ChoiceCenter’s Garrett Tanner: 1 Year after Stem Cell Treatments 2012 – Video

04-06-2012 21:49 In November 2007, gymnast Garrett Tanner had an accident while training that left him a quadriplegic. In 2010, he came to ChoiceCenter Leadership University (LV102) where he met fellow student Maynard Howe (LV100), Vice Chairman of Stemedica, a stem cell company. In May 2011, Garrett received his first stem cell treatment in Moscow. Stemedica donated the cells and ChoiceCenter students donated money for his rehabilitation therapy, transportation, food and housing. This video documents Garrett's progress as of May 2012. He will receive his second treatment later this summer.

Read the original here:

ChoiceCenter's Garrett Tanner: 1 Year after Stem Cell Treatments 2012 - Video

Treatment eases arthritis pain in dogs

A local veterinary clinic recently added a cuttingedge treatment.

Dr. Tina Gemeinhardt, owner of Tsawwassen Animal Hospital, is excited to be offering stem cell therapy to animals suffering from arthritis and joint issues.

"I'm excited about trying to bring some relief to dogs that are living in pain," she said.

The therapy, which uses stem cells harvested from fat that is surgically removed from the dog, is, in most cases, able to offer relief from the pain and stiffness associated with

Gemeinhardt said once it's determined the therapy is the right course of treatment for an animal, body fat is surgically removed and sent to a lab in California where the stem cells are harvested. The harvested stem cells are then sent back to the vet clinic within 48 hours and injected into the joints in question.

Gemeinhardt, who added the treatment to the clinic's list of services earlier this year, said it's not quite clear exactly how the stem cells work.

"Stem cells seem to inherently know what needs to be done in that area," she said.

The treatment is not a cure-all - the arthritis is still there but the symptoms are lessened - and it does not work instantly. The vet said most animals start to notice a difference in a month or so, and some might require follow up injections.

She said about 85 per cent of animals receiving stem cell therapy have had a beneficial response, while 15 per cent saw no response.

Beatrice, a seven-yearold chow chow, has seen remarkable results. Owner Rose McClelland said Beatrice had been having problems with arthritis in her hips for years and medication wasn't working any more.

Read the original:

Treatment eases arthritis pain in dogs

The potential impact of olfactory stem cells as therapy reported in Cell Transplantation

Public release date: 5-Jun-2012 [ | E-mail | Share ]

Contact: David Eve celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (June 5 , 2012) A study characterizing the multipotency and transplantation value of olfactory stem cells, as well as the ease in obtaining them, has been published in a recent issue of Cell Transplantation (20:11/12), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"There is worldwide enthusiasm for cell transplantation therapy to repair failing organs," said study lead author Dr. Andrew Wetzig of the King Faisal Specialist Hospital and Research Centre in Riyadh, Saudi Arabia. "The olfactory mucosa of a patient's nose can provide cells that are potentially significant candidates for human tissue repair."

According to the study authors, olfactory neural stem cells can be derived from a patient's own cells, they are readily available by a minimally invasive biopsy technique, and they can be expanded in vitro. The cells are plentiful because the olfactory epithelium undergoes neurogenesis and continual replacement of sensory neurons throughout adult life.

"Using the rat as our animal model source, we examined the basic aspects of olfactory neural stem cell biology and its potential for self-renewal and phenotypic expression in various circumstances," said Dr. Wetzig. "Previously, we found that they have performed well in pre-clinical models of disease and transplantation and seem to emulate a wound healing process where the cells acquire the appropriate phenotype in an apparently orderly fashion over time."

The researchers concluded that the olfactory neurospheres contain stem cells whose capacity for differentiation is triggered by signals from the immediate environmental niche.

"Stem cell numbers were shown to be enriched by our culture methods," explained Dr. Wetzig. "We also demonstrated that when adult olfactory stem cells are transplanted into an environmental niche different from that of their origin, they demonstrate multipotency by acquiring the phenotype of the resident cells."

"This study highlights another potential source of stem cells that has shown some degree of promise in a number of studies" said Dr. John Sladek, professor of neurology and pediatrics at the University of Colorado School of Medicine. "Their relatively easy accessibility and multipotent properties are important factors that could rank these cells competitively with other stem cells thus giving them a potential impact as an excellent source for cell therapy".

