Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

As scientists get closer to using embryonic stem cells in new treatments for blindness, spinal cord injuries and heart disease, a U.S. legal debate could determine who profits from that research.

Consumer Watchdog, a nonprofit advocacy group, wants an appeals court to invalidate a University of Wisconsin-Madisons patentfor stem cells derived from human embryos, saying its too similar to earlier research. The Santa Monica, California, group also says the U.S. Supreme Courts June ruling limiting ownership rights of human genes should apply to stem cells, a potentially lucrative field for medical breakthroughs.

The challenge to Wisconsin Alumni Research Foundation, the universitys licensing arm, is about whether patents help or hinder U.S. stem-cell research, which has been stymied by political debate. The consumer group says it drives up the cost of research by requiring companies and some academics to pay a licensing fee to the university.

What were asking the government to do is say WARF has no right to the patent, said Dan Ravicher, executive director Public Patent Foundation in New York, which is handling the challenge for Consumer Watchdog. Its like the government sent a check to WARF they didnt deserve.

Consumer Watchdog lost a challenge at the U.S. Patent and Trademark Office in January 2013. It wants the Court of Appeals for the Federal Circuit in Washington to review that decision and consider new arguments based on the Supreme Courts finding that genes -- like stem cells -- are a natural material that cant be patented. Beyond the science question, the case has become a flashpoint over how far members of the public can go to invalidate patents on policy grounds.

While the patent expires in April 2015 and the university has other stem-cell-related patents, Consumer Watchdog is continuing a six-year battle to invalidate it because stem-cell research is starting to get some traction into therapeutic uses, Ravicher said.

The promise of embryonic stem cells is to create or repair tissues and organs using material taken from eggs fertilized in the laboratory. The cells created can be replicated indefinitely, and with the right biological cues, may aid in treating damaged heart tissue and spinal cords, or generate therapies for diabetes and cancer. Companies like StemCells Inc. (STEM) and Advanced Cell Technology Inc. are testing therapies to treat macular degeneration, a cause of blindness.

The next paradigm shift in medicine will be advances in cell therapy -- its under way, said Jason Kolbert, senior biotechnology analyst with Maxim Group LLC in New York. He said pharmaceutical makers such as Teva Pharmaceutical Industries Ltd. (TEVA) of Petach Tikva, Israel, and Pfizer (PFE) Inc. of New York are working with stem-cell researchers on new therapies.

Stem-cell science in the U.S. was curbed in 2001 when then-President George W. Bush issued an executive order limiting research to existing cell lines amid controversy over human embryo destruction, even though they were never in a womans uterus. President Barack Obama reversed that order in 2009.

Some scientists have avoided the public debate by using adult cells to find the unlimited potential they have in embryonic cells.

Originally posted here:

Gene Patent Case Fuels U.S. Court Test of Stem Cell Right

West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

Orange County, CA (PRWEB) January 06, 2014

Top West Coast Stem Cell Clinic, TeleHealth, is now offering stem cell injections for ligament sprains. This includes injuries of the ankle, knee, wrist and other extremity joints. Board Certified doctors administer the outpatient injections which can help patients heal quicker than conventional treatments. For more information and scheduling, call (888) 828-4575.

In adults, ligament sprains can take months to heal due to limited blood supply and healing potential. This can keep athletes off the field and inhibit the ability of even recreational athletes to walk and run without pain.

Conventional pain relief treatments are able to provide pain relief. This may include steroid injections or anti-inflammatories by mouth. However, these treatments do not alter the course of the healing.

With the advent of regenerative medicine treatments, the potential exists for quicker healing. These treatments include fat or bone marrow derived stem cell injections along with platelet rich plasma therapy.

Platelet rich plasma therapy, known as PRP therapy, involves a simple blood draw from the patient. The blood is spun in a centrifuge, which concentrates the platelets and growth factors. These are then injected into the area of ligament injury.

With the fat or bone marrow derived stem cells, the material is harvested in an outpatient procedure from the patient. It is processed immediately to concentrate the patient's stem cells and then injected right away into the injured region.

