Stem cell therapy 'turns back clock'

MANILA, Philippines Stem cell therapy, aside from being a potential cure for a wide range of illnesses, can also make a patient look and feel younger, a stem cell therapist said.

Dr. Ricardo Quiones, a cosmetic surgeon and dermatologist, has trained to conduct stem cell therapy, which he describes as the future of medicine.

Quiones said stem cell therapy has become popular for its ability to regenerate and heal properties of adult stem cells.

As we grow old, our stem cells dramatically decline. When we were children, we had 80 million stem cells. As we reach the age of 40, our stem cells decline to 35 million, he told Mornings@ANC on Friday.

Quiones explained that the procedure is similar to turning back the clock because it can increase a persons stem cells to 100 million.

Ive done two patients from Zamboanga City. I called them up after the procedure and they told me they look younger. They have the stamina, the vigor and they have felt an increase in short-term memory, powers of attention and concentration, he said.

Quiones also said the procedure has the potential to cure diabetes, heart damage, brain damage such as Parkinsons and Alzheimers, osteoarthritis, stroke, baldness and even sports injuries.

3-hour procedure

Quiones said any patient, except those diagnosed with cancer, can undergo the procedure, which he said will only last for about 3 to 4 hours.

After receiving clearance from a physician and passing medical and laboratory tests, anesthesia will be administered to a patient before stem cells are harvested.

Read this article:

Stem cell therapy 'turns back clock'

Stem Cell Therapy Company Hypes Preliminary Results

A biotech company has been accused of releasing preliminary and misleading information about a clinical trial. The company, Osiris Therapeutics, is the manufacturer of a cultured mesenchymal stem cell therapy called Prochymal, which is being studied in a phase 2, placebo-controlled study in post-MI patients. Earlier this week Osiris issued a press release [...]

More:

Stem Cell Therapy Company Hypes Preliminary Results

An Alternative to Embryonic Stem Cells; Some Fish Can Handle Climate Change

Discovered: An alternative to embryonic stem cells, some fish can handle all that CO2, a photo of an atom's shadow, and the salmon aren't spawning so much anymore. An alternative to embryonic stem cells. Here's something for the anti-stem cell crowd: Amniotic fluid -- a.k.a birthing goo -- might act as a replacement for embryonic stem cells, which some people don't approve of for ethical reasons ...

Read more:

An Alternative to Embryonic Stem Cells; Some Fish Can Handle Climate Change

Ireland could be stem cell research hub

Tuesday, July 03 16:25:12

Ireland has the capacity to be an international centre for commercialisation in the field of regenerative medicine, delegates at an international stem cell conference in NUI Galway heard today.

Reflecting this potential, new Irish company Orbsen Therapeutics is developing proprietary technologies designed to isolate stem cells. The NUI Galway spin-out is targeting the rapidly maturing and expanding regenerative medicine market, which is expected to grow to $118 billion next year.

Frank Barry is Professor of Cellular Therapy at NUI Galway, Director of Orbsen Therapeutics, and organiser of the Mesenchymal Stem Cell Conference, which opened yesterday.

Mesenchymal stem cells (MSCs) are a type of adult stem cell, and this event brings together the world's leading scientists in the field to discuss their latest ideas and findings. This is the first major stem cell conference to take place in Ireland, and is looking at all aspects of adult stem cells, from basic biology to manufacturing to clinical trials and therapeutics.

Stem cells hold great promise as an alternative to drugs and surgical procedures for treating a wide range of medical conditions including heart disease, arterial disease of the limbs, diabetes complications, arthritis and other inflammatory conditions. The treatment potential of stem cells is linked to their natural capacity to dampen inflammation and promote healing, repair and regeneration of damaged tissues.