###

View post:

The potential impact of olfactory stem cells as therapy reported in Cell Transplantation

Neuralstem Updates ALS Stem Cell Trial Progress; Emory University Institutional Review Board Approves Amendment

ROCKVILLE, Md., June 5, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the Emory University Institutional Review Board (IRB) approved the amendment to the ongoing Phase I trial evaluating Neuralstem's spinal cord stem cells in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). The amendment permits the return of three previously-treated patients to the trial to receive additional injections of cells. This modification to the protocol was approved earlier by the Food and Drug Administration (FDA). Implementation was contingent upon IRB approval, which has now been secured.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"Bringing patients back for a second set of injections should they meet the inclusion requirements at the time of surgery, or giving new patients both lumbar and cervical injections, is a major step forward toward testing the maximum safe dosing of our cell therapy," said Richard Garr, Neuralstem President & CEO. "We have been encouraged by the results of the trial to date, and are eager to commence treating patients with this increased dosage."

About the Study

The ongoing Phase I study is designed to assess the safety of Neuralstem's spinal cord stem cells (HSSC's) and transplantation technique in up to 18 patients with ALS.

The first twelve patients were all transplanted in the lumbar (lower back) region of the spine. Of these, the initial six (Cohort A) were all non-ambulatory with permanent paralysis. The first patient was treated on January 20, 2010. Successive surgeries have followed at the rate of one every one-to-two months. The first three patients (Cohort A1) were each treated with five unilateral HSSC injections in L2-L4 lumbar segments, while the next three patients (Cohort A2) received ten bilateral injections (five on each side) in the same region. The next six patients (Cohort B and C) were all ambulatory. Of these, the first three (Cohort B) received five unilateral injections in the L2-L4 region. The last three patients (Cohort C) in this study group received ten bilateral injections in the same region.

The trial was then approved to progress to cervical transplantations, with two cohorts of three patients (Cohort D and Cohort E). Cohort D has received five injections in the cervical region of the spinal cord. Cohort E will receive a total of fifteen injections, five in the cervical region and ten in the lumbar region.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.

View post:

Neuralstem Updates ALS Stem Cell Trial Progress; Emory University Institutional Review Board Approves Amendment

Cell transplantation of lung stem cells has beneficial impact for emphysema

Public release date: 4-Jun-2012 [ | E-mail | Share ]

Contact: David Eve Celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (June 4, 2012) When autologous (self-donated) lung-derived mensenchymal stem cells (LMSCs) were transplanted endoscopically into 13 adult female sheep modeled with emphysema, post-transplant evaluation showed evidence of tissue regeneration with increased blood perfusion and extra cellular matrix content. Researchers concluded that their approach could represent a practical alternative to conventional stem cell-based therapy for treating emphysema.

The study is published in Cell Transplantation (21:1), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Mensenchymal stem cells are considered for transplantation because they are readily available, highly proliferative and display multi-lineage potential," said study corresponding author Dr. Edward P. Ingenito of the Brigham and Women's Hospital Division of Pulmonary and Critical Care Medicine. "Although MSCs have been isolated from various adult tissues - including fat, liver and lung tissues - cells derived from bone marrow (BM) have therapeutic utility and may be useful in treating advanced lung diseases, such as emphysema."

However, according to the authors, previous transplantation studies, many of which used an intravenous delivery method, have shown that BM-MSCs have been only marginally successful in treating lung diseases. Further, therapeutic responses in those studies have been limited to animal models of inflammatory lung diseases, such as asthma and acute lung injury.

To try and answer the questions surrounding the utility of BM-MSCs for treating advanced emphysema, a disease characterized by tissue destruction and loss of lung structural integrity, for this study the researchers isolated highly proliferative, mensenchymal cells from adult lung parenchyma (functional tissue) (LMSCs) and used an endoscopic delivery system coupled with a scaffold comprised of natural extracellular matrix components.

"LMSCs display efficient retention in the lung when delivered endobronchially and have regenerative capacity through expression of basement membrane proteins and growth factors," explained Dr. Ingenito.

However, despite the use of autologous cells, only a fraction of the LMSCs delivered to the lungs alveolar compartment appeared to engraft. Cell death likely occurred because of the failure of LMSCs to home to and bind within their niche, perhaps because the niche was modified by inflammation or fibrosis. These cells are attachment-dependent and failure to attach results in cell death."

Their findings did suggest, however, that LMSCs were capable of contributing to lung remodeling leading to documented functional improvement rather than scarring 28 days post transplantation.

