TiGenix : reaches major cell therapy milestone with 1000th.

REGULATED INFORMATION FEBRUARY 4, 2014

TiGenix reaches major cell therapy milestone with 1000th implant of ChondroCelect

Leuven (BELGIUM) - February 4, 2014 - TiGenix (NYSE Euronext: TIG), a leader in the field of cell therapy, announced today that it reached a major milestone with the performance of the 1000th ChondroCelect implantation for cartilage repair in the knee. ChondroCelect is the first cell therapy that was granted approval by the European Medicines Agency (EMA) as an Advanced Therapy Medicinal Product (ATMP). Today it is routinely used in orthopedic centers of excellence across several European countries.

"A 1000 patients have already benefited from this innovative therapy, further supporting its efficacy and safety profile," said Eduardo Bravo, CEO of TiGenix. "A milestone such as today's is a clear demonstration of how far the cell therapy field has progressed over recent years, and I have no doubt that it is on its way to become a mainstay in clinical practice. We will continue to work towards turning our ChondroCelect franchise into a cash flow positive asset, and to push the clinical development of our pipeline of stem cell programs to a successful conclusion."

About ChondroCelect An innovative treatment, ChondroCelect has been shown to result in long-term durable clinical benefits in patients with recent cartilage lesions. Five-year follow-up data confirm that the therapeutic effect and the clinical benefit of ChondroCelect gained over baseline is maintained up to at least five years after the cartilage repair intervention. In addition, the data confirm that early treatment with ChondroCelect results in a superior clinical benefit over microfracture, and a lower failure rate.

Cartilage lesions of the knee are a frequent cause of disability in the active population. Caused by repetitive microtraumata, or due to sports or traffic accidents, cartilage lesions rarely heal spontaneously. When untreated, they predispose to osteoarthritis, which causes disability and represents a major socioeconomic burden. A treatment that allows symptom relief and functional recovery is key. To meet this important medical need, TiGenix developed ChondroCelect, the first cell therapy that was granted approval by the EMA as an ATMP.

ChondroCelect is administered to patients in an autologous chondrocyte implantation procedure known as Characterized Chondrocyte Implantation. TiGenix has designed a sophisticated manufacturing process to preserve the cells' characteristics and biological activity, and to maintain their ability to produce high quality cartilage. This process meets the highest quality standards and has been approved by the EMA.

For more information: Eduardo Bravo Chief Executive Officer eduardo.bravo@tigenix.com

Claudia D'Augusta Chief Financial Officer claudia.daugusta@tigenix.com

About TiGenix

Read more here:
TiGenix : reaches major cell therapy milestone with 1000th.

therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, – Video


therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai,
improvement seen in just 5 days after stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, india. Stem Cell Therapy done date 31 Dec 201...

By: Neurogen Brain and Spine Institute

Visit link:

therapy treatment for stem cell therapy treatment for cerebral palsy by dr alok sharma, mumbai, - Video

Salk Institute and Stanford University to Lead New $40 Million Stem Cell Genomics Center

Contact Information

Available for logged-in reporters only

Newswise LA JOLLAThe Salk Institute for Biological Studies will join Stanford University in leading a new Center of Excellence in Stem Cell Genomics, created through a $40 million award by California's stem cell agency, the California Institute for Regenerative Medicine.

The center will bring together experts and investigators from seven different major California institutions to focus on bridging the fields of genomics the study of the complete genetic make-up of a cell or organism with cutting-edge stem cell research.

The goal is to use these tools to gain a deeper understanding of the disease processes in cancer, diabetes, endocrine disorders, heart disease and mental health, and ultimately to find safer and more effective ways of using stem cells in medical research and therapy.

"The center will provide a platform for collaboration, allowing California's stem cell scientists and genomics researchers to bridge these two fields," says Joseph Ecker, a Salk professor and Howard Hughes Medical Institute and Gordon and Betty Moore Foundation Investigator. "The Center will generate critical genomics data that will be shared with scientists throughout California and the rest of the world."

Ecker, holder of the Salk International Council Chair in Genetics, is co-director of the new center along with Michael Snyder, a professor and chair of genetics at Stanford.

Salk and Stanford will lead the center, and U.C. San Diego, Ludwig Institute for Cancer Research, the Scripps Research Institute, the J. Craig Venter Institute and Illumina Inc., all in San Diego, will collaborate on the project, in addition to U.C. Santa Cruz, which will also run the data coordination and management component.