According to Professor Barry: "Ireland has a strong research base in adult stem cell therapy and has the capcacity for advanced stem cell bioprocessing. There is huge potential in this market and we anticipate that there will be extraordinary growth over the next 5-10 years. There are currently over 400 regenerative medicine products on the market with many more in development." Orbsen Therapeutics has developed a clear pipeline of clinical indications which they hope, using their proprietary technologies, to bring through to clinical trial over the coming years. These include osteoarthritis, acute lung injury syndrome, diabetic foot ulcer, critical limb ischemia and others."

"Combining the utility, novelty and the value of its technologies, Orbsen is well placed to take advantage of the many opportunities in this fast moving and important emerging market", said Brian Molloy, CEO of Orbsen Theraepeutics."

Orbsen Therapeutics Limited was formed as a spin out company to develop and commercialise new intellectual property built up by researchers at the SFI-funded Regenerative Medicine Institute (REMEDI) at NUI Galway.

Scientists at NUI Galway are investigating how adult stems cells might be used to develop new treatments for vascular disease, osteoarthritis and lung injury. The University has become a leading centre of translational research in adult stem cells involving its National Centre for Biomedical Engineering Science (NCBES) and REMEDI.

Read more:

Ireland could be stem cell research hub

Amniotic fluid offers alternative stem cell source

LONDON (Reuters) - Stem cells taken from amniotic fluid can be transformed into a more versatile state similar to embryonic stem cells and may offer an alternative to the medically valuable but controversial cells, scientists said on Tuesday. British researchers said they had succeeded in reprogramming amniotic fluid cells without having to introduce extra genes. This suggests the possibility ...

More here:

Amniotic fluid offers alternative stem cell source

Stem Cell Technologies: World Market Outlook 2012-2022

NEW YORK, July 3, 2012 /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue:

Stem Cell Technologies: World Market Outlook 2012-2022

http://www.reportlinker.com/p0567594/Stem-Cell-Technologies-World-Market-Outlook-2012-2022.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Biological_Therapy

Report Details

Why the stem cells market will expand - discover its commercial potential

What does the future hold for stem cells in medicine? Visiongain's report shows you potential revenues to 2022, assessing data, trends, opportunities and prospects there.

Read this article:

Stem Cell Technologies: World Market Outlook 2012-2022

Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

SHENZHEN, China, July 3, 2012 /PRNewswire-Asia/-- A study conducted by Beike Biotechnology Company (http://www.beikebiotech.com) in conjunction with physicians and researchers at two Chinese hospitals, documents the effectiveness of cord blood-derived stem cells in treating primary biliary cirrhosis (PBC). The study, which was published in the April 2012 issue of the Stem Cell Discovery, was the first of its kind. Researchers noted that additional clinical trials would be required before stem cells can become an accepted therapy for liver cirrhosis.

Prof. Jin-hui Yang, Director of the Department of Hepatology in the 2nd Affiliated Hospital of Kunming Medical College stated, "Given the severity of liver cirrhosis and its related conditions, and the limited number of options available to treat those who suffer from it, this finding represents an important, potentially significant breakthrough."

PBC is a chronic, progressive liver disease that leads eventually to fibrosis and cirrhosis of the liver. It affects 1 in 1,000 women over the age of 40.Approximately one-third of those who suffer from PBC and its related conditions do not respond well to Ursodeoxycholic acid (UDCA) treatment, which is the only currently FDA-approved standard medical treatment for the condition. Many of those patients ultimately require liver transplantation.

Beike Chairman, Dr. Sean Hu, commented, "With a growing body of research that demonstrates the effectiveness of cord blood-derived stem cell therapies in treating a broad range of chronic conditions, this latest study is a milestone in the continuing effort to gain broad acceptance and recognition of regenerative medicine as a mainstream treatment option.We look forward to conducting more comprehensive clinical trials to attempt to validate the positive outcomes we have already observed."