Read this article:

Cell transplantation of lung stem cells has beneficial impact for emphysema

Mature liver cells may be better than stem cells for liver cell transplantation therapy

Public release date: 4-Jun-2012 [ | E-mail | Share ]

Contact: David Eve celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Tampa, Fla. (June 4, 2012) After carrying out a study comparing the repopulation efficiency of immature hepatic stem/progenitor cells and mature hepatocytes transplanted into liver-injured rats, a research team from Sapporo, Japan concluded that mature hepatocytes offered better repopulation efficiency than stem/progenitor cells.

Until day 14 post-transplantation, the growth of the stem/progenitor cells was faster than the mature hepatocytes, but after two weeks most of the stem/progenitor cells had died. However, the mature hepatocytes continued to survive and proliferate one year after their implantation.

The study is published in Cell Transplantation (21:1), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Cell-based therapies as an alternative to liver transplantation to treat liver disease have shown promise," said study corresponding author Dr. Toshihiro Mitaka of the Cancer Research Institute of the Sapporo Medical University School of Medicine, Sapporo, Japan. "However, the repopulation efficiency of two candidate cell sources - hepatic progenitor/stem cells and mature hepatocytes - had not been comprehensively assessed and questions concerning the efficiency of each needed to be resolved."

The researchers noted that the shortage of cell sources and the difficulties of cryopreservation have limited the clinical application of cell based therapies. Stem or progenitor cells have been considered candidate cells because they can expand in vitro and can be cryopreserved for a long time.

However, after transplantation into liver injured rats, the researchers found that stem/progenitor cells did not survive well and most of the transplanted cells had disappeared within two months. In contrast, the mature hepatocytes gradually repopulated the rat livers and continued doing so past one year.

The researchers noted that the sizes of the hepatocytes were not uniform.

"Unexpectedly, the small hepatocytes repopulated significantly less well than the larger ones," explained Dr. Mitaka. "We also found that serial transplantation did not enhance nor diminish the repopulation capacity of the cells to any significant degree."

Link:

Mature liver cells may be better than stem cells for liver cell transplantation therapy

Medistem Achieves Important ERC Stem Cell Clinical Trial Milestone

SAN DIEGO, CA--(Marketwire -06/04/12)- Medistem Inc. (MEDS) announced today positive safety data from the first 5 patients enrolled in the Non-Revascularizable IschEmic Cardiomyopathy treated with Retrograde COronary Sinus Venous DElivery of Cell TheRapy (RECOVER-ERC) trial. The clinical trial uses the company's "Universal Donor" Endometrial Regenerative Cells (ERC) to treat Congestive Heart Failure (CHF).

According to the study design, after 5 patients enter the trial, they must be observed for a two month time period before additional patients are allowed to enter the study. Patient data was analyzed by the study's independent Data Safety Monitoring Board (DSMB), which concluded that based on lack of adverse effects, the study be allowed to continue recruitment.

"Medistem is developing a treatment for CHF that uses a 30-minute catheter-based procedure to administer the ERC stem cell into the patients' hearts. The achievement of 2 month patient follow-up with no adverse events is a strong signal for us that our new approach to this terrible condition is feasible," said Thomas Ichim, CEO of Medistem.

The RECOVER-ERC trial will treat a total of 60 patients with end-stage heart failure with three concentrations of ERC stem cells or placebo. The clinical trial is being conducted by Dr. Leo Bockeria, Chairman of the Backulev Centre for Cardiovascular Surgery, in collaboration with Dr. Amit Patel, Director of Clinical Regenerative Medicine at University of Utah.

"As a professional drug developer, I am very optimistic of a stem cell product that can be used as a drug. The ERC stem cell can be stored frozen indefinitely, does not need matching with donors, and can be injected in a simple 30-minute procedure into the heart," said Dr. Sergey Sablin, Vice President of Medistem and co-founder of the multi-billion dollar NASDAQ company Medivation.

Currently patients with end-stage heart failure, such as the ones enrolled in the RECOVER-ERC study, have no option except for heart transplantation, which is limited by side effects and lack of donors. In contrast to other stem cells, ERC can be manufactured inexpensively, do not require tissue matching, and can be administered in a minimally-invasive manner. Animal experiments suggest ERC are more potent than other stem cell sources at restoring heart function. The FDA has approved a clinical trial of ERC in treatment of critical limb ischemia in the USA.

About Medistem Inc. Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia and heart failure. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf.