Small published studies have shown the treatment to be very effective for healing the injuries faster than with conventional treatments. There is low risk involved, the treatments are outpatient and performed by highly experienced Board Certified doctors who have over twenty years combined experience in regenerative medicine treatments.

Along with the injections for ligament injury, stem cell injections are also offered for degenerative arthritis, rotator cuff injury, back and neck pain, achilles tendonitis, plantar fasciitis and more.

TeleHealth has two offices for treatment, one in Orange and a second in Upland, CA. Call (888) 828-4575 for more information and scheduling.

Here is the original post:

West Coast Stem Cell Clinic, TeleHealth, Now Offering Stem Cell Injections for Ligament Sprains

Stem cell transplant problem solved, UCSD-led study says

(This is my blog post about the embryonic stem cell study. For my news article about the study, go here.)

Genetically modified human embryonic stem cells can solve one of the toughest problems facing embryonic stem cell therapy, immune rejection of transplanted cells, may have been solved, according to a UC San Diego-led research team.

The cells can be made invisible to the immune system by genetically modifying them to make two immune-suppressing chemicals, according to a study performed in mice given a human immune system. Immune functioning in the rest of the animal remains active. The immune protection also applies to differentiated cells derived from the stem cells.

If the approach works in people, patients receiving transplanted tissue or organs made from embryonic stem cells wouldn't have to take harsh immune-suppressing drugs, said Yang Xu, a UCSD professor of biology. The method also may prevent immune rejection of tissues grown from other types of stem cells.

These arehumanized laboratory mice that contain a functional human immune system. Such mice have been used for years; a UCSD research team developed a model with a stronger immune response to test their immune-suppressing tissues. / Zhili Rong, UCSD

Researchers placed genes in the stem cells to produce the two chemicals, CTLA4-lg and PD-L1, naturally made in the body. The humanized immune systems of the mice accepted transplants of cells engineered to make the chemicals. The researchers transplanted cardiomyocytes and fibroblasts derived from the engineered stem cells. Transplants derived from regular embryonic stem cells were rejected.

The study was published online Thursday in the journal Cell Stem Cell. Its findings will have to be confirmed for safety and effectiveness in more animal studies before human trials can be considered, which will take years. The mouse model itself was "optimized" for the study to more faithfully reflect the human immune system than other immune models, the study said.

Xu said a further study is being considered in monkeys, a large animal model considered to better reflect human biology than mice.

Embryonic stem cells are being tested along with many other kinds of stem cells to replace diseased or destroyed body parts, such as spinal cord segments and insulin-producing beta cells in the pancreas. All of these cells have advantages and drawbacks. Immune rejection, along with a tendency to form tumors, are two big drawbacks to embryonic stem cells.

San Diego-based ViaCyte is preparing to test a therapy with beta cells within a year. The company encapsulates them in a permeable barrier that allows insulin to diffuse out but prevents the immune system from entering. However, that approach won't worth with transplants that must integrate into the body, such as spinal cord tissue. So a way of turning off the immune system just in those cells is an attractive idea.

Read the original:

Stem cell transplant problem solved, UCSD-led study says

Chemist Direct reports continued benefits of stem cell research for potential tissue regeneration

London (PRWEB UK) 3 January 2014

Research on how to harness the potential use of stem cells for common conditions is a worldwide subject of scientific discovery spanning over 3 decades. Incredible results in laboratory experiments have been recorded in 2013 for areas such as tissue regeneration for coronary disease, diabetes, cancer, Parkinsons and Alzheimers disease. All stem cells, whether gathered from an early embryo, a foetus or an adult, have two key properties.