The case study reported in the Stem Cell Discovery involved a 58 year old woman suffering from PBC who developed an incarcerated hernia and uncontrolled hydrothorax after undergoing UDCA treatment.One week after completing two stem cell transplantations with no observed adverse effects, the patient showed improvement in both liver function and in her general condition. She was released from the hospital but continued to receive twice-daily UDCA treatments. Six months after her discharge, doctors observed continued improvements in her liver function and overall condition.

To review the full text of the published study, please visit: http://www.scirp.org/journal/PaperInformation.aspx?paperID=18710. Study authors included physicians and researchers from the 2nd Affiliated Hospital of Kunming Medical College, Beike Biotechnology Company, and the Yunnan Provincial 1st People's Hospital in Kunming, China.

About Beike Biotechnology Company

Shenzhen Beike Biotechnology Co., Ltd. is China's leading biotechnology company focusing on the production of adult stem cells for use in medical therapies. Headquartered in Shenzhen (near Hong Kong) with a flagship regenerative medicine facility at the China Medical City in Jiangsu province, Beike produces a full line of stem cell products derived from umbilical cord, cord blood and autologous bone marrow.

For any questions regarding this release, please call:

Contact Person: T. Gutmann Phone Number: +86-532-6677-6659

See original here:

Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

Researchers Block Pathway to Cancer Cell Replication

NOTCH1 Signaling Promotes T-Cell Acute Lymphoblastic Leukemia-Initiating Cell Regeneration

Newswise Research suggests that patients with leukemia sometimes relapse because standard chemotherapy fails to kill the self-renewing leukemia initiating cells, often referred to as cancer stem cells. In such cancers, the cells lie dormant for a time, only to later begin cloning, resulting in a return and metastasis of the disease.

One such type of cancer is called pediatric T cell acute lymphoblastic leukemia, or T-ALL, often found in children, who have few treatment options beyond chemotherapy.

A team of researchers led by Catriona H. M. Jamieson, MD, PhD, associate professor of medicine at the University of California, San Diego School of Medicine and Director of Stem Cell Research at UC San Diego Moores Cancer Center studied these cells in mouse models that had been transplanted with human leukemia cells. They discovered that the leukemia initiating cells which clone, or replicate, themselves most robustly activate the NOTCH1 pathway, usually in the context of a mutation.

Earlier studies showed that as many as half of patients with T-ALL have mutations in the NOTCH1 pathway an evolutionarily conserved developmental pathway used during differentiation of many cell and tissue types. The new study shows that when NOTCH1 activation was inhibited in animal models using a monoclonal antibody, the leukemia initiating cells did not survive. In addition, the antibody treatment significantly reduced a subset of these cancer stem cells (identified by the presence of specific markers, CD2 and CD7, on the cell surface.)

We were able to substantially reduce the potential of these cancer stem cells to self-renew, said Jamieson. So were not just getting rid of cancerous cells: were getting to the root of their resistance to treatment leukemic stem cells that lie dormant.

The study results suggest that such therapy would also be effective in other types of cancer stem cells, such as those that cause breast cancer, that also rely on NOTCH1 for self-renewal.

Therapies based on monoclonal antibodies that inhibit NOTCH 1 are much more selective than using gamma-secretase inhibitors, which also block other essential cellular functions in addition to the NOTCH1 signaling pathway, said contributor A. Thomas Look, MD of Dana-Farber/Children Hospital Cancer Center in Boston. We are excited about the promise of NOTCH1-specific antibodies to counter resistance to therapy in T-ALL and possibly additional types of cancer.

In investigating the role of NOTCH1 activation in cancer cell cloning, the researchers showed that leukemia initiating cells possess enhanced survival and self-renewal potential in specific blood-cell, or hematopoietic, niches: the microenvironment of the body in which the cells live and self-renew.

The scientists studied the molecular characterization of CD34+ cells a protein that shows expression in early hematopoietic cells and that facilitates cell migration from a dozen T-ALL patient samples.

