Chemistry of sea spray particles linked for first time to formation … – Phys.Org

June 19, 2017 Credit: CC0 Public Domain

A team of researchers led by the University of California San Diego has identified for the first time what drives the observed differences in the chemical make-up of sea spray particles ejected from the ocean by breaking waves.

The discovery could enable researchers to better understand how ocean chemistry and physics directly influence cloud formation processes. The improved understanding could make climate models more accurate, especially since clouds are the hardest variable to portray in current simulations.

Kimberly Prather, Distinguished Chair in Atmospheric Chemistry and a faculty member in the Department of Chemistry and Biochemistry and Scripps Institution of Oceanography at UC San Diego, led the National Science Foundation-supported study. She said its key breakthrough involved showing that the drops sent airborne by breaking waves take on different chemical characteristics depending on the physical forces induced by the waves.

"It's the first time anyone has shown that drops from seawater have different composition due to the production mechanism," said Prather. "We are uncovering how ocean biology influences the physical production processes creating sea spray aerosol. Previous studies have focused on the processes involved in the physical production of sea sprays but our studies demonstrated that chemistry is at the heart of many ocean-atmosphere transfer processes that have profound impacts on the composition of our atmosphere as well as clouds and climate."

Some sea spray aerosols are "film" drops that are laden with microbes or organic material that collects on the ocean surface. They form when bubbles at the ocean surface rupture. Researchers had largely assumed that all aerosols smaller than a micron in size were of this variety. Prather and other researchers showed, however, that there are other cloud-forming particles derived from "jet" drops that are predominantly comprised of very different chemical species including sea salt, microbes, and other biological species. These new drops are ejected in the aftermath of bubbles popping.

These two types of aerosols have different capabilities for forming ice crystals in clouds, meaning that whether a cloud actually produces no precipitation, rain, or snow can be determined by the type of microbes and associated biomolecules being ejected from the ocean. More importantly, the presence of a large bloom of phytoplankton, as happens during red tide events, alters the ratio of film to jet drops, meaning biological processes can lead to profound changes in sea spray chemistry and ultimately cloud formation.

The study, "The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles," appears June 19 in early editions of the journal Proceedings of the National Academy of Sciences.

The researchers found that jet-produced particles can make up nearly half the total number of submicron sea spray aerosols that contribute to cloud formation. To reach this conclusion, researchers induced phytoplankton blooms in natural seawater pumped into wave-generating tanks at a Scripps laboratory. The conditions mimicked those in the ocean that produce sea spray. The scientists differentiated the film from jet drops as they rose in the air above the waves by observing their different electric charges. Jet sea spray aerosols have a greater charge than film aerosols.

The findings are the latest to come from researchers at UC San Diego on one of the most mysterious frontiers of climate: how aerosols produced on land and at sea - whether sea salt, organic material, dust, or pollution particles - determine if clouds form and whether those clouds can produce precipitation. Prather, who pioneered methods to analyze the chemical composition of airborne particles, is the director of the Center for Aerosol Impacts on Chemistry of the Environment (CAICE) at UC San Diego where the work was performed. In 2013, the National Science Foundation named CAICE an NSF Center for Chemical Innovation, one of nine such centers in the United States.

Co-authors of the study represented a range of disciplines from biochemistry to marine microbiology. Scripps oceanographers Grant Deane and Dale Stokes contributed to the study and in follow-on work will attempt to see if they can determine the composition of sea surface aerosol mixes by measuring how long bubble-filled ocean whitecaps last.

Deane said the feat of the study likely could not have been achieved by any one of the researchers working alone, making it a model for how complex environmental research is done.

"It's a truly collaborative work among chemists, biologists, and physical oceanographers," Deane said. "This is the way this kind of work has to be done."

Explore further: How plankton and bacteria shape ocean spray

More information: Xiaofei Wang el al., "The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles," PNAS (2017). http://www.pnas.org/cgi/doi/10.1073/pnas.1702420114

As the oceans ebb and flow, the resulting waves and splashes form tiny bubbles. The bubbles burst and release a vaporcalled sea spray aerosolinto the air. This aerosol scatters sunlight and is involved in forming clouds ...

Take in a deep breath of salty ocean air and more than likely, you're also breathing in naturally occurring sea spray aerosols. But, there's much more in each of those tiny bursting "bubbles" than salt. They're also bursting ...

Few things are more refreshing than the kiss of sea spray on your face. You may not realize it, but that cool, moist air influences our climate by affecting how clouds are formed and how sunlight is scattered over the oceans. ...

Breaking ocean waves beget a wake of bubbles. Reaching the sea surface, they burst into a spray of salt and carbon-rich material produced from microscopic sea critters. The far-flung particles can loft high enough to affect ...

Ocean biology alters the chemical composition of sea spray in ways that influence their ability to form clouds over the ocean. That's the conclusion of a team of scientists using a new approach to study tiny atmospheric particles ...

All over the planet, every day, oceans send plumes of sea spray into the atmosphere. Beyond the poetry of crashing ocean waves, this salt- and carbon-rich spray has a dramatic effect on the formation and duration of clouds.

On sunny days like this, a cloud full of ice-lollies sounds like the ultimate treat and researchers from the University of Manchester have discovered such clouds, twice.

The weather report for California 8,200 years ago was exceptionally wet and stormy.

For years, automakers have been working to reduce pollutant levels coming out of motor vehicles' tailpipes. Airborne particulate matter, for example, is present in automobile exhaust and has been shown to contribute to tens ...

Can the continental United States make a rapid, reliable and low-cost transition to an energy system that relies almost exclusively on wind, solar and hydroelectric power? While there is growing excitement for this vision, ...

Scientists believe they have discovered the reason behind mysterious changes to the climate that saw temperatures fluctuate by up to 15C within just a few decades during the ice age periods.

Huge pulses of volcanic activity are likely to have played a key role in triggering the end Triassic mass extinction, which set the scene for the rise and age of the dinosaurs, new Oxford University research has found.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Original post:
Chemistry of sea spray particles linked for first time to formation ... - Phys.Org

Related Posts

Comments are closed.