Mice stem cells capable of regenerating bone, cartilage

January 16, 2015

This is a schematic of the head of a femur (the thigh bone), showing OCR stem cells in red and the growth of bone (green), cartilage and stromal cells. (Credit: Mike Barnett/Columbia University Medical Center)

Brett Smith for redOrbit.com Your Universe Online

Researchers at Columbia University Medical Center (CUMC) have announced the discovery of a new stem cell in mice that is capable of regenerating both bone and cartilage, according to a new report in the journal Cell.

The study team found the new cells by following the activity of a protein called Gremlin1. When they transplanted the cells, called osteochondroreticular (OCR) stem cells, to a fracture site they saw that the cells aided in bone repair.

We are now trying to figure out whether we can persuade these cells to specifically regenerate after injury, said Dr. Siddhartha Mukherjee, assistant professor of medicine at CUMC and co-author of the new study. If you make a fracture in the mouse, these cells will come alive again, generate both bone and cartilage in the mouseand repair the fracture. The question is, could this happen in humans?

The researchers predicted that OCR stem cells will eventually be found in humans because we have a biological makeup similar to that of mice. The CUMC team said they were optimistic that their work could eventually lead to treatments for bone-degenerative diseases like osteoporosis and osteoarthritis in addition to therapy for bone fractures.

Our findings raise the possibility that drugs or other therapies can be developed to stimulate the production of OCR stem cells and improve the bodys ability to repair bone injurya process that declines significantly in old age, said Dr. Timothy C. Wang, another co-author and professor of Medicine at CUMC.

These cells are particularly active during development, but they also increase in number in adulthood after bone injury, added co-author Dr. Gerard Karsenty, a professor of genetics and development at CUMC.

The Columbia researchers were also able to show that the adult OCRs are unlike mesenchymal stem cells (MSCs), which lead to bone growth during adolescence and in adulthood. Scientists presumed that MSCs were the source of all skeletal system cells, but the latest research has revealed that these cells do not produce fresh bone and cartilage. The Columbia study implies that OCR stem cells serve this function and that both OCR stems cells and MSCs bring about bone repair in adults.

The rest is here:

Mice stem cells capable of regenerating bone, cartilage

Stem-cell therapy clinic to open in Valley

The new clinic claims its stem-cell treatment can benefit those suffering from emphysema, chronic bronchitis, pulmonary fibrosis and most forms of lung disease.(Photo: Getty Images/iStockphoto)

The Lung Institute, a national clinic that uses adult stem cells extracted from fat and blood to treat pulmonary conditions, is set to open next month in Scottsdale, the for-profit company's first location in the western United States.

The new clinic claims its treatment can benefit those suffering from emphysema, chronic bronchitis, pulmonary fibrosis and most forms of lung disease.

Such stem-cell therapy is part of a growing trend particularly among affluent Americans who can afford it to treat a variety of health problems with cells taken from their own bodies.

The industry remains largely controversial, with plenty of doubters and detractors who say the science is unproven and potentially dangerous.

The International Society for Stem Cell Research, an independent non-profit organization based in Illinois, cautions against the potential risk of some treatments, which it says could cause cancer or result in infection from the procedure itself. The group suggests patients speak with their doctor about the potential benefits or risks of stem-cell therapy.

For its part, Lung Institute says the treatment helps fight lung conditions including chronic obstructive pulmonary disease, one of the world's leading killers. Cells extracted from one organ can create healthy tissue in another organ, the company claims.

The therapy is provided as an outpatient service, and patients can have cells drawn, isolated and planted in the affected area all in the same day. The clinic does not use embryonic, umbilical cord or donor stem cells.

Lung Institute, a clinic that uses stem cells to treat pulmonary conditions, is set to open its first West Coast location in Scottsdale in February 2015.(Photo: Courtesy of Lung Institute)

Patients typically visit the clinic for a few hours over three consecutive days. The treatment seeks to slow disease progression, calm inflammation or repair damaged tissue.

Go here to see the original:

Stem-cell therapy clinic to open in Valley

Treating non-healing bone fractures with stem cells

UC Davis to test device that offers new approach to obtaining stem cells during surgery

(SACRAMENTO, Calif.) -- A new device that can rapidly concentrate and extract young cells from irrigation fluid used during orthopaedic surgery holds promise for improving the delivery of stem cell therapy in cases of non-healing fractures. UC Davis surgeons plan to launch a "proof-of-concept" clinical trial to test the safety and efficacy of the device in the coming months.

"People come to me after suffering for six months or more with a non-healing bone fracture, often after multiple surgeries, infections and hospitalizations," said Mark Lee, associate professor of orthopaedic surgery, who will be principal investigator of the upcoming clinical trial. "Stem cell therapy for these patients can be miraculous, and it is exciting to explore an important new way to improve on its delivery."