"This Center of Excellence in Stem Cell Genomics shows why we are considered one of the global leaders in stem cell research," says Alan Trounson, president of the stem cell agency. "Bringing together this team to do this kind of work means we will be better able to understand how stem cells change as they grow and become different kinds of cells. That deeper knowledge, that you can only get through a genomic analysis of the cells, will help us develop better ways of using these cells to come up with new treatments for deadly diseases."

In addition to outside collaborations, the center will pursue some fundamental questions and goals of its own, including collecting and characterizing induced pluripotent stem cell lines from patients with familial cardiomyopathy; applying single-cell genomic techniques to better understand cellular subpopulations within diseased and healthy brain and pancreatic tissues; and developing novel computational tools to analyze networks underlying stem cell genome function.

Link:

Salk Institute and Stanford University to Lead New $40 Million Stem Cell Genomics Center

therapy treatment for spinal cord injury by dr alok sharma, mumbai, india – Video


therapy treatment for spinal cord injury by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for spinal cord injury by dr alok sharma, mumbai, india. Stem Cell Therapy done date 7 Jan ...

By: Neurogen Brain and Spine Institute

Excerpt from:
therapy treatment for spinal cord injury by dr alok sharma, mumbai, india - Video

Stem Cell Research & Therapy

Stem Cell Research & Therapy is the major forum for translational research into stem cell therapies. An international peer-reviewed journal, it publishes high quality open access research articles with a special emphasis on basic, translational and clinical research into stem cell therapeutics and regenerative therapies, including animal models and clinical trials. The journal also provides reviews, viewpoints, commentaries and reports.

There has been an error retrieving the data. Please try again.

Paranasal sinus source of MPCs

Mesenchymal progenitor cells (MPCs) from the ethmoid sinus mucosa have multilineage differentiation potential, high proliferative ability, and an increased capacity for secretion of immunomodulatory cytokines.

Matrix remodeling effects therapeutic potential

There are significant changes in the properties of the extracellular matrix following remodeling after myocardial infarction; characterization of the matrix could increase the efficiency and efficacy of cell therapy treatment.

MHC-mismatched MSCs are immunogenic

All potential donor mesenchymal stromal cells (MSCs) should be immunophenotyped and screened for major histocompatibility complex (MHC) class II expression to prevent inciting an immune reaction.

PSC-derived cardiomyocyte production

Steve Oh and colleagues review progress in the development of platforms for the large scale differentiation of cardiomyocytes from human pluripotent stem cells (PSCs) as part of the cardiovascular regeneration series.

View original post here:

Stem Cell Research & Therapy

Split Decision: Stem Cell Signal Linked with Cancer Growth

Contact Information

Available for logged-in reporters only

Newswise Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential as a new target for treating leukemia because cancer stem cells rely upon the same protein to regulate and sustain their growth.

Hematopoietic stem cells give rise to all other blood cells. Writing in the February 2, 2014 advance online issue of Nature Genetics, principal investigator Tannishtha Reya, PhD, professor in the Department of Pharmacology, and colleagues found that a protein called Lis1 fundamentally regulates asymmetric division of hematopoietic stem cells, assuring that the stem cells correctly differentiate to provide an adequate, sustained supply of new blood cells.

Asymmetric division occurs when a stem cell divides into two daughter cells of unequal inheritance: One daughter differentiates into a permanently specialized cell type while the other remains undifferentiated and capable of further divisions.

This process is very important for the proper generation of all the cells needed for the development and function of many normal tissues, said Reya. When cells divide, Lis1 controls orientation of the mitotic spindle, an apparatus of subcellular fibers that segregates chromosomes during cell division.

During division, the spindle is attached to a particular point on the cell membrane, which also determines the axis along which the cell will divide, Reya said. Because proteins are not evenly distributed throughout the cell, the axis of division, in turn, determines the types and amounts of proteins that get distributed to each daughter cell. By analogy, imagine the difference between cutting the Earth along the equator versus halving it longitudinally. In each case, the countries that wind up in the two halves are different.

When researchers deleted Lis1 from mouse hematopoietic stem cells, differentiation was radically altered. Asymmetric division increased and accelerated differentiation, resulting in an oversupply of specialized cells and an ever-diminishing reserve of undifferentiated stem cells, which eventually resulted in a bloodless mouse.

What we found was that a large part of the defect in blood formation was due to a failure of stem cells to expand, said Reya. Instead of undergoing symmetric divisions to generate two stem cell daughters, they predominantly underwent asymmetric division to generate more specialized cells. As a result, the mice were unable to generate enough stem cells to sustain blood cell production.

The scientists next looked at how cancer stem cells in mice behaved when the Lis1 signaling pathway was blocked, discovering that they too lost the ability to renew and propagate. In this sense, the effect Lis1 has on leukemic self-renewal parallels its role in normal stem cell self-renewal, Reya said.

Read more:

Split Decision: Stem Cell Signal Linked with Cancer Growth

The ethics of medical progress

A new method of producing stem cells is being described as a "game-changing" scientific breakthrough.

It is said that the research, carried out by scientists in Japan, could hail a new era of personalised medicine, offering hope to sufferers of diseases such as stroke, heart disease and spinal cord injuries.

The scientists bathed blood cells in a weak acidic solution for half an hour, which made the adult cells shrink and go back to their embryonic stem cell state. Using this process, a patient's own specially created stem cells could then be re-injected back into the body to help mend damaged organs.

The scientists in Japan used mice in this experiment but believe the approach may also work on human cells too.

The new method - much cheaper and faster than before - is being heralded as revolutionary, and could bring stem cell therapy a step closer, and all without the controversy linked to the use of human embryos.

But there is still research that some find ethically questionable.

On Inside Story: Is the controversy over using human embryos over? And how should ethics determine medical progress?

Presenter: Shiulie Ghosh

Guests:

Dusko Ilic, a reader in Stem Cell Science at King's College London School ofMedicine

Go here to read the rest:
The ethics of medical progress

Stem cell agency’s grants to UCLA help set stage for revolutionary medicine

PUBLIC RELEASE DATE:

29-Jan-2014

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research were today awarded grants totaling more than $3.5 million by California's stem cell agency for their ongoing efforts to advance revolutionary stem cell science in medicine.

Recipients of the awards from the California Institute of Renerative Medicine (CIRM) included Lili Yang ($614,400), who researches how stem cells become rare immune cells; Denis Evseenko ($1,146,468), who is studying the biological niche in which stem cells grow into cartilage; Thomas Otis and Bennet Novitch ($1,148,758), who are using new techniques to study communication between nerve and muscle cells in spinal muscular atrophy; and Samantha Butler ($598,367), who is investigating the molecular elements that drive stem cells to become the neurons in charge of our sense of touch.

"These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science," said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center. "Every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort."

The awards are part of CIRM's Basic Biology V grant program, which fosters cutting-edge research on significant unresolved issues in human stem cell biology, with a focus on unravelling the key mechanisms that determine how stem cells decide which cells they will become. By learning how such mechanisms work, scientists can develop therapies that drive stem cells to regenerate or replace damaged or diseased tissue.

Lili Yang: Tracking special immune cells

The various cells that make up human blood all arise from hematopoietic stem cells. These include special white blood cells called T cells, the "foot soldiers" of the immune system that attack bacteria, viruses and other disease-causing invaders. Among these T cells is a smaller group, a kind of "special forces" unit known as invariant natural killer T cells, or iNKT cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated and are believed to be important to the immune system's regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood generally accounting for less than 1 percent of blood cells but can differ greatly in numbers among individuals. Very little is known about how blood stem cells produce iNKT cells.

View original post here:

Stem cell agency's grants to UCLA help set stage for revolutionary medicine

Stem Cell Therapy: Non-Surgical Treatment for Neck Pain & Whiplash – Video


Stem Cell Therapy: Non-Surgical Treatment for Neck Pain Whiplash
An informative guide to how Platelet Rich Plasma can heal the tough minority of whiplash cases where traditional treatments do not offer significant relief. For more information, visit http://www.stemcell...

By: StemCell ARTS

Here is the original post:
Stem Cell Therapy: Non-Surgical Treatment for Neck Pain & Whiplash - Video

Stem Cell Research & Therapy

Stem Cell Research & Therapy is the major forum for translational research into stem cell therapies. An international peer-reviewed journal, it publishes high quality open access research articles with a special emphasis on basic, translational and clinical research into stem cell therapeutics and regenerative therapies, including animal models and clinical trials. The journal also provides reviews, viewpoints, commentaries and reports.

There has been an error retrieving the data. Please try again.

Paranasal sinus source of MPCs

Mesenchymal progenitor cells (MPCs) from the ethmoid sinus mucosa have multilineage differentiation potential, high proliferative ability, and an increased capacity for secretion of immunomodulatory cytokines.

Matrix remodeling effects therapeutic potential

There are significant changes in the properties of the extracellular matrix following remodeling after myocardial infarction; characterization of the matrix could increase the efficiency and efficacy of cell therapy treatment.

MHC-mismatched MSCs are immunogenic

All potential donor mesenchymal stromal cells (MSCs) should be immunophenotyped and screened for major histocompatibility complex (MHC) class II expression to prevent inciting an immune reaction.

PSC-derived cardiomyocyte production

Steve Oh and colleagues review progress in the development of platforms for the large scale differentiation of cardiomyocytes from human pluripotent stem cells (PSCs) as part of the cardiovascular regeneration series.

Read the original post:
Stem Cell Research & Therapy

Row over controversial stem-cell procedure flares up again

Nicolo' Minerbi / LUZphoto / eyevine

Mauro Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, is the Italian government's nominee to chair a committee on the controversial Stamina Foundation.

Top scientists in Italy have called on the health minister Beatrice Lorenzin to reconsider the composition of the new scientific advisory committee she has proposed to assess a controversial stem-cell therapy offered by the Stamina Foundation.

Their move follows a renewed media frenzy around the affair, prompted by statements made to the press and television by the committees proposed president, Mauro Ferrari, shortly after he was nominated on 28 December.

The Stamina therapy, which has not been scientifically proven to be effective in a clinical trial, involves extracting mesenchymal stem cells from bone marrow of a patient, manipulating them and then reinjecting them into the same patients blood or spinal fluid. Stamina, based in Brescia, has already treated more than 80 patients for a wide range of serious diseases.

Stamina's practices have been widely criticized by experts both in Italy and outside, and the first government-appointed scientific committee to rule on Stamina prepared a detailed report describing the Stamina protocol as without a scientific basis, ineffective and dangerous. However, a regional court declared that committee unlawfully biased on 4 December. But after that committee's report was leaked to the press on 20 December (see 'Leaked files slam stem-cell therapy'), many families of patients who claim to have been damaged by the therapy announced that they had brought charges for damages against Stamina and its president Davide Vannoni. Both have denied any wrongdoing.

In response to the court findings, minister Lorenzin nominated Ferrari to chair a new committee. Ferrari, who heads the Institute for Academic Medicine at the Houston Methodist Hospital in Texas, told journalists that he was neither for nor against the Stamina method.

However on the 22 January episode of a widely viewed television show, Le iene, Ferrari said he thought Stamina offered Italy the opportunity to take a world lead in bringing experimental therapies into the clinic. He also referred to Stamina as the first important case for regenerative medicine here in Italy, a statement that has incensed some Italian researchers.

Michele de Luca, a stem-cell biologist from the University of Modena and Reggio Emilia says that Ferrari's assertions were an insult to the many scientists in Italy working on translating stem-cell research into new clinical applications. In particular, De Luca's own group was the first in the world to cure a form of blindness with a stem-cell therapy they developed, he points out.

In a letter dated 26 January, which was seen by Nature, four influential clinical scientists say that they were extremely worried by Ferrari's televised statements. The signatories were Silvio Garattini, head of the Mario Negri Institute for Pharmacological Research in Milan; Giuseppe Remuzzi, head of the Mario Negri Institute in Bergamo; Gianluca Vago, rector of the University of Milan; and Alberto Zangrillo, vice-rector for clinical activities at the University Vita-Salute San Raffaele in Milan.

Excerpt from:
Row over controversial stem-cell procedure flares up again

Stanford stem cell genomics center funded

California's stem cell agency granted $40 million Wednesday to study how the use of stem cells for therapy is affected by variations in the human genome.

The Center of Excellence for Stem Cell Genomics will be located at Stanford University. Competing proposals, including one by DNA sequencing giant Illumina and The Scripps Research Institute in San Diego, were rejected by the California Institution for Regenerative Medicine.

Backers of the San Diego proposal said CIRM staff reviews of the proposals contained errors, such as including financial considerations when scientific merit was supposed to be the sole consideration. Stanford's proposal was highest-rated in the reviews.

The Stanford proposal earned praise from reviewers for the breadth of its research initiatives, from basic research to disease applications, along with the deep expertise of its scientists. Reviewers also liked the affiliated data management center, which will be located at UC Santa Cruz.

A number of San Diego research institutions will collaborate with Stanford's center. While the center itself will be placed at Stanford, the Salk Institute will participate as a joint principal investigator. The Scripps Research Institute and Illumina will also contribute, along with UC San Diego,and the J. Craig Venter Institute.

The Stanford proposal treats Illumina like a contractor, which doesnt make the best use of its abilities, said Scripps Research stem cell scientist Jeanne Loring, who attended the meeting. She submitted letters to the board from herself and Illumina explaining the project's benefits.

I was trying to tap into Illuminas intellectual power, which is often overlooked because they make most of their money by selling instruments and providing services, Loring said. But the people Id be working with are the ones who invented these technologies.

Illumina would benefit as a business by creating new markets, Loring said. For example, a test that tells whether stem cells have potentially dangerous mutations would be highly sought after.

Illumina pledged in a letter to CIRM that any products it sells under the agreement would be accessible, both in price and support.

Loring said she hopes the Scripps/Illumina proposal can still be funded, but there is no obvious alternative.

Here is the original post:

Stanford stem cell genomics center funded

Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

Contact Information

Available for logged-in reporters only

Newswise Scientists from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have received new awards from the California Institute of Regenerative Medicine (CIRM), the state stem cell research agency, that will forward revolutionary stem cell science in medicine.

Recipients included Dr. Lili Yang, assistant professor of microbiology, immunology and molecular genetics who received $614,400 for her project to develop a novel system for studying how stem cells become rare immune cells; Dr. Denis Evseenko, assistant professor of orthopedic surgery, who received $1,146,468 for his project to identify the elements of the biological niche in which stem cells grow most efficiently into articular cartilage cells; Dr. Thomas Otis, professor and chair of neurobiology and Dr. Ben Novitch, assistant professor of neurobiology, who received $1,148,758 for their project using new light-based optigenetic techniques to study the communication between nerve and muscle cells in spinal muscular atrophy, an inherited degenerative neuromuscular disease in children; and Dr. Samantha Butler, assistant professor of neurobiology, received $598,367 for her project on discovering which molecular elements drive stem cells to become the neurons, or nerve cells, in charge of our sense of touch.

These basic biology grants form the foundation of the revolutionary advances we are seeing in stem cell science, said Dr. Owen Witte, professor and director of the Broad Stem Cell Research Center, and every cellular therapy that reaches patients must begin in the laboratory with ideas and experiments that will lead us to revolutionize medicine and ultimately improve human life. That makes these awards invaluable to our research effort.

The awards were part of CIRMs Basic Biology V grant program, carrying on the initiative to foster cutting-edge research on significant unresolved issues in human stem cell biology. The emphasis of this research is on unravelling the secrets of key mechanisms that determine how stem cells, which can become any cell in the body, differentiate, or decide which cell they become. By learning how these mechanisms work, scientists can then create therapies that drive the stem cells to regenerate or replace damaged or diseased tissue.

Using A New Method to Track Special Immune Cells All the different cells that make up the blood come from hematopoietic or blood stem cells. These include special white blood cells called T cells, which serve as the foot soldiers of the immune system, attacking bacteria, viruses and other invaders that cause diseases.

Among the T cells is a smaller group of cells called invariant natural killer T (iNKT) cells, which have a remarkable capacity to mount immediate and powerful responses to disease when activated, a small special forces unit among the foot soldiers, and are believed to be important to immune system regulation of infections, allergies, cancer and autoimmune diseases such as Type I diabetes and multiple sclerosis.

The iNKT cells develop in small numbers in the blood, usually less than 1 percent of all the blood cells, and can differ greatly in numbers between individuals. Very little is known about how the blood stem cells produce iNKT cells.

Dr. Lili Yangs project will develop a novel model system to genetically program human blood stem cells to become iNKT cells. Dr. Yang and her colleagues will track the differentiation of human blood stem cells into iNKT cells providing a pathway to answer many critical questions about iNKT cell development.

Follow this link:

Stem Cell Agency Helps Set the Stage for Revolutionary Medicine

Best Candidate for Stem Cell Therapy and Regenerative Medicine Techniques? – Video


Best Candidate for Stem Cell Therapy and Regenerative Medicine Techniques?
Dr Robert Wagner discusses the profile of the best candidate for stem cell therapy and regenerative medicine techniques. To learn more, visit http://www.stemcellarts,com.

By: StemCell ARTS

Read more here:
Best Candidate for Stem Cell Therapy and Regenerative Medicine Techniques? - Video