Cautionary Statement This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

See the rest here:

Medistem Achieves Important ERC Stem Cell Clinical Trial Milestone

Stem cell therapy for cornea treatment

Hyderabad, June 2:

Picking stem cells from a patients body, sending it to a sophisticated laboratory to culture a tissue and then implanting it are pass.

A team of doctors at L.V. Prasad Eye Institute has used the tea bag or sprinkler approach to regenerate stem cells. The organisation has developed a lab-free technique that could be available off-the-shelf. This allows eye surgeons with usual facilities to perform the procedure.

The team, led by Dr Virender Singh Sangwan, used this technique to treat those who suffered chemical injuries, resulting in bleeding in the cornea.

Instead of sending stem cells to the lab for culture, the doctor picked the required number of stem cells around the cornea and sprinkled on the damaged area and then put a contact lens. In 15 days, he sees development of a good layer in the place of injured area, Prof. Balasubramanian, Head of Research at LVPEI, said.

A winner of the prestigious Shanti Swarup Bhatnagar prize, Dr Sangwan said he had conducted the procedure on about 25 patients with good results. This had been published in international scientific magazines.

He is now in the process of developing tools to help doctors.

Leber Congenital Amaurosis

Children down with the rare ocular disorders that result in gradual loss of sight can hope for a cure. Doctors are working on a gene therapy to correct this problem caused by consanguineous marriages.

Though this therapy is in vogue abroad, LVPEI says it is the first centre to carry out research on this procedure. Technically called LCA or Leber Congenital Amaurosis, doctors would refer patients to a gene analysis after studying them for indications.

Read the original post:

Stem cell therapy for cornea treatment

Malta opposing EU financing for stem cell research on embryos

Stem cell therapy may one day be used to cure disorders such as Fragile-X syndrome, or Cystic fibrosis and other genetic maladies.

Matthew Vella

The Maltese government wants the European Commission to abandon plans to provide funds for research activities on stem cells that involve "the destruction of human embryos".

In a declaration on the ethical principles for the Horizon 2020 programme, which is an 80 billion fund for the EU's programme for research and innovation to create new jobs, the Maltese government said it wanted more detailed guidelines on the bioethical principles that will guide research programmes.

Horizon 2020 will allow the financing of research on human stem cells - both adult and embryonic - as long as it is permitted by the national laws of member states.

The fund however will not finance human cloning, genetic modification, or the creation of human embryos intended for the purpose of research or stem cell procurement.

The European Commission does not explicitly solicit the use of human embryonic stem cells, but Horizon 2020 allows the use of human stem cells according to the objectives of the research, and only if it has the necessary approvals from the member states.

The Maltese declaration echoes previous statements by the Commission of Catholic Bishops of the EC (Comece), which said Horizon 2020 did not include greater protection of human embryos from stem cell research.

Malta says it does not want any such embryos to be used for stem cell research. The statement by the Maltese government said the Horizon 2020 programme "does not take sufficiently into account the therapeutic potential of human adult stem cells."

Malta wants Europe to commit to a reinforcement of research on human adult stem cells, and that Europe should abstain from financing matters of fundamental ethical principles, which differ among member states.

See original here:

Malta opposing EU financing for stem cell research on embryos

29 Johns Hopkins stem cell researchers awarded funding

Public release date: 30-May-2012 [ | E-mail | Share ]

Contact: Vanessa McMains vmcmain1@jhmi.edu 410-502-9410 Johns Hopkins Medical Institutions

This year the Maryland Stem Cell Research Fund awarded 29 of 40 grants to Johns Hopkins researchers for the study of stem cell metabolism and regulation, the creation of new cell models for human diseases such as schizophrenia and Rett syndrome, which previously could be studied only in animals, and the development of new potential therapies.

Researchers whose preliminary data promised greater discoveries were awarded Investigator-Initiated grants. Jeff Bulte, Ph.D., professor of radiology, biomedical engineering and chemical and biomolecular engineering and a member of the Institute for Cell Engineering, hopes to develop a cell therapy for treatment of type 1 diabetes an autoimmune disorder in which the immune system kills the insulin-producing cells that help regulate blood sugar. By developing cloaked stem and insulin-producing cells that can evade immune system detection, Bulte and his team hope to replace damaged cells and restore insulin levels in patients.