About 6 million people suffer fractures each year in North America, according to the American Academy of Orthopaedic Surgeons. Five to 10 percent of those cases involve patients who either have delayed healing or fractures that do not heal. The problem is especially troubling for the elderly because a non-healing fracture significantly reduces a person's function, mobility and quality of life.

Stem cells - early cells that can differentiate into a variety of cell types - have been used for several years to successfully treat bone fractures that otherwise have proven resistant to healing. Applied directly to a wound site, stem cells help with new bone growth, filling gaps and allowing healing and restoration of function. However, obtaining stem cells ready to be delivered to a patient can be problematic. The cells ideally come from a patient's own bone marrow, eliminating the need to use embryonic stem cells or find a matched donor.

But the traditional way of obtaining these autologous stem cells - that is, stem cells from the same person who will receive them - requires retrieving the cells from a patient's bone marrow, a painful surgical procedure involving general anesthesia, a large needle into the hip and about a week of recovery.

In addition, the cells destined to become healing blood vessels must be specially isolated from the bone marrow before they are ready to be transplanted back into the patient, a process that takes so long it requires a second surgery.

The device Lee and his UC Davis colleagues will be testing processes the "wastewater" fluid obtained during an orthopaedic procedure, which makes use of a reamer-irrigator-aspirator (RIA) system to enlarge a patient's femur or tibia by high-speed drilling, while continuously cooling the area with water. In the process, bone marrow cells and tiny bone fragments are aspirated and collected in a filter to transplant back into the patient. Normally, the wastewater is discarded.

Although the RIA system filter captures the patient's own bone and bone marrow for use in a bone graft or fusion, researchers found that the discarded effluent contained abundant mesenchymal stem cells as well as hematopoietic and endothelial progenitor cells, which have the potential to make new blood vessels, and potent growth factors important for signaling cells for wound healing and regeneration. The problem, however, was that the RIA system wastewater was too diluted to be useful.

Now, working with a device developed by SynGen Inc., a Sacramento-based biotech company specializing in regenerative medicine applications, the UC Davis orthopaedic team will be able to take the wastewater and spin it down to isolate the valuable stem cell components. About the size of a household coffee maker, the device will be used in the operating room to rapidly produce a concentration of stem cells that can be delivered to a patient's non-union fracture during a single surgery.

Read more:

Treating non-healing bone fractures with stem cells

Parkinson's stem cell trial approaches

A therapy for Parkinson's disease from Carlsbad's International Stem Cell Corp. is expected to get approval for testing in Australia as soon as February, the company said this week.

The publicly traded company has grown neural stem cells, which can mature into cells making the neurotransmitter dopamine, deficient in Parkinson's. The company plans to implant these stem cells into the the brains of Parkinson's patients, restoring dopamine production and normal movement in the patients.

If approved, the trial will be the first test of therapy with the company's cells, derived from unfertilized, or parthenogenetic human egg cells. The cells, which in theory can produce nearly all types of cells found in the body, are grown into neural stem cells. These cells will be implanted and mature in place.

Parthenogenetic cells have much the same potential as embryonic stem cells without the ethical objections some have, says International Stem Cell, which has 38 employees. In addition, these parthenogenetic stem cells are less likely to provoke an immune reaction, the company says.

International Stem Cell Corp. chose Australia for its first trial because its regulatory agency is more "interactive" than the U.S. Food and Drug Administration, said Simon Craw, executive vice president for business development. The FDA is inclined to give yes-or-no answers for proposed cell-based treatments, Craw said. In addition, patient recruitment takes place more slowly, which delays trial completion. The FDA does this for safety reasons.

Simon Craw / International Stem Cell Corp.

The Australian agency helps guide companies through the application process, Craw said in an interview Wednesday at Biotech Showcase, an annual life science conference in San Francisco. Craw also gave a company presentation on Tuesday at the conference.

"We're in the process of submitting the (application)," to Australian regulators, Craw said. "We're going back and forth with them right now. We expect to hear back from them by the end of February."

The trial will primarily assess safety, but also look for evidence of efficacy, Craw said.

The trial will take place at Royal Melbourne Hospital, Craw said. The hospital is headquartered in Parkville, in the state of Victoria. The principal investigator, Dr. Andrew Evans, will recruit patients from his own practice.

Read more:

Parkinson's stem cell trial approaches

City man who ran stem-cell trial for MS patients fabricated credentials, overstated results

Enlarge Image

Winnipeg researcher Doug Broeska previously ran a lumber business. (REGENETEK.COM)

Enlarge Image

Regenetek is located on Chevrier Boulevard, but its stem-cell study is being conducted at a hospital in India. The study is not listed on any clinical-trial registry. (PHIL HOSSACK / WINNIPEG FREE PRESS )

The hope of dancing at her sons summertime wedding led Sharon Nordstrom to pay $38,000 for a treatment she hoped would keep her multiple-sclerosis symptoms at bay.