See the original post here:

Researchers Block Pathway to Cancer Cell Replication

Generating dopamine via cell therapy for Parkinson's disease

Public release date: 2-Jul-2012 [ | E-mail | Share ]

Contact: Sarah Jackson press_releases@the-jci.org Journal of Clinical Investigation

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's disease patients, such cell therapy options must still overcome technical obstacles before the approach is ready for the clinic. Embryonic stem cell-based transplantation regimens carry a risk of introducing inappropriate cells or even cancer-prone cells. To develop cell purification strategies to minimize these risks, Dr. Lorenza Studer and colleagues at Memorial Sloan Kettering Cancer Center in New York developed three different mouse lines to fluorescently label dopaminergic neurons at early, mid, and late stages of differentiation. Their data suggest that mouse embryonic stem cells induced to the mid stage of neuronal differentiation are best suited for transplantation to replace dopaminergic neurons. Further, their work identified new genes associated with each stage of neuronal differentiation. Their results in the mouse model system help define the differentiation stage and specific attributes of embryonic stem cell-derived, dopamine-generating cells that hold promise for cell therapy applications.

###

TITLE:

Identification of embryonic stem cellderived midbrain dopaminergic neurons for engraftment

AUTHOR CONTACT:

Lorenz Studer

Memorial Sloan Kettering Cancer Center, New York, NY, USA

Phone: 212.639.6126; E-mail: studerl@mskcc.org

Follow this link:

Generating dopamine via cell therapy for Parkinson's disease

Stem-cell research leaders to meet in NUIG

The Irish Times - Monday, July 2, 2012

LORNA SIGGINS

WORLD leaders in stem-cell technology are due to exchange knowledge of potential treatments at a conference opening in NUI Galway today.

Researchers from NUIG, University College Cork and NUI Maynooth will participate in the event, which has been billed as the first major conference on stem-cell therapy in Ireland.

Prof Anthony Hollander of the University of Bristol, England who was one of a team which successful created and then transplanted the first tissue-engineered trachea or windpipe is among a number of international speakers presenting findings.

The gathering will focus on the realities of stem-cell treatment, Prof Frank Barry, director of NUIGs National Centre for Biomedical Engineering Science has said.

The therapy is complex and controversial, and sometimes exaggerated claims are made, he said.

The researchers are specialists in Mesenchymal, or adult, stem cells, and will be concentrating on what is likely in the future, he added.

The list of conditions which could be treated successfully by stem cells is small, but growing, Prof Barry said.

Leukaemia and other diseases of the blood appear to respond best.

Read more from the original source:

Stem-cell research leaders to meet in NUIG

Generating dopamine via cell therapy for Parkinson’s disease

Public release date: 2-Jul-2012 [ | E-mail | Share ]

Contact: Sarah Jackson press_releases@the-jci.org Journal of Clinical Investigation

In Parkinson's disease, the loss of dopamine-producing cells in the midbrain causes well-characterized motor symptoms. Though embryonic stem cells could potentially be used to replace dopaminergic (DA) neurons in Parkinson's disease patients, such cell therapy options must still overcome technical obstacles before the approach is ready for the clinic. Embryonic stem cell-based transplantation regimens carry a risk of introducing inappropriate cells or even cancer-prone cells. To develop cell purification strategies to minimize these risks, Dr. Lorenza Studer and colleagues at Memorial Sloan Kettering Cancer Center in New York developed three different mouse lines to fluorescently label dopaminergic neurons at early, mid, and late stages of differentiation. Their data suggest that mouse embryonic stem cells induced to the mid stage of neuronal differentiation are best suited for transplantation to replace dopaminergic neurons. Further, their work identified new genes associated with each stage of neuronal differentiation. Their results in the mouse model system help define the differentiation stage and specific attributes of embryonic stem cell-derived, dopamine-generating cells that hold promise for cell therapy applications.