Stem cells have the ability to replicate themselves as needed and can generate any specialised cells that make up the tissues and organs of the body with proper direction. This opens up an exciting potential for the generation of therapies for repair and replacement of damaged and diseased tissues and organs, as models for the testing of new drugs and helping us to understand at a cellular level what goes wrong in many conditions. 1

Stem cells derived from bone marrow or fat has been found to improve recovery from stroke in experiments using rats. This study was published in BioMed Central's open access journal Stem Cell Research & Therapy early last year. Treatment with stem cells improved the amount of brain and nerve repair and the ability of the animals to complete behavioural tasks. Using stem cell therapy holds promise for patients but there are still many questions which need to be answered, regarding treatment protocols and which cell types to use. 2

Other areas in which stem cell transplants are already being successfully used in the clinic trials are for treatment for spinal lesions and the regeneration of epidermal surfaces and in leukaemia, where stem cells are replaced during stem cell-containing bone marrow transplants. 3 These treatments demonstrate the potential of stem cells and intensive research is being performed all over the world to improve our understanding of stem cells and how these can be used therapeutically for PD.

Recently published research by a team of scientists in Wales has shown early signs of being able to regenerate damaged heart tissue. By experimenting at Cardiff and Swansea university laboratories, a team of scientists working in the private sector hopes to develop new treatments for heart failure over the next five years.

In a statement for the research team Ajan Reginald said, "We've identified what we think is a very potent type of stem cell which is heart specific. The interim analysis looks very positive and very fortunately the study does show some signs of early regeneration. What the therapy does is reproduce more cells in large numbers to regenerate the part of the heart that is damaged. The first stage of clinical trial is now completed which was focused on safety. 4

Further research during the next five years will produce more alternative solutions to diseases which currently have treatment but no permanent cures for. 5

References

1.http://www.hta.gov.uk/_db/_documents/stem_cell_pack_200806170144.pdf 2.http://www.parkinsonsnsw.org.au/assets/attachments/research/Stem-Cells.pdf 3.http://stemcellres.com/content/4/1/11 4.http://www.bbc.co.uk/news/uk-wales-25560547 5.http://www.cell.com/stem-cell-reports/abstract/S2213-6711(13)00126-4#Summary

Originally posted here:

Chemist Direct reports continued benefits of stem cell research for potential tissue regeneration

Stem cell therapy breakthrough

Human embryonic stem cells have the capacity to differentiate into a variety of cell types, making them a valuable source of transplantable tissue for the treatment of numerous diseases, such as Parkinson's disease and diabetes.

But theres one major issue: Embryonic stem cells are often rejected by the human immune system.

Now, researchers from the University of California San Diego may have found an effective way to prevent this rejection in humans. Utilizing a novel humanized mouse model, the scientists have revealed a unique combination of immune suppressing molecules that stop the immune system from attacking the injected stem cells without shutting the system down completely.

This discovery could ultimately help resolve some of the major problems currently limiting the use of embryonic stem cells for certain conditions, paving the way for the development of more effective human stem cell therapies.

This is a generic way of immune suppression, so it could potentially be applied not just for stem cells therapies, but for organ transplants as well, Yang Xu, a professor of biology at UC San Diego and lead author of the study, told FoxNews.com. It can be very broad.

Embryonic stem cells are different from the other cells in a patients body, making them allogenic. This means the immune system will recognize them as foreign agents and attack them.

One way of overcoming this rejection problem is to give patients immunosuppressant drugs, which suppress the entire immune system. While short term use of immunosuppressants has been successful for many organ transplants, embryonic stem cell therapies for chronic diseases require long term use of these drugs which can often be very toxic and increase the risk of cancer.

In order for the patient to really use this therapy, they have to decide: Do they want a lifelong use of immunosuppressant drugs, or are they willing to live with the symptoms of their disease, Xu said.

To figure out a way of bypassing this issue, researchers needed a relevant model that could closely mimic the human immune systems response to embryonic stem cell transplantation. To do this, they took immune deficient lab mice and grafted them with human fetal thymus tissues and hematopoietic stem cells derived from the fetal liver.

Essentially, this created a highly specialized mouse model with very robust T cells capable of effectively rejecting foreign embryonic stem cells just like human T cells.