That money paid for what she hoped would be a life-changing stem-cell procedure at a hospital in Pune, India. It was part of what she, and nearly 70 other patients from Manitoba and from as far away as Australia, believed was a clinical study helmed by a brilliant Winnipeg medical researcher with a PhD, who said the procedure could stop MS in its tracks.

Soon after her return in May, Nordstrom began to uncover troubling facts. Doug Broeska, whom patients reverently call "Dr. Doug," has no recognized medical credentials. Regenetek Research, his company based out of a spartan office on Chevrier Boulevard, boasted credentials and positive medical results that didnt add up. Patients who were once ardent supporters were attacked as saboteurs or shills for "Big Pharma" and threatened with removal from the study after they asked questions.

A Free Press investigation has found Broeska fabricated his credentials, including his PhD, and overstated the effects of the stem-cell treatment, for which he often charged desperately ill people $45,000. Four patients spoke to the Free Press on the record, saying they got no benefit from the treatment, got none of the followup common in clinical trials such as MRIs or physical acuity tests and believe they are victims of fraud.

Patients, doctors in India and now Canadian officials are questioning the claims of Winnipeg researcher Doug Broeska and his $45,000 stem-cell therapy for MS sufferers.

At least two of Regeneteks former patients have complained to the RCMP, and sources say the Canada Revenue Agency is investigating, though CRA officials would not confirm that. Last week, Regeneteks website, Broeskas LinkedIn page and a "patient-run" Facebook group were taken down.

Continued here:

City man who ran stem-cell trial for MS patients fabricated credentials, overstated results

Alberta MS patient says researcher seen as 'some sort of god'

Winnipeg Free Press - PRINT EDITION

By: Mary Agnes Welch

Posted: 3:00 AM | Comments:

BEFORE flying to India for experimental stem-cell therapy, Alberta businessman Lee Chuckry quit taking Tysabri, a drug many multiple-sclerosis patients use to shrink brain lesions and reduce attacks.

"It was quite effective for me," said Chuckry from his home in Airdrie, Alta. "I didn't have attacks when I was on it."

Doug Broeska, founder of Winnipeg-based Regenetek Research and the clinical trial's principal investigator, told Chuckry that Tysabri would damage the effectiveness of the implanted stem cells.

Tysabri is one of a long list of medications Broeska advised clinical-trial participants to avoid, all mentioned in a blog posted last fall.

"My first attack started just when I was leaving India," said Chuckry. "I'd stopped the drug three months before."

Chuckry knew Broeska was not a physician, but believed Broeska had a PhD and was a bona fide health researcher. Chuckry felt no better after the $24,000 stem-cell therapy. He became increasingly skeptical of Broeska and Regenetek when he returned home from India in May 2013 -- his MS just as bad, if not worse.

Chuckry spent 10 days trying to get in touch with Broeska to find out whether going back on his MS medication, this time a steroid called prednisone, would interfere with the effectiveness of his newly implanted stem cells. He could not get an answer from Broeska for days, and said there was no real followup care typically seen in a proper clinical trial -- no MRIs, no examination by a physician, no tests, no questionnaires.

Original post:

Alberta MS patient says researcher seen as 'some sort of god'

Alberta MS patient says researcher was seen as 'some sort of god'

Winnipeg Free Press - ONLINE EDITION

By: Mary Agnes Welch

Posted: 2:00 AM | Comments:

CHRIS BOLIN / WINNIPEG FREE PRESS Enlarge Image

Lee Chuckry, who has MS, took part in a stem-cell trial run by Doug Broeska and Regenetek Research. The Airdrie, Alta., man eventually became one of Regenetek's most vocal critics. Photo Store

Before flying to India for experimental stem-cell therapy, Alberta businessman Lee Chuckry quit taking Tysabri, a drug many multiple-sclerosis patients use to shrink brain lesions and reduce attacks.

"It was quite effective for me," said Chuckry from his home in Airdrie, Alta. "I didnt have attacks when I was on it."

Doug Broeska, founder of Winnipeg-based Regenetek Research and the clinical trials principal investigator, told Chuckry that Tysabri would damage the effectiveness of the implanted stem cells.

Tysabri is one of a long list of medications Broeska advised clinical-trial participants to avoid, all mentioned in a blog posted last fall.

"My first attack started just when I was leaving India," said Chuckry. "Id stopped the drug three months before."

More here:

Alberta MS patient says researcher was seen as 'some sort of god'

Fact Check: Adult stem cell research not opposed by church

Religious groups have concerns that the ALS Association, which has been the recipient of millions of dollars in donations through its ice bucket challenge, supports embryonic stem cell research.

The facts: The ALS Association which fights amyotrophic lateral sclerosis, commonly known as Lou Gehrigs Disease primarily is involved with adult stem cell research, which the Catholic Church does not oppose, according to the U.S. Conference of Catholic Bishops.

The bishops statement on stem cells states that the use of adult stem cells and umbilical-cord blood have been shown to offer a better way to produce cells that can benefit patients.