###

TITLE:

Identification of embryonic stem cellderived midbrain dopaminergic neurons for engraftment

AUTHOR CONTACT:

Lorenz Studer

Memorial Sloan Kettering Cancer Center, New York, NY, USA

Phone: 212.639.6126; E-mail: studerl@mskcc.org

Read more here:
Generating dopamine via cell therapy for Parkinson's disease

Researcher hunts for sickle cell anemia cure

Halfway around the world in India, Sivaprakash Ramalingam had heard of Johns Hopkins researchers using a promising new technique for gene therapy that he hoped to integrate with stem cells to cure diseases.

After getting a doctorate in biochemistry in his native country, he came to Baltimore four years ago to study under the technique's pioneer, Srinivasan Chandrasegaran, at Hopkins' Bloomberg School of Public Health. Ramalingam's research has led him down the path of seeking a cure for sickle cell anemia, a painful, life-shortening blood disorder that afflicts many in his home region in southern India. In the United States, the disease affects 70,000-100,000 people, mostly African-Americans, according to the National Heart Lung and Blood Institute.

"I couldn't have done this type of research in India," said Ramalingam. "I wanted to use this technique with stem cells to treat disease."

Ramalingam's research was given a lift last month by the state. He was one of 17 researchers who was funded by the Maryland Stem Cell Research Commission, a state entity that has doled out roughly $10 million to $12 million a year in taxpayer funds since its founding in 2006.

The program helps keep Maryland competitive in stem cell research when other states have instituted similar ones to lure scientists and biotechnology companies. More than 100 researchers applied for funding from the program, many from Johns Hopkins and the University of Maryland.

"There's definitely a great demand for the awards," said Dan Gincel, the commission's director. "We're trying to figure out how to fund so many researchers."

Gincel said Ramalingam's work is interesting because his approach could have applications beyond sickle cell anemia. It could be used to treat other diseases and, for instance, modify plants and crops to make them resistant to pests.

Ramalingam received a $110,000 award two years ago from the commission to help fund his post-doctoral fellowship; the commission invested more money in his work this year because he was continuing to progress with it, Gincel said.

"The approach can be translated to many other diseases, which is what we want to see with stem cells," said Gincel.

Ramalingam is applying a relatively new technique called zinc finger nuclease, or ZFN, to try to cure sickle cell anemia. With ZFN, Ramalingam is able to target and replace specific, problem-causing sequences of the human genome with healthier genetic material.

Link:
Researcher hunts for sickle cell anemia cure

Former Auburn coach getting stem cell treatments for Lou Gehrig’s disease

MOBILE, Alabama -- The Baldwin County doctor that treated former Alabama football players with adult stem cells also has treated at least two people diagnosed with amyotrophic lateral sclerosis, also known as Lou Gehrigs disease.

One of the ALS patients, former NFL football player and college coach Frank Orgel, recently underwent a new stem cell reprogramming technique performed by Dr. Jason R. Williams at Precision StemCell in Gulf Shores.

Before the injections, Orgels health had declined. He could not move his left arm or leg. He couldnt walk or stand on his own, he said.

Within a few days of having the stem cell treatment, Orgels constant muscle twitching diminished, said Bob Hubbard, director of stem cell therapy at the practice. Within weeks, he was able to walk in a pool of water and stand unassisted.

I think its helped me, said Orgel, who was a defensive coordinator at Auburn under former head coach Pat Dye. Im walking in the pool and I used to drag my feet. Now my left leg is picking up.

ALS is a progressive neuro-degenerative disease that affects nerve cells in the brain and the spinal cord. The progressive degeneration of the motor neurons in ALS eventually leads to death, according to the ALS Association.

Stem cells, sometimes called the bodys master cells, are precursor cells that develop into blood, bones and organs, according to the U.S. Food and Drug Administration, which regulates their use. Their promise in medicine, according to many scientists and doctors, is that the cells have the potential to help and regenerate other cells.