Read more here:
Stem cell therapy breakthrough

FEMA Search and Rescue Canine Receives Stem Cell Therapy So He Can Continue to Save Lives

Poway, CA (PRWEB) January 02, 2014

Phizer is a seven year old black lab belonging to Ohio Task Force 1 that recently had stem cell therapy by Vet-Stem, Inc. Phizer was brought to Cleveland Road Animal Hospital for a limp in his right hind. Dr. Chad Bailey recommended stem cell therapy. Both Vet-Stem and Cleveland Road Animal Hospital value the working dog and offered their services pro-bono in hopes that Phizers stem cell therapy would permit him to continue to provide search and rescue service.

Phizer is one of only five search and rescue canines owned by Ohio Task Force 1, one of 28 Task Forces across the US that make up the FEMA Urban Search and Rescue System. Phizer is trained to find living victims who may be trapped under collapsed buildings. He is unique because he is certified to work with more than one handler meaning that he can be used on more missions. If one of his handlers is not available the other may be. Phizer is trained to cover obstacles and treacherous terrain, climb metal ladders and investigate acres of terrain quickly and efficiently. These skills came in handy when Phizer was assigned to a mission recovering victims from hurricane Sandy.

Handlers Maureen May and Deana Hudgins noticed an intermittent limp in Phizers right rear leg when he first started moving, but got better with exercise. Although the limp was not preventing Phizer from his job, he was started on pain medicine, joint supplements and taken for exams to the local veterinarian. His radiology report showed signs consistent with mild degenerative joint disease in addition to another injury. Deana and Dr. Bailey started Phizer on injectable treatments, laser therapy, and discussed stem cells.

Since Phizers stem cell therapy used his own stem cells, a small portion of fat was collected and sent to Vet-Stems lab in California. Within 48 hrs the doses of stem cells were ready for injection by Dr. Bailey. Stem cells are regenerative cells that can differentiate into many tissue types and reduce pain and inflammation thus helping to restore range of motion and regenerate tendon, ligament and joint tissues (http://www.vet-stem.com/science). For Phizer this means that all of the issues identified in his exams may be helped with one therapy.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

See more here:
FEMA Search and Rescue Canine Receives Stem Cell Therapy So He Can Continue to Save Lives

Scientists discover new way of overcoming human stem cell rejection

Human embryonic stem cells have the capacity to differentiate into a variety of cell types, making them a valuable source of transplantable tissue for the treatment of numerous diseases, such as Parkinson's disease and diabetes.

But theres one major issue: Embryonic stem cells are often rejected by the human immune system.

Now, researchers from the University of California San Diego may have found an effective way to prevent this rejection in humans. Utilizing a novel humanized mouse model, the scientists have revealed a unique combination of immune suppressing molecules that stop the immune system from attacking the injected stem cells without shutting the system down completely.

This discovery could ultimately help resolve some of the major problems currently limiting the use of embryonic stem cells for certain conditions, paving the way for the development of more effective human stem cell therapies.

This is a generic way of immune suppression, so it could potentially be applied not just for stem cells therapies, but for organ transplants as well, Yang Xu, a professor of biology at UC San Diego and lead author of the study, told FoxNews.com. It can be very broad.

Embryonic stem cells are different from the other cells in a patients body, making them allogenic. This means the immune system will recognize them as foreign agents and attack them.

One way of overcoming this rejection problem is to give patients immunosuppressant drugs, which suppress the entire immune system. While short term use of immunosuppressants has been successful for many organ transplants, embryonic stem cell therapies for chronic diseases require long term use of these drugs which can often be very toxic and increase the risk of cancer.

In order for the patient to really use this therapy, they have to decide: Do they want a lifelong use of immunosuppressant drugs, or are they willing to live with the symptoms of their disease, Xu said.

To figure out a way of bypassing this issue, researchers needed a relevant model that could closely mimic the human immune systems response to embryonic stem cell transplantation. To do this, they took immune deficient lab mice and grafted them with human fetal thymus tissues and hematopoietic stem cells derived from the fetal liver.