There is no moral objection to research and therapy of this kind, when it involves no harm to human beings at any stage of development and is conducted with appropriate informed consent, the statement says. Catholic foundations and medical centers have been, and will continue to be, among the leading supporters of ethically responsible advances in the medical use of adult stem cells.

The ALS Association said it does, however, fund one study that uses embryonic stem cell research with money provided by one specific donor who is committed to this area of research, the Record reported.

The association added that donors could designate that they do not want their embryos used to fund any stem cell research.

Most embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro and then donated for research with the consent of the donors, according to the National Institutes of Health. They are not derived from eggs fertilized in a womans body.

After a couple completes the in vitro process, they either continue to freeze the leftover embryos or allow them to thaw, which destroys the cells. In some states, couples do have the choice to donate the embryos to research or to adoptive families, TruthOrFiction.com notes.

Embryonic stem cell research does not appear to rank as a major issue for most Catholics, according to a 2013 survey by the Pew Researchs Religion and Public Life Project. In the survey, 72 percent of Catholics said embryonic stem cell research was not a moral issue or was morally acceptable.

View original post here:

Fact Check: Adult stem cell research not opposed by church

Skin cancer: New mechanism involved in tumor initiation, growth and progression

Squamous cell carcinoma (SCC) represents the second most frequent skin cancer with more than half million new patients affected every year in the world. Cancer stem cells (CSCs) are a population of cancer cells that have been described in many different cancers, including skin SCCs and that feed tumor growth, could be resistant to therapy thus being responsible for tumor relapse after therapy. However, still very little is known about the mechanisms that regulate CSCs functions.

In a new study published and making the cover of Cell Stem Cell, researchers led by Pr. Cdric Blanpain, MD/PhD, professor and WELBIO investigator at the IRIBHM, Universit libre de Bruxelles, Belgium, report the mechanisms regulating the different functions of Twist1 controlling skin tumour initiation, cancer stem cell function and tumor progression.

Benjamin Beck and colleagues used state of the art genetic mouse models to dissect, the functional role and molecular mechanisms by which Twist1 controls tumor initiation, cancer stem cell function and tumor progression. In collaboration with Dr Sandrine Rorive and Pr Isabelle Salmon from the department of Pathology at the Erasme Hospital, ULB and the group of Jean-Christophe Marine (VIB, KUL Leuven), they demonstrated that while Twist1 is not expressed in the normal skin, Twist1 deletion prevents skin cancer formation demonstrating the essential role of Twist1 during tumorigenesis. "It was really surprising to observe the essential role of Twist1 at the earliest step of tumor formation, as Twist1 was thought to stimulate tumor progression and metastasis" comments Benjamin Beck, the first author of this study.

The authors demonstrate that different levels of Twist1 are necessary for tumor initiation and progression. Low level of Twist1 is required for the initiation of benign tumors, while higher level of Twist1 is necessary for tumor progression. They also demonstrate that Twist1 is essential for tumor maintenance and the regulation of cancer stem cell function. The researchers also uncovered that the different functions of Twist1 are regulated by different molecular mechanisms, and identified a p53 independent role of Twist1 in regulating cancer stem cell functions.

In conclusion, this work shows that Twist1, a well-known regulator of tumor progression, is necessary for tumor initiation, regulation of cancer stem cell function and malignant progression. "It was really interesting to see that different levels of Twist1 are required to carry out these different tumor functions and that these different Twist1 functions are regulated by different molecular pathways. Given the diversity of cancers expressing Twist1, the identification of the different mechanisms controlled by Twist1 are likely to be relevant for other cancers" comments Cdric Blanpain, the last and corresponding author of this study.

Story Source:

The above story is based on materials provided by Libre de Bruxelles, Universit. Note: Materials may be edited for content and length.

Here is the original post:

Skin cancer: New mechanism involved in tumor initiation, growth and progression

CSU research on horse injuries, stem-cell recovery, may help humans

Stem-cell research by Colorado State University staffers using bone marrow from horses to heal joint injuries on the same animal is making strides, and researchers have great hope that the project will lead to human medical applications.

A team with CSU's Equine Orthopaedic Research Center reports that adding stem-cell therapy to traditional arthroscopic surgery on horses has significantly increased success rates.

Horses that had follow-up, stem-cell treatment were twice as likely to return to normal activity as those that did not, said David Frisbie, an associate professor of equine surgery with CSU and part of the research team.

"We've doubled it, conservatively," in treating cartilage damage in the knee, Frisbie said.

The team had results of its work published last year in the journal Veterinary Surgery.

Some lesions in the meniscus of horses that could not be treated by surgery have been successfully mended using stem cells alone.

"Western performance horses, reining and cutting horses, and barrel horses are very prone to meniscal injuries," Frisbie said.

Beyond meniscus damage, researchers also have focused on tendon lesions in the lower leg, which typically strike race horses.