Grants were awarded to:

Several Johns Hopkins investigators were awarded Exploratory grants for researchers either new to the stem cell field or with untested but promising new ideas. Miroslaw Janowski , M.D., Ph.D., a research associate in radiology, plans to develop a stroke treatment by guiding newly introduced brain cells with magnets through blood vessels to the site of injury.

Exploratory grants were awarded to:

Postdoctoral trainees also will receive funding for research projects. A fellow in biomedical engineering, Pinar Huri, Ph.D., will use her award to develop bone grafts with blood vessels inside made from fat tissue-derived stem cells. The grafts would be used in patients with severely damaged bone in need of reconstructive surgery.

Postdoctoral grants were awarded to:

###

Read the original:

29 Johns Hopkins stem cell researchers awarded funding

CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine

ORANGE, Calif.--(BUSINESS WIRE)--

A CHOC Childrens research project, under the direction of Philip H. Schwartz, Ph.D., senior scientist at the CHOC Childrens Research Institute and managing director of the facilitys National Human Neural Stem Cell Resource, has been awarded a $5.5 million grant from the California Institute for Regenerative Medicine (CIRM). The grant will be used to develop a stem cell-based therapy for the treatment of mucopolysaccharidosis (MPS I), a fatal metabolic disease that causes neurodegeneration, as well as defects in other major organ systems.

Based on a number of medical and experimental observations, children with inherited degenerative diseases of the brain are expected to be among the first to benefit from novel approaches based on stem cell therapy (SCT).

Dr. Schwartz explains, While uncommon, pediatric genetic neurodegenerative diseases account for a large burden of mortality and morbidity in young children. Hematopoietic (bone marrow) stem cell transplant (HSCT) can improve some non-neural symptoms of these diseases, but does not treat the deadly neurodegenerative process. Our approach targeting the effects of the disease on organs besides the brain with HSCT and neurodegeneration with a second stem cell therapy specifically designed to treat the brain is a strategy for whole-body treatment of MPS I. Our approach is also designed to avoid the need for immunosuppressive drugs to prevent rejection of the transplanted cells.

This research is designed to lead to experimental therapy, based on stem cells, by addressing two critical issues: early intervention is required and possible in this patient population; and teaching the immune system not to reject the transplanted cells is required. This research also sets the stage for efficient translation of this technology into clinical practice, by adapting transplant techniques that are standard in clinical practice or in clinical trials, and using laboratory cell biology methods that are easily transferrable to clinical cell manufacturing.

Nationally recognized for his work in the stem cell field, Dr. Schwartz research focuses on the use of stem cells to understand the neurobiological causes of autism and other neurodevelopmental disorders.

Named one of the best childrens hospitals by U.S. News & World Report (2011-2012) and a 2011 Leapfrog Top Hospital, CHOC Children's is exclusively committed to the health and well-being of children through clinical expertise, advocacy, outreach and research that brings advanced treatment to pediatric patients.

Originally posted here:

CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine

UCI researcher wins large research grant

A UC Irvine stem cell researcher won a $4.8-million grant to fund research toward a treatment for multiple sclerosis.

The California Institute for Regenerative Medicine awarded immunologist Thomas Lane, of the campus' Sue and Bill Gross Stem Cell Research Center, an Early Transitional Award last week to create a new line of neural stem cells to treat multiple sclerosis, according to a UCI press release.

"I am delighted that [the California Institute] has chosen to support our efforts to advance a novel stem cell-based therapy for multiple sclerosis," Peter Donovan, director of the research center, said in the release.

Lane is collaborating with Jeanne Loring, director of the Center for Regenerative Medicine at the Scripps Research Institute in La Jolla, and Claude Bernard, a multiple sclerosis researcher at Monash University in Australia.

The research project "really embodies what [the California Institute] is all about, which is bringing science together to treat horrible diseases like multiple sclerosis," said Lane, who is a professor of molecular biology and biochemistry.

Multiple sclerosis is a central nervous system disease that causes inflammation and a loss of myelin, a fatty tissue that insulates and protects nerve cells.

The three are working on a stem cell treatment that will stop myelin loss while promoting the growth of new myelin to mend damaged nerves.

Loring creates the neural stem cells, said Lane, while he is testing the therapeutic effects the cells have on multiple sclerosis cells in animals.

The stem cells are already having a positive effect and the scientists are trying to understand why. They hope to identify the cells that have the most promise before going to clinical trials.

"I really want to thank the [California Institute] for allowing, and for funding, us," Lane said.