While Williams treatments are considered investigational, he has said, they meet FDA guidelines because the stem cells are collected from a patients fat tissue and administered back to that patient during the same procedure.

Orgel, 74, said Williams told him it would take between eight months to a year for his nerves to regrow. He is traveling to Gulf Shores from his home in Albany, Ga., this weekend for another stem cell treatment, Orgel said: I need to get to where I can walk.

In recent years, Orgel has gone to Mexico at least three times for different types of treatments, not sanctioned in the U.S. At least once, he said, he had placenta cells injected into his body. That didnt work, Orgel said. I didnt feel any better.

Visit link:
Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Researcher hunts for sickle cell anemia cure with gene targeting, stem cells

Halfway around the world in India, Sivaprakash Ramalingam had heard of Johns Hopkins researchers using a promising new technique for gene therapy that he hoped to integrate with stem cells to cure diseases.

After getting a doctorate in biochemistry in his native country, he came to Baltimore four years ago to study under the technique's pioneer, Srinivasan Chandrasegaran, at Hopkins' Bloomberg School of Public Health. Ramalingam's research has led him down the path of seeking a cure for sickle cell anemia, a painful, life-shortening blood disorder that afflicts many in his home region in southern India. In the United States, the disease affects 70,000-100,000 people, mostly African-Americans, according to the National Heart Lung and Blood Institute.

"I couldn't have done this type of research in India," said Ramalingam. "I wanted to use this technique with stem cells to treat disease."

Ramalingam's research was given a lift last month by the state. He was one of 17 researchers who was funded by the Maryland Stem Cell Research Commission, a state entity that has doled out roughly $10 million to $12 million a year in taxpayer funds since its founding in 2006.

The program helps keep Maryland competitive in stem cell research when other states have instituted similar ones to lure scientists and biotechnology companies. More than 100 researchers applied for funding from the program, many from Johns Hopkins and the University of Maryland.

"There's definitely a great demand for the awards," said Dan Gincel, the commission's director. "We're trying to figure out how to fund so many researchers."

Gincel said Ramalingam's work is interesting because his approach could have applications beyond sickle cell anemia. It could be used to treat other diseases and, for instance, modify plants and crops to make them resistant to pests.

Ramalingam received a $110,000 award two years ago from the commission to help fund his post-doctoral fellowship; the commission invested more money in his work this year because he was continuing to progress with it, Gincel said.

"The approach can be translated to many other diseases, which is what we want to see with stem cells," said Gincel.

Ramalingam is applying a relatively new technique called zinc finger nuclease, or ZFN, to try to cure sickle cell anemia. With ZFN, Ramalingam is able to target and replace specific, problem-causing sequences of the human genome with healthier genetic material.

See the rest here:

Researcher hunts for sickle cell anemia cure with gene targeting, stem cells

Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases

SAN DIEGO CA--(Marketwire -06/29/12)- Medistem Inc. (MEDS) announced today notice of allowance from the United States Patent and Trademark Office (USPTO) for a patent covering the use of fat stem cells, and cells associated with fat stem cells for treatment of diseases related to a dysfunctional immune system. Such diseases include multiple sclerosis, Type 1 diabetes, rheumatoid arthritis and lupus. The allowed patent, entitled "Stem Cell Mediated Treg Activation/Expansion for Therapeutic Immune Modulation" has the earliest priority date of December 2006.

"We have previously published that giving multiple sclerosis patients cells extracted from their own fat tissue, which contains stem cells, appears to confer clinical benefit in a pilot study," said Thomas Ichim, CEO of Medistem. "The current patent that has been allowed, in the broadest interpretation of the claims, gives us exclusive rights to the use of specific types of fat stem cell therapy for autoimmune diseases such as multiple sclerosis."

Subsequent to the filing of the patent application, Medistem together with collaborators at the Lawson Health Sciences Research Institute, Canada, reported data that fat tissue contains high numbers of T regulatory cells, a type of immune cell that is capable of controlling autoimmunity.

