Micro and Nano Flows for Engineering: Home

The micro & nano flows group is a research partnership between the Universities of Warwick and Edinburgh, and Daresbury Laboratory. We investigate gas and liquid flows at the micro and nano scale (where conventional analysis and classical fluid dynamics cannot be applied) using a range of simulation techniques: molecular dynamics, extended hydrodynamics, stochastic modelling, and hybrid multiscaling. Our aim is to predict and understand these flows by developing methods that combine modelling accuracy with computational efficiency.

Targeted applications all depend on the behaviour of interfaces that divide phases, and include: radical cancer treatments that exploit nano-bubble cavitation; the cooling of high-power electronics through evaporative nano-menisci; nanowire membranes for separating oil and water, e.g. for oil spills; and smart nano-structured surfaces for drag reduction and anti-fouling, with applications to low-emissions aerospace, automotive and marine transport.

Our work is supportedby a number of funding sources (see below), including a 5-year EPSRC Programme Grant (2016-2020). This Programme aims to underpin future UK innovation in nano-structured and smart interfaces by delivering a simulation-for-design capability for nano-engineered flow technologies, as well as a better scientific understanding of the critical interfacial fluid dynamics.

We will produce software that a) resolves interfaces down to the molecular scale, and b) spans the scales relevant to the engineering application. As accurate molecular/particle methods are computationally unfeasible at engineering scales, and efficient but conventional fluids models do not capture the important molecular physics, this is a formidable multiscale problem in both time and space. The software we develop will have embedded intelligence that decides dynamically on the correct simulation tools needed at each interface location, for every phase combination, and matches these tools to appropriate computational platforms for maximum efficiency.

This work is strongly supported by nine external partners (see below).

Read more:

Micro and Nano Flows for Engineering: Home

Related Posts

Comments are closed.