Excerpt from:

UCI researcher wins large research grant

Ottawa’s latest brain gain brings promising new stem-cell therapy

OTTAWA Dr. Bernard Thebaud believes he can use the healing juices from stem cells the much ballyhooed future of modern medicine to rejuvenate the lungs of premature babies.

The renowned neonatologist and scientist has proven his treatment works in rats in Edmonton, and in a baboon in San Antonio, Texas. Next, he will design clinical trials to test his pioneering therapy in babies in Ottawa.

Dr. Thebaud is the latest recruit to the Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute.

Lured here from the University of Alberta, Dr. Thebaud hopes that within five years he can take his research from bench to bedside by launching the first clinical trials in newborns.

He believes his therapy, derived from stem cells isolated from discarded umbilical cords, can help people suffering from other lung diseases, such as asthma and fibrosis.

In an interview, the 47-year-old, who is originally from France, said Ottawa was the only city where he could do this research.

To get this work into patients, I need to be around a critical mass of top stem cell biologists, he said.

I dont want to be too clich, but if you are in the computer business you go to the Silicon Valley; if you are in oil in gas you have to be in Alberta; if you are in stem cells, Ontario is the province. And Ottawa is where they read, breathe, sleep and eat stem cells.

To land Thebaud, three Ottawa institutions had to team up.

When he formally starts in the fall, he will be a Senior Scientist at the Ottawa Hospital and CHEO research institutes, a pediatrician at CHEO and Ottawa Hospital, and a professor in the faculty of medicine at the University of Ottawa.

See more here:

Ottawa’s latest brain gain brings promising new stem-cell therapy

Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

CLEARWATER, FL--(Marketwire -05/29/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).

According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."

Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."

Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.

Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.

Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.

About Biostem U.S., Corporation

Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell-related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.

Originally posted here:

Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors

Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …

SUNRISE, Fla., May 29, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News) announced today that it will offer another laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine, on Saturday/Sunday June 23-24, 2012. Attendees will participate in hands on, in depth training in laboratory practices in stem cell science at Bioheart, Inc.'s corporate headquarters and clean room in Sunrise, Florida. The course was designed for Laboratory technicians, Students, Physicians and Physician Assistants.

"Attendees will graduate from this one-of-a-kind course with an extensive understanding of stem cell science laboratory practices," said Kristin Comella, Chief Scientific Officer, Bioheart, Inc. "Previous attendees described the course as incredibly well orchestrated providing comprehensive know how for laboratory start up."

An emerging field with tremendous opportunities, adult stem cell research has been shown to regenerate and repair injured or diseased structures via the release of bioactive tissue growth factors and cytokines. This is the second time that The Ageless Regenerative Institute has partnered with Bioheart, Inc. to provide hands-on training in a stem cell laboratory. This course provides instruction regarding how to grow stem cells and perform quality control testing in an actual cGMP facility following FDA regulations.

The course goals and objectives include reviewing stem cell types and characteristics; learning cell culture including plating, trypsinization and harvesting, and cryopreservation; learning quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, sterility; and learning and performing cGMP functions including clean room maintenance, gowning and environmental monitoring.

For information on costs and to register, visit http://www.agelessregen.com or email: info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Read this article:

Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 ...

Makati Medical Center now offering stem cell therapy

THE MAKATI Medical Centers Cancer Center celebrated its first year anniversary and marked the occasion with the launch of its Cellular Therapeutics Laboratory. Present at the ribbon-cutting ceremony were Dr. Eric Flores, head, Spine Clinic and Stem Cell Lab; Rosalie Montenegro, Makati Medical Center president and CEO; Dr. ManuelO. Fernandez Jr., executive vice president and director, Professional Services; Dr. Remedios G. Suntay, director and treasurer, MDI Board; Dr. Benjamin N. Alimurung, medical director; Dr. Francis Chung, scientific officer, Stem Cell Lab; and Augusto P. Palisoc Jr., executive director, president and CEO, MPIC Hospital Group.

MAKATIMEDS Cellular Therapeutics Laboratory is managed by experienced scientists with extensive training and is affiliated with the International Society for Cellular Therapy.

Stem cell therapy is now being offered at Makati Medical Center (MMC) as potential cure for a wide range of illnesses, from various types of cancer and heart ailments to incurable diseases such as multiple sclerosis, Parkinsons and Alzheimers.