This finding was independently confirmed by Dr. Diane Mathis' laboratory at Harvard University, who published a paper in the prestigious journal, Nature Medicine, in which detailed experimental evidence was provided supporting the initial finding that adipose tissue contains high numbers of T regulatory cells. A video describing the paper can be accessed at http://www.youtube.com/watch?v=rEJfGu29Rg8.

The current patent discloses the use of T regulatory cells from fat, combinations with stem cells, and use of fat-derived mononuclear cells. Given that there are currently several groups utilizing this technology in the USA in treating patients, Medistem believes revenue can be generated through enforcement of patent rights.

"Our corporate philosophy has been to remain highly focused on our ongoing clinical stage programs using Medistem's universal donor stem cell, the Endometrial Regenerative Cell (ERC), in the treatment of critical limb ischemia and congestive heart failure," said Dr. Vladimir Bogin, Chairman and President of Medistem. "However, due to the ease of implementation of our fat stem cell technology, combined with the major burden that autoimmune diseases have on our health care system, we are highly incentivized to explore partnering, co-development and licensing opportunities."

Autoimmune conditions occur as a result of the body's immune system "turning on itself" and attacking its own organs or cells. Current treatments for autoimmune conditions are based on "globally" suppressing the immune system by administration of immunosuppressive drugs. This is associated with an increased predisposition to infections and significant side effects. The utilization of stem cells and T regulatory cells offers the potential to selectively suppress pathological immunity while preserving the ability of the body to fight bacteria and viruses. According to the NIH there are approximately 23 million victims of autoimmune conditions.

Links to Documents:

Link to peer-reviewed publication: http://www.translational-medicine.com/content/pdf/1479-5876-7-29.pdf

Link: http://www.marketwire.com/press-release/medistem-files-patent-application-on-therapeutic-cell-population-found-in-fat-tissue-frankfurt-s2u-812298.htm

Link:

Medistem Receives Notice of Patent Allowance Covering Fat Stem Cell Therapy of Autoimmune Diseases

Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

MOBILE, Alabama -- The Baldwin County doctor that treated former Alabama football players with adult stem cells also has treated at least two people diagnosed with amyotrophic lateral sclerosis, also known as Lou Gehrigs disease.

One of the ALS patients, former NFL football player and college coach Frank Orgel, recently underwent a new stem cell reprogramming technique performed by Dr. Jason R. Williams at Precision StemCell in Gulf Shores.

Before the injections, Orgels health had declined. He could not move his left arm or leg. He couldnt walk or stand on his own, he said.

Within a few days of having the stem cell treatment, Orgels constant muscle twitching diminished, said Bob Hubbard, director of stem cell therapy at the practice. Within weeks, he was able to walk in a pool of water and stand unassisted.

I think its helped me, said Orgel, who was a defensive coordinator at Auburn under former head coach Pat Dye. Im walking in the pool and I used to drag my feet. Now my left leg is picking up.

ALS is a progressive neuro-degenerative disease that affects nerve cells in the brain and the spinal cord. The progressive degeneration of the motor neurons in ALS eventually leads to death, according to the ALS Association.

Stem cells, sometimes called the bodys master cells, are precursor cells that develop into blood, bones and organs, according to the U.S. Food and Drug Administration, which regulates their use. Their promise in medicine, according to many scientists and doctors, is that the cells have the potential to help and regenerate other cells.

While Williams treatments are considered investigational, he has said, they meet FDA guidelines because the stem cells are collected from a patients fat tissue and administered back to that patient during the same procedure.

Orgel, 74, said Williams told him it would take between eight months to a year for his nerves to regrow. He is traveling to Gulf Shores from his home in Albany, Ga., this weekend for another stem cell treatment, Orgel said: I need to get to where I can walk.

In recent years, Orgel has gone to Mexico at least three times for different types of treatments, not sanctioned in the U.S. At least once, he said, he had placenta cells injected into his body. That didnt work, Orgel said. I didnt feel any better.