Horses that suffered a tendon lesion had about a 66 percent chance of reinjury after surgery. Add stem-cell treatment and the reinjury rate drops to 21 percent, Frisbie said.

"It beats the old standards of therapies," which included cortisone and use of other steroids, Frisbie said.

Read more:

CSU research on horse injuries, stem-cell recovery, may help humans

Gamida Cell treatment granted orphan drug status

Stem cell therapy developer Gamida Cell has been awarded orphan drug status by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for leukemia treatment NiCord. The investigational drug treats acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), Hodgkin lymphoma and myelodysplastic syndrome (MDS). Gamida Cell intends to file for NiCord orphan drug status with the EMA for other indications as well.

Gamida Cell president and CEO Dr. Yael Margolin said, "Receipt of orphan drug status for NiCord in the US and Europe advances Gamida Cell's commercialization plans a major step further, as both afford significant advantages. We very much appreciate the positive feedback and support of the FDA and EMA and look forward to continuing what has been a very positive dialogue with these important agencies."

The FDA and EMA grant an orphan drug designation to promote the development of products that demonstrate promise for the treatment of rare diseases or conditions. Orphan drug designation provides for various regulatory and economic benefits, including seven years of market exclusivity in the US and 10 years in the EU.

NiCord is derived from a single cord blood unit, which has been expanded in culture and enriched with stem cells using Gamida Cell's proprietary NAM technology. It is currently being tested in a Phase I/II study as an investigational therapeutic treatment for hematological malignancies such as leukemia and lymphoma. In this study, NiCord is being used as the sole stem cell source.

Published by Globes [online], Israel business news - http://www.globes-online.com - on January 6, 2015

Read the original here:

Gamida Cell treatment granted orphan drug status

Pioneering method developed to define stages of stem cell reprogramming

In a groundbreaking study that provides scientists with a critical new understanding of stem cell development and its role in disease, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Kathrin Plath, professor of biological chemistry, have established a first-of-its-kind methodology that defines the unique stages by which specialized cells are reprogrammed into stem cells that resemble those found in the embryo.

The study was published online ahead of print in the journal Cell.

Induced pluripotent stem cells (known as iPSCs) are similar to human embryonic stem cells in that both cell types have the unique ability to self-renew and have the flexibility to become any cell in the human body. iPSC cells, however, are generated by reprogramming skin or blood cells and do not require an embryo.

Reprogramming is a long process (about one to two weeks) and largely inefficient, with typically less than one percent of the primary skin or blood cells successfully completing the journey to becoming an iPSC. The exact stages a cell goes through during the reprogramming process are also not well understood. This knowledge is important, as iPSCs hold great promise in the field of regenerative medicine, as they can provide a single source of patient-specific cells to replace those lost to injury or disease. They can also be used to create novel disease models from which new drugs and therapies can be developed.

"This research has broad impact, because by deepening our understanding of cell reprogramming we have the potential to improve disease modeling and the generation of better sources of patient-specific specialized cells suitable for replacement therapy," said Plath. "This can ultimately benefit patients with new and better treatments for a wide range of diseases.

Drs. Vincent Pasque and Jason Tchieu, postdoctoral fellows in the lab of Dr. Plath and co-first authors of the study, developed a roadmap of the reprogramming process using detailed time-course analyses. They induced the reprogramming of skin cells into iPSC, then observed and analyzed on a daily basis or every other day the process of transformation at the single-cell level. The data were collected and recorded over a period of up to two weeks.

Plath's team found that the changes that happen in cells during reprogramming occur in a sequential stage-by-stage manner, and that importantly, the stages were the same across all the different reprogramming systems and different cell types analyzed.

"The exact stage of reprogramming of any cell can now be determined," said Pasque. "This study signals a big change in thinking, because it provides simple and efficient tools for scientists to study stem cell creation in a stage-by-stage manner. Most studies to date ignore the stages of reprogramming, but we can now seek to better understand the entire process on both a macro and micro level."

Plath's team further discovered that the stages of reprogramming to iPSC are different from what was expected. They found that it is not simply the reversed sequence of stages of embryo development. Some steps are reversed in the expected order; others do not actually happen in the exact reverse order and resist a change until late during reprogramming to iPSCs.

"This reflects how cells do not like to change from one specialized cell type to another and resist a change in cell identity," said Pasque. "Resistance to reprogramming also helps to explain why reprogramming takes place only in a very small proportion of the starting cells."

Go here to read the rest:

Pioneering method developed to define stages of stem cell reprogramming

Cord Blood Banking Leader, Cryo-Cell International, Continues to Support the Advancement of Regenerative Medicine

Tampa, FL (PRWEB) January 06, 2015

One million Americans experience acute myocardial infarctions, commonly known as a heart attack, each year and of those, approximately 300,000 to 500,000 individuals develop heart failure. A heart attack occurs when blood stops flowing properly to a part of the heart and the heart muscle is injured and can die because it is not receiving enough oxygen.