Essentially, this created a highly specialized mouse model with very robust T cells capable of effectively rejecting foreign embryonic stem cells just like human T cells.

Here is the original post:

Scientists discover new way of overcoming human stem cell rejection

stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india – Video


stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india
[gujarati] improvement seen in just 5 days after stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india. Stem Cell Thera...

By: Neurogen Brain and Spine Institute

Follow this link:
stem cell therapy treatment for beckers muscular dystrophy by dr alok sharma, mumbai, india - Video

Stem cell treatment hope for York Parkinson’s Disease sufferer

James DeLittle, 49, of Broadway West in Fulford, to travel to Kiev for stem cell treatment

11:27am Wednesday 1st January 2014 in News By Mike Laycock, Chief reporter

James DeLittle

A PARKINSONS Disease sufferer from York is to travel to Kiev for pioneering stem cell treatment, in a last-ditch bid to tackle his worsening condition.

James DeLittle, 49, hopes the two-day treatment in the Ukrainian capital will lessen his symptoms, which include poor balance, tremor, difficulties controlling his limbs and slurred speech.

Jamess mother, relatives and customers at three pubs in the York and Selby area have scraped together about 7,000 to pay for foetal stem cells to be injected into his stomach and arms.

His condition has worsened significantly in recent months, causing him to fall several times, suffering injuries including a broken nose, ribs and thumb joint.

James, of Broadway West in Fulford, said: As far as I know, Im the first person from the UK to go to the clinic and I would love to come back with an improvement in my condition to show all the other people with Parkinsons how they might benefit too.

The NHS doesnt support the treatment at this stage so weve had to raise the money.

More than 700 has been raised by bottles on the bars at the Huntsman at Drax, and the Plough Inn and the Bay Horse at Fulford.

Read the original:
Stem cell treatment hope for York Parkinson's Disease sufferer

stem cell therapy treatment for spinal muscular atrophy by dr alok sharma, mumbai, india – Video


stem cell therapy treatment for spinal muscular atrophy by dr alok sharma, mumbai, india
improvement seen in just 3 months after stem cell therapy treatment for spinal muscular atrophy by dr alok sharma, mumbai, india. Stem Cell Therapy done date...

By: Neurogen Brain and Spine Institute

Original post:

stem cell therapy treatment for spinal muscular atrophy by dr alok sharma, mumbai, india - Video

A paradigm-shifting step in stem cell research

Dec 31, 2013 by John Steeno

(Phys.org) A team of engineers at the University of Wisconsin-Madison has created a process that may revolutionize stem cell research. The process, outlined in a paper published in Stem Cells on December 19, 2013, will improve the state of the art in the creation of synthetic neural stem cells for use in central nervous system research.

Human pluripotent stem cells have been used to reproduce nervous-system cells for use in the study and treatment of spinal cord injuries and of diseases such as Parkinson's and Huntington's. Currently, most stem cells used in research have been cultured on mouse embryonic fibroblasts (MEFs), which require a high level of expertise to prepare. The expertise required has made scalability a problem, as there can be slight differences in the cells used from laboratory to laboratory, and the cells maintained on MEFs are also undesirable for clinical applications.

Removing the high level of required skilland thereby increasing the translatability of stem cell technologyis one of the main reasons why Randolph Ashton, a UW-Madison assistant professor of biomedical engineering and co-author of the paper, wanted to create a new protocol.

Rather than culturing stem cells on MEFs, the new process uses two simple chemical cocktails to accomplish the same task. The first mixture, developed by John D. MacArthur Professor of Medicine James Thomson in the Morgridge Institute for Research, is used to maintain the stem cells in the absence of MEFs. The second cocktail allows researchers to push the stem cells toward a neural fate with very high efficiency.

These chemical mixtures help to ensure the consistency of the entire process and give researchers a better understanding of what is driving the differentiation of the cells. "Once you remove some of the confounding factors, you have better control and more freedom and flexibility in terms of pushing the neural stem cells into what you want them to become," says Ashton.