Excerpt from:

Former Auburn coach getting stem cell treatments for Lou Gehrig's disease

Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

VANCOUVER -- For the first time ever, University of B.C. scientists have used human embryonic stem cell transplants to reverse Type 1 diabetes in mice with the disease, giving hope to about 300 million people around the world who suffer from the chronic disease.

A 13-member team, whose milestone work is published in the journal Diabetes, shows that after transplantation, the stem cells matured into insulin-secreting, pancreatic beta-cells. The cells automatically sensed blood sugar levels to release the right amount of insulin and a few dozen diabetic mice were gradually weaned off insulin given to them over a period of months.

Insulin is produced by beta-cells to to help the body absorb sugar and use it for energy.

Essentially, the mice were cured of their diabetes by placing the body back in charge of regulated insulin production as it is in healthy, non-diabetics, said lead author Timothy Kieffer.

It took about four to five months for the [stem] cells to become functional in our experiments and the mice were able to maintain good blood glucose levels even when fed a high-glucose diet, said Kieffer, a UBC professor in the department of cellular and physiological sciences.

Type 1 diabetes otherwise known as juvenile diabetes is an autoimmune disease in which a patients immune system kills off insulin-producing cells in the pancreas. About 10 per cent of diabetics are Type 1 and typically, they must inject themselves with insulin or use pumps to control their blood glucose levels.

While pancreatic islet cell transplantation pioneered at the University of Alberta several years ago has been shown to be an effective way of reducing dependence on insulin injections, the treatment is costly and cumbersome as it requires donor cells from cadavers, which are always in short supply. As well, islet cell transplant patients must forever take anti-rejection drugs that can cause organ damage.

In the study methodology, mice were anesthetized and then injected with millions of cells derived from stem cells which were placed under the left kidney area.

Although the research showed that stem cells may one day provide a cure for diabetes, it also revealed hurdles to overcome before agencies like the Food and Drug Administration in the United States or Health Canada can approve the therapy.

For example, some mice developed bone or cartilage in areas where the cells were inserted, an unacceptable side-effect that future experiments must resolve.

View post:

Diabetes breakthrough: UBC scientists reverse disease in mice using stem-cell transplants

Stem Cell Breakthrough Significant For Degenerative Diseases

Featured Article Academic Journal Main Category: Stem Cell Research Also Included In: Eye Health / Blindness;Diabetes;Multiple Sclerosis Article Date: 28 Jun 2012 - 0:00 PDT

Current ratings for: Stem Cell Breakthrough Significant For Degenerative Diseases

4.6 (10 votes)

But it is a long journey from showing something works in the research lab to using it safely and ethically in patients, and there are many hurdles.

One such hurdle is providing stem cells lines "developed under stringent ethical guidelines, from traceable and tested donors, preferably in an animal-free, GMP-grade culture system," write the researchers in a comprehensive paper published online on 20 June in the open access journal PLoS ONE.

Another, is to ensure the hESCs meet safety criteria, and do not have traces of animal components, such as from mice and cows, as these can introduce the risk of animal pathogens running amok in the patient's body.

Now after 12 years of painstaking work, researchers at the Hadassah University Medical Center in Jerusalem, have announced they have created three new lines of "xeno-free and GMP-grade human embryonic stem cells".

In their paper, lead investigator professor Benjamin Reubinoff, a world-renowned stem-cell pioneer and the new chairman of obstetrics/gynecology at the Ein Kerem medical center, and colleagues, describe the journey they took to produce clinically-compliant hESCs.

They conclude that the three hESC lines they produced "may be valuable for regenerative therapy".

And they also suggest that the "ethical, scientific and regulatory methodology" they followed may serve as a model for developing further clinical-grade hESCs.

See original here:

Stem Cell Breakthrough Significant For Degenerative Diseases