Cryo-Cell International has agreed to provide the Center with cord blood collections that have previously been donated to Cryo-Cell International by parents and designated for research use to advance regenerative medicine. These cord blood collections will allow the Centers scientists to continue to investigate the mechanisms whereby stem cells can be beneficial in limiting damage from heart attacks. A team at the Center, led by researcher and cardiology specialist, Robert J. Henning, M.D., has demonstrated in research animals that stem cells obtained from human umbilical cord blood can release a large number of biologically active growth factors and anti-inflammatory chemicals that can limit the substantial heart inflammation, cell injury and cell destruction that occurs with acute heart attacks, significantly reducing the effects of heart attacks, even when administered up to 24 hours after the heart attack.

We are making good progress in our studies thanks to the cord blood stem cells contributed by Cryo-Cell International, reports Henning.

Cryo-Cell International and others have demonstrated that human umbilical cord blood stem cells can be preserved for more than 20 years without loss of cell viability or potency. Consequently, parents who have the foresight to use cord blood banking services upon their babys birth can potentially use these cord blood stem cells years later to provide a regenerative treatment for a family member if an acute heart attack occurs. The Centers scientists hope to bring umbilical cord blood stem cell therapy to the treatment of patients who have experienced heart attacks within the next five years.

Heart disease is still the number one leading cause of death in the United States. We feel very fortunate that we can provide a valuable and consistent source of cord blood banked stem cells to the Center for Cardiovascular Research, said David Portnoy, Chairman and Co-CEO of Cryo-Cell International.

About Cryo-Cell International

Founded in 1989, Cryo-Cell International, Inc. is the world's first and most highly accredited private cord blood bank. More than 500,000 parents from 87 countries trust Cryo-Cell International to preserve their family members' stem cells. Cryo-Cell International's mission is to provide clients with state-of-the-art stem cell cryopreservation services and support the advancement of regenerative medicine. Cryo-Cell International operates in a facility that is FDA registered, cGMP-/cGTP-compliant and is licensed in all states requiring licensure. In addition to earning AABB accreditation for cord blood banking, Cryo-Cell International is also the first U.S. (for private use only) cord blood bank to receive FACT accreditation for voluntarily adhering to the most stringent cord blood quality standards set by any internationally recognized, independent accrediting organization. Cryo-Cell International is ISO 9001:2008 certified by BSI, an internationally recognized, quality assessment organization. Cryo-Cell International is a publicly traded company, OTCQB: CCEL. For more information, please visit http://www.Cryo-Cell.com.

About the University of South Florida Center for Cardiovascular Research

The University of South Florida Morsani College of Medicines Cardiovascular Services Research Unit has been in existence for almost 20 years and evaluates pharmacotherapeutic agents and the latest treatment and devices for cardiovascular disease.

See the original post:

Cord Blood Banking Leader, Cryo-Cell International, Continues to Support the Advancement of Regenerative Medicine

Brainstorm Stem-Cell Therapy Continues to Show Treatment Effect in ALS Patients

By: Adam Feuerstein | 01/05/15 - 10:52 AM EST

Once injected, the NurOwn stem cells bathe the damaged neurons of ALS patients with secretions of nerve growth factors. Brainstorm has a home run on its hands if NurOwn can be shown to slow or halt the progressive destruction of neurons, and if that disease-modifying effect translates into improved muscle function for ALS patients. Monday's update comes from a Phase IIa trial in which 14 ALS patientswere followed for the three months without treatment. At month four, each patient wastransplanted with their own personalized NurOwn therapy and then assessed every month for six months. Brainstorm evaluated NurOwn's impact on ALS disease progression using the ALSFRS score, a commonly used assessment of treatment response and muscle function in ALS patients. Lung function, another commonly used measure of efficacy in ALS clinical trials, was also measured.

Twelve ALS patients were evaluable for response. Of these, 11 patientsshowed aslowing of ALS disease progression at six months compared to baseline, measured either by improved ALSFRS or lung function scores, Brainstorm said. Two other patients enrolled in the study died. Administration of the NurOwn therapy was well tolerated by patients, the company said.

The final Phase IIa data announced Monday were a small improvement over interim results from the same study presented last June. Further, detailed data from the study will be presented at a medical meeting later this year. For perspective purposes, it's important to note that this phase IIa study enrolled a relatively small number of ALS patients and was conducted at a single hospital in Israel. This doesn't necessarily discredit the positive results, but conclusions about NurOwn's ultimate benefit as an ALS therapy can't be drawnuntil data from larger studies are gathered.

Brainstorm is conducting another, larger Phase II study in the U.S., enrolling 48 ALS patients who will be randomized 3:1 to receive a single NurOwn treatment in the muscle and spine, or a placebo treatment. The study is being conducted at two hospitals in Massachusetts, UMass Medical Center and Massachusetts General, and the Minnesota-based Mayo Clinic. The study's primary endpoint is the safety and tolerability of NurOwn, but investigators will also assess ALS patients for efficacy using measures of ALS disease activity and muscle function. The first patient was enrolled into the Phase II study last June and Brainstorm expects results to be ready in the first half of 2016.