Stem cell therapy is believed to be effective in bone marrow transplant for leukemia patients, and with early intervention, yields desirable results among renal and prostate cancer patients.

Launched in the first year anniversary of the hospitals cancer center, MMCs Cellular Therapeutics Laboratory is equipped with technology touted to be totally unmatched in our country, says Dr. Francis Chung, scientific officer of the lab. No system exists elsewhere.

Employing the strictest sterility standards at par with that of the US Food and Drug Administration, the lab has state-of-the-art facilities. The Clinimacs CD34 Reagent System is a machine that isolates specific cells needed for the procedure, while the Flow Cytomer ensures the purity of cultured cells.

Transplantation

Sourcing the stem cells, however, is what truly sets the Philippines premier health institution apart from chi-chi spas that also push stem cell therapy for beauty and anti-aging procedures.

At MMC, healthy stem cells are acquired from the patients themselves, a process known as autologous transplantation. For those suffering from an ailment, a parent, sibling or other close relative could be the donor. The hospital strives for utmost compatibility between patient and donor through a 10-point DNA matching system.

If a battery of tests finds a patient to be up to it, medication is given to prepare him for stem cell harvest.

See the original post:

Makati Medical Center now offering stem cell therapy

Americans flocking to India for stem cell therapy

Washington: A growing number of Americans are travelling to India to seek treatment for rare diseases through India's experimental embryonic stem cell therapy, according to an investigative report.

Among them Cash Burnaman, a 6-year-old South Carolina boy, who travelled with his parents to India seeking treatment for a rare genetic condition that has left him developmentally disabled, CNN reported.

"Cash is mute. He walks with the aid of braces. To battle his incurable condition, which is so rare it doesn't have a name, Cash has had to take an artificial growth hormone for most of his life," it said.

A growing number of Americans are travelling to India to seek treatment for rare diseases through experimental embryonic stem cell therapy.

His divorced parents, Josh Burnaman and Stephanie Krolick, have paid tens of thousands of dollars to have Cash undergo experimental injections of human embryonic stem cells at New Delhi's NuTech Mediworld run by Dr Geeta Shroff, a retired obstetrician and self-taught embryonic stem cell practitioner.

Shroff first treated Cash -- who presents symptoms similar to Down Syndrome -- in 2010. "I am helping improve their quality of life," she told CNN.

After five weeks of treatment, Cash and his parents returned home to the US. That's when Cash began walking with the aid of braces for the first time.

For four or five weeks of treatment, Shroff says she has charged her 87 American patients an average of $25,000.

But doctors cited by CNN said all that work and hope and money Cash's supporters have funnelled into his experimental therapy likely will have no medical benefits.

"There is zero evidence for what she (Shroff ) is doing being effective," Rutgers University's Dr Wise Young, a leading US neuroscientist, was quoted as saying.

Originally posted here:

Americans flocking to India for stem cell therapy

Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy Recap

Burr, the drummer with Maiden from 1979 until 1982, has been in a wheelchair as a result of multiple sclerosis, which has been attacking his nervous system since before he was diagnosed in 2002.

MS reduces the ability of the brain and spinal cord to communicate with each other, resulting in a wide range of potentially severe symptoms. The cause is unknown and there is no cure; but in 2009 researchers made the first breakthrough in reversing symptoms through stem cell therapy.

Di'Anno tells Talking Metal Pirate Radio Burr's condition is "not very good at all." - He had a lot to say, read it here.

Classic Rock Magazine is an official news provider for antiMusic.com. Copyright Classic Rock Magazine- Excerpted here with permission.

antiMUSIC News featured on RockNews.info and Yahoo News

...end

Read this article:

Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy Recap

Di’Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy Recap

Burr, the drummer with Maiden from 1979 until 1982, has been in a wheelchair as a result of multiple sclerosis, which has been attacking his nervous system since before he was diagnosed in 2002.

MS reduces the ability of the brain and spinal cord to communicate with each other, resulting in a wide range of potentially severe symptoms. The cause is unknown and there is no cure; but in 2009 researchers made the first breakthrough in reversing symptoms through stem cell therapy.

Di'Anno tells Talking Metal Pirate Radio Burr's condition is "not very good at all." - He had a lot to say, read it here.

Classic Rock Magazine is an official news provider for antiMusic.com. Copyright Classic Rock Magazine- Excerpted here with permission.

antiMUSIC News featured on RockNews.info and Yahoo News

...end

Follow this link:
Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy Recap