Streamlining the process also removes some of the ambiguities that were inserted with MEFs. And Ashton hopes the straightforward protocol will enable other labs to engage in more complex tissue engineering. "Ours is the simplest, fastest and most efficient way to generate these types of cells," he says.

Ethan Lippmann, a postdoctoral fellow at the Wisconsin Institute for Discovery and co-author on the paper, says the major impact of this new process on other labs will be two-fold. "It's incredibly easy and simplified, and you can buy everything 'off the shelf,' so to speak," he says. "This should allow other researchers who are not stem cell experts to adapt this protocol to their own labs. We also want people to look at the things we do, as we generate more specialized neural cell types using this protocol, and feel comfortable that they can be translated to a clinic."

Explore further: HEXIM1 regulatory protein induces human pluripotent stem cells to adopt more specialized cell fate

A lot of optimism and promise surrounds the use of human pluripotent stem cells (hPSCs)for applications in regenerative medicine and drug discovery. However, technical challenges still hamper the culturing ...

See original here:

A paradigm-shifting step in stem cell research

Stem cells, juicing, Piloxing, triathlon, workout apps–health and wellness on overdrive

Back to basicsCaveman workout is the choice for functional training.

Swim, bike and runtriathlon became even more popular in 2013.

It was the year stem cell therapy became a household name.

Although the science has been around for half a century in Europe, it was not until the Asian Institute of Longevity Medicine (AILM) opened its doors to Filipinos in 2009 that stem cell therapy took off in the country.

Today, AILMs German-based partner, Tissue and Cell Banking (Ticeba), headed by its founder and managing director Dr. Christoph Ganss, is one of the countrys most sought-after stem cell therapy consultants.

If you think that, because of its exceedingly high price tag, stem cell therapy would catch on only among the well-heeled, think again. Entrepreneurial Pinoys saw the potential moneymaker in the name, and soon peddlers began brandishing everything from stem cell water to stem cell fertility kits.

Another top hit of 2013 is juicing/detox. Now a multibillion-dollar industry in the United States, juicingwhile it has been practiced by many vegans and vegetarians in the Philippines since the early 2000sbecame big this year when the Australian documentary filmmaker and juicing advocate Joe Cross visited the country.

Today, there are three major competing organic juice brands on the market.

Organic produce

Vegan food the five-star way

Original post:
Stem cells, juicing, Piloxing, triathlon, workout apps–health and wellness on overdrive

Plantar Fasciitis Now Being Treated With Stem Cells

Plantar fasciitis, a chronic pain condition involving the sole of the foot, is now being treated using regenerative medicine like stem cell therapy, and offering the first form of real relief for many sufferers.

Plantar fasciitis affects millions of Americans, and is a condition in which the plantar fascia the thick tissue covering the sole of the foot is inflamed, causing severe pain on the bottom of the foot, and impeding activities such as running and walking.

The plantar fascia tissue is what connects the heel bone to the toes, thus creating the arch of the foot.

Traditional treatments for the debilitating injury have offered some relief in recent years through the use of physical therapy, NSAIDS, and steroid injections. However, these types of pain relief develop slowly over time, and are not an effective way to truly treat the problem. Stem cell therapy is going beyond these typical treatments, treating the root cause of the issue, and are often able to alleviate pain more quickly and with longer-lasting results.

Clinics in Arizona and California are just two examples of offices now offering stem cell injections of adult bone marrow and both fat- and amniotic-derived materials. Board certified pain management doctors at the Arizona Pain Stem Cell Institute, in Phoenix, and TeleHealth, in southern California, are giving patients suffering from the condition a low risk, outpatient alternative to corrective surgery.

Many other U.S. states now have pain treatment centers offering the plantar fasciitis stem cell therapy, as well.

Main image courtesy Nevit Dilmen via Wikimedia Commons.

Excerpt from:
Plantar Fasciitis Now Being Treated With Stem Cells