The company is also in the planning stages for another Phase II study in which ALS patients will be treated with multiple doses of NurOwn. Must Read: 11 Best Small-Cap Technology Stocks That Could Hit It Big in 2015

Here is the original post:

Brainstorm Stem-Cell Therapy Continues to Show Treatment Effect in ALS Patients

Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming

Contact Information

Available for logged-in reporters only

Newswise In a groundbreaking study that provides scientists with a critical new understanding of stem cell development and its role in disease, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Kathrin Plath, professor of biological chemistry, have established a first-of-its-kind methodology that defines the unique stages by which specialized cells are reprogrammed into stem cells that resemble those found in the embryo.

The study was published online ahead of print in the journal Cell.

Induced pluripotent stem cells (known as iPSCs) are similar to human embryonic stem cells in that both cell types have the unique ability to self-renew and have the flexibility to become any cell in the human body. iPSC cells, however, are generated by reprogramming skin or blood cells and do not require an embryo.

Reprogramming is a long process (about one to two weeks) and largely inefficient, with typically less than one percent of the primary skin or blood cells successfully completing the journey to becoming an iPSC. The exact stages a cell goes through during the reprogramming process are also not well understood. This knowledge is important, as iPSCs hold great promise in the field of regenerative medicine, as they can provide a single source of patient-specific cells to replace those lost to injury or disease. They can also be used to create novel disease models from which new drugs and therapies can be developed.

This research has broad impact, because by deepening our understanding of cell reprogramming we have the potential to improve disease modeling and the generation of better sources of patient-specific specialized cells suitable for replacement therapy, said Plath. This can ultimately benefit patients with new and better treatments for a wide range of diseases.

Drs. Vincent Pasque and Jason Tchieu, postdoctoral fellows in the lab of Dr. Plath and co-first authors of the study, developed a roadmap of the reprogramming process using detailed time-course analyses. They induced the reprogramming of skin cells into iPSC, then observed and analyzed on a daily basis or every other day the process of transformation at the single-cell level. The data were collected and recorded over a period of up to two weeks.

Plaths team found that the changes that happen in cells during reprogramming occur in a sequential stage-by-stage manner, and that importantly, the stages were the same across all the different reprogramming systems and different cell types analyzed.

The exact stage of reprogramming of any cell can now be determined, said Pasque. This study signals a big change in thinking, because it provides simple and efficient tools for scientists to study stem cell creation in a stage-by-stage manner. Most studies to date ignore the stages of reprogramming, but we can now seek to better understand the entire process on both a macro and micro level.

Continue reading here:

Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming

'CRISPR' Science: Newer Genome Editing Tool Shows Promise in Engineering Human Stem Cells

Contact Information

Available for logged-in reporters only

Newswise A powerful genome editing technology known as CRISPR has been used by researchers since 2012 to trim, disrupt, replace or add to sequences of an organisms DNA. Now, scientists at Johns Hopkins Medicine have shown that the system also precisely and efficiently alters human stem cells.

In a recent online report on the work in Molecular Therapy, the Johns Hopkins team says the findings could streamline and speed efforts to modify and tailor human-induced pluripotent stem cells (iPSCs) for use as treatments or in the development of model systems to study diseases and test drugs.

Stem cell technology is quickly advancing, and we think that the days when we can use iPSCs for human therapy arent that far away, says Zhaohui Ye, Ph.D., an instructor of medicine at the Johns Hopkins University School of Medicine. This is one of the first studies to detail the use of CRISPR in human iPSCs, showcasing its potential in these cells.

CRISPR originated from a microbial immune system that contains DNA segments known as clustered regularly interspaced short palindromic repeats. The engineered editing system makes use of an enzyme that nicks together DNA with a piece of small RNA that guides the tool to where researchers want to introduce cuts or other changes in the genome.

Previous research has shown that CRISPR can generate genomic changes or mutations through these interventions far more efficiently than other gene editing techniques, such as TALEN, short for transcription activator-like effector nuclease.

Despite CRISPRs advantages, a recent study suggested that it might also produce a large number of off-target effects in human cancer cell lines, specifically modification of genes that researchers didnt mean to change.

To see if this unwanted effect occurred in other human cell types, Ye; Linzhao Cheng, Ph.D., a professor of medicine and oncology in the Johns Hopkins University School of Medicine; and their colleagues pitted CRISPR against TALEN in human iPSCs, adult cells reprogrammed to act like embryonic stem cells. Human iPSCs have already shown enormous promise for treating and studying disease.

The researchers compared the ability of both genome editing systems to either cut out pieces of known genes in iPSCs or cut out a piece of these genes and replace it with another. As model genes, the researchers used JAK2, a gene that when mutated causes a bone marrow disorder known as polycythemia vera; SERPINA1, a gene that when mutated causes alpha1-antitrypsin deficiency, an inherited disorder that may cause lung and liver disease; and AAVS1, a gene thats been recently discovered to be a safe harbor in the human genome for inserting foreign genes.

Continue reading here:

'CRISPR' Science: Newer Genome Editing Tool Shows Promise in Engineering Human Stem Cells

Ten years in, California's stem cell program is getting a reboot

Turning 10 years old may not quite mark adolescence for a human child, but for a major government research effort such as California's stem cell program, it's well past middle age.

So it's a little strange to hear C. Randal Mills, the new president and chief executive of the program known formally as the California Institute for Regenerative Medicine, say it's time to instill in CIRM "a clear sense of mission."

But that's what Mills is planning for the coming year, as he launches CIRM 2.0, a comprehensive reboot of the program.

Mills, a former biotech company chief executive, took over as CIRM's president last May. His first task, he told me, was to "take a step back and look broadly at how we do our business." He reached the conclusion that "there was a lot of room for improvement."

That's a striking admission for a program that already has allocated roughly two-thirds of its original $3-billion endowment.

Biomedical researchers are sure to find a lot to like about CIRM 2.0, especially Mills' commitment to streamline the program's grant and loan approval process for projects aimed at clinical trials of potential therapies. Reviews of applications take about 22 months on average; Mills hopes to cut that to about three months. The process can be made more efficient without sacrificing science: "We need to do it quickly and also focus on quality," he says in a videotaped presentation on the CIRM website. The CIRM board last month approved a six-month, $50-million round of funding under the new system, all to be aimed at testing new therapies.

Yet the focus on drug development shows that CIRM remains a prisoner of the politics that brought it into existence. The Proposition 71 campaign in 2004 employed inflated promises of cures for Parkinson's disease, Alzheimer's, diabetes and other therapy-resistant conditions to goad California voters into approving the $3-billion bond issue ($6 billion with interest) for stem cell research.

CIRM says it has funded clinical trials of 10 therapies and has backed an additional 87 projects "in the later stages of moving toward clinical trials." In scientific terms that's progress, but it may fall short of the public expectations of "cures" stoked by the initiative's promoters 10 years ago.

And that poses a political problem. At its current rate of grant and loan approvals of about $190 million a year, CIRM has enough funding to last until 2020. What happens after that is an open question, but any campaign to seek new public funding may depend on CIRM's having a successful therapy to show off to voters.

Mills says winning approval for more public funding isn't the goal of CIRM 2.0. "It's not our job at CIRM to extend the life of CIRM," he told me. Instead, he couches the need for urgency in terms of serving patients. As chief executive of Maryland-based Osiris Therapeutics, where he worked before joining CIRM, he says, he had "a firsthand view into the significance of stem cell treatment, and of how important urgency is in this game." Osiris received approval from the Food and Drug Administration and Canadian regulators for a stem cell drug to treat children with severe complications from bone marrow and other blood transplants.

Continue reading here:

Ten years in, California's stem cell program is getting a reboot

Stem Cell Therapy Fixes Post-Surgical Airway Abnormality

By Steven Reinberg HealthDay Reporter

WEDNESDAY, Dec. 31, 2014 (HealthDay News) -- Using stem cells derived from a patient's own bone marrow, researchers have repaired a fistula -- a potentially fatal tissue abnormality -- in the man's lower airway.

"This is another interesting new therapeutic approach for stem cells," said lead researcher Dr. Francesco Petrella, deputy director of thoracic surgery at the European Institute of Oncology in Milan, Italy.

The patient, a 42-year-old firefighter, developed the fistula after surgeons removed a lung as part of treatment for mesothelioma cancer. A fistula is abnormal tissue connecting an organ, blood vessel or intestine to another structure. In this case, the fistula developed between the lower airway and the tissue that surrounds the lungs.

"Our clinical experience supports the idea that stem cells could be effectively used to close some tissue defects developing after very complex surgical procedures, thus restoring a functioning airway," Petrella said.

A fistula that develops after chest surgery is serious and even deadly, Petrella said. Current treatments involve removing ribs and taking medications for months or years, he explained.

"Less invasive approaches like endoscopic glue injections have only poor results, so our proposed techniques could improve quality of life in these patients," Petrella said.

Sixty days after stem cell therapy, the firefighter's fistula was healed, the researchers said. The hole seen before stem cell therapy was no longer visible, having been replaced by new tissue created by the stem cell implant, they explained.

Some people are born with a fistula. Other causes of fistulas include complications from surgery, injury, infection and diseases, such as Crohn's disease or ulcerative colitis.

Petrella believes that this same stem cell technique could be used to treat fistulas that develop elsewhere in the body.

Go here to read the rest:

Stem Cell Therapy Fixes Post-Surgical Airway Abnormality