Study documents safety, improvements from stem cell therapy after spinal cord injury – Mayo Clinic

Neurosciences

April 1, 2024

ROCHESTER, Minn. A Mayo Clinic study shows stem cells derived from patients' own fat are safe and may improve sensation and movement after traumatic spinal cord injuries. The findings from the phase 1 clinical trial appear in Nature Communications. The results of this early research offer insights on the potential of cell therapy for people living with spinal cord injuries and paralysis for whom options to improve function are extremely limited.

In the study of 10 adults, the research team noted seven participants demonstrated improvements based on the American Spinal Injury Association (ASIA) Impairment Scale. Improvements included increased sensation when tested with pinprick and light touch, increased strength in muscle motor groups, and recovery of voluntary anal contraction, which aids in bowel function. The scale has five levels, ranging from complete loss of function to normal function. The seven participants who improved each moved up at least one level on the ASIA scale. Three patients in the study had no response, meaning they did not improve but did not get worse.

"This study documents the safety and potential benefit of stem cells and regenerative medicine," says Mohamad Bydon, M.D., a Mayo Clinic neurosurgeon and first author of the study. "Spinal cord injury is a complex condition. Future research may show whether stem cells in combination with other therapies could be part of a new paradigm of treatment to improve outcomes for patients."

No serious adverse events were reported after stem cell treatment. The most commonly reported side effects were headache and musculoskeletal pain that resolved with over-the-counter treatment.

In addition to evaluating safety, this phase 1 clinical trial had a secondary outcome of assessing changes in motor and sensory function. The authors note that motor and sensory results are to be interpreted with caution given limits of phase 1 trials. Additional research is underway among a larger group of participants to further assess risks and benefits.

The full data on the 10 patients follows a 2019 case report that highlighted the experience of the first study participant who demonstrated significant improvement in motor and sensory function.

Watch: Dr. Mohamad Bydon discusses improvements in research study

Journalists: Broadcast-quality sound bites are available in the downloads at the end of the post. Please courtesy: "Mayo Clinic News Network." Name super/CG: Mohamad Bydon, M.D./Neurosurgery/Mayo Clinic.

In the multidisciplinary clinical trial, participants had spinal cord injuries from motor vehicle accidents, falls and other causes. Six had neck injuries; four had back injuries. Participants ranged in age from 18 to 65.

Participants' stem cells were collected by taking a small amount of fat from a 1- to 2-inch incision in the abdomen or thigh. Over four weeks, the cells were expanded in the laboratory to 100 million cells and then injected into the patients' lumbar spine in the lower back. Over two years, each study participant was evaluated at Mayo Clinic 10 times.

Although it is understood that stem cells move toward areas of inflammation in this case the location of the spinal cord injury the cells' mechanism of interacting with the spinal cord is not fully understood, Dr. Bydon says. As part of the study, researchers analyzed changes in participants' MRIs and cerebrospinal fluid as well as in responses to pain, pressure and other sensation. The investigators are looking for clues to identify injury processes at a cellular level and avenues for potential regeneration and healing.

The spinal cord has limited ability to repair its cells or make new ones. Patients typically experience most of their recovery in the first six to 12 months after injuries occur. Improvement generally stops 12 to 24 months after injury. In the study, one patient with a cervical spine injury of the neck received stem cells 22 months after injury and improved one level on the ASIA scale after treatment.

Two of three patients with complete injuries of the thoracic spine meaning they had no feeling or movement below their injury between the base of the neck and mid-back moved up two ASIA levels after treatment. Each regained some sensation and some control of movement below the level of injury. Based on researchers' understanding of traumatic thoracic spinal cord injury, only 5% of people with a complete injury would be expected to regain any feeling or movement.

"In spinal cord injury, even a mild improvement can make a significant difference in that patient's quality of life," Dr. Bydon says.

Stem cells are used mainly in research in the U.S., and fat-derived stem cell treatment for spinal cord injury is considered experimental by the Food and Drug Administration.

Between 250,000 and 500,000 people worldwide suffer a spinal cord injury each year, according to theWorld Health Organization.

An important next step is assessing the effectiveness of stem cell therapies and subsets of patients who would most benefit, Dr. Bydon says. Research is continuing with a larger, controlled trial that randomly assigns patients to receive either the stem cell treatment or a placebo without stem cells.

"For years, treatment of spinal cord injury has been limited to supportive care, more specifically stabilization surgery and physical therapy," Dr. Bydon says. "Many historical textbooks state that this condition does not improve. In recent years, we have seen findings from the medical and scientific community that challenge prior assumptions. This research is a step forward toward the ultimate goal of improving treatments for patients."

Dr. Bydon is the Charles B. and Ann L. Johnson Professor of Neurosurgery. This research was made possible with support from Leonard A. Lauder, C and A Johnson Family Foundation, The Park Foundation, Sanger Family Foundation, Eileen R.B. and Steve D. Scheel, Schultz Family Foundation, and other generous Mayo Clinic benefactors. The research is funded in part by a Mayo Clinic Transform the Practice grant.

Review thestudyfor a complete list of authors and funding.

###

About Mayo Clinic Mayo Clinic is a nonprofit organization committed to innovation in clinical practice, education and research, and providing compassion, expertise and answers to everyone who needs healing. Visit theMayo Clinic News Networkfor additional Mayo Clinic news.

Media contact:

Follow this link:

Study documents safety, improvements from stem cell therapy after spinal cord injury - Mayo Clinic

Paralyzed man who can walk again shows potential benefit of stem cell therapy – ABC News

This page either does not exist or is currently unavailable.

From here you can either hit the "back" button on your browser to return to the previous page, or visit the ABCNews.com Home Page. You can also search for something on our site below.

STATUS CODE: 500

See the article here:

Paralyzed man who can walk again shows potential benefit of stem cell therapy - ABC News

Ground-Breaking Stem Cell Therapy Helps Paralyzed Patient to Walk – WorkersCompensation.com

Sarasota, FL (WorkersCompensation.com) While stem cell therapy has shown much promise in treating some medical issues, the use of stem cell therapy has been somewhat controversial over the years. One reason for the controversy is due to the large number of businesses offering unlicensed and unproven stem cell treatments that are not approved by the FDA. However, one recent miraculous case study announced by Mayo clinic may have patients lining up for treatment.

According to statistics from the Christopher & Dana Reeve Foundation, there are around 18,000 new Spinal Cord Injuries (SCIs) per year. In the U.S., around 302,000 people currently live with an SCI, most of which have occurred from automobile accidents, falls, acts of violence, or sports activities.

Around 1.7 percent of the U.S. population has some kind of paralysis, of which 33.7 percent is caused by stroke and 27.3 percent is caused by an SCI. Besides impacting physical ability, households of paralyzed people earn around $15,000 per year less, and have lower percentages of employment. The ability to treat SCIs and other paralysis injuries to help them return to a normal life could have monumental implications.

Researchers from Mayo Clinic treated ten SCI patients with stem cells that were harvested from fat in their abdomen or thigh. The stem cells were expanded for a period of four weeks to 100 million cells, and then injected into the lower spine lumbar region.

Included in the study were six patients with neck injuries, and four patients with back injuries, none of which had significant changes in MRIs at one year. All patients were followed for a period of two years, with ten examinations occurring during that time period.

In SCI cases, the most recovery is experienced within the first twelve months after an injury occurs. Then the improvement gradually tapers off or stops at 12 to 24 months after the injury. In the Mayo study, the average time from injury to treatment was 11 months. However, one patient received the stem cell treatment 22 months after the injury and still improved one point on the American Spinal Injury Association (ASIA) Impairment Scale.

Overall, the researchers noted 7 out of the 10 patients made improvements on the ASIA scale. The improvements noted included increased sensation to pinpricks and light touch, increased strength in muscle motor groups, and improvements and recovery in bowel function including voluntary contraction.

Two out of three patients with no feeling or sensation below mid-spine or thoracic region improved by 2 points on the ASIA scale, with sensation and voluntary contraction abilities in their lower regions. The researchers estimate that only 5 percent of people with a complete thoracic injury would be expected to regain any feeling or movement.

According to a recent report from Beckers Spine Review, Chris Barr who was paralyzed from the neck down for seven years after a surfing accident, participated in the study. In the five years since his treatment, he has improved his independence, and has gained the ability to walk and stand on his own, with continued improvements in walking speed.

Stem cells are known for moving towards inflammation, however their ability to interact with the spinal cord - which has very limited ability to repair or make new cells - is not fully understood. While the results of the study are promising, it may take years before the treatment becomes a common option for patients.

Read more:

Ground-Breaking Stem Cell Therapy Helps Paralyzed Patient to Walk - WorkersCompensation.com

Stem Cells Spark Hope in Spinal Cord Recovery – Neuroscience News

Summary: A phase 1 clinical trial has revealed that stem cells derived from patients own fat may safely enhance sensation and movement in individuals with traumatic spinal cord injuries. In the study, seven out of ten adults showed measurable improvements on the ASIA Impairment Scale, experiencing increased sensation, muscle strength, and improved bowel function without serious side effects.

The findings challenge the longstanding belief that spinal cord injuries are irreparable, offering new hope for treatments. With the spinal cords limited repair capability, this research signifies a crucial step towards innovative therapies, emphasