a pet, normal activity without to be on pain drugs.

Through a 30 minute surgery, Dr. Horst removes fatty tissue from Bens shoulder. He hands over the tissue to a lab technician. The technician, Delaney Kennedy, works with MediVet, a global leader in veterinary science.

Kennedy says, When we filter this tissue, everything stops at the top of the filtration and stem cells collect at the bottom. The stem cells are what we want and thats what we inject back into Ben.

Within 30 days, Bens quality of life will improve without the need for medicine.

Kennedy says, As pet owners maybe before could have put him down because hes in pain but now, were able to use stem cell therapy and help him live longer.

For more information contact Mercersburg Animal Clinic or MediVet.

Original post:

Stem Cell Therapy helps dogs achieve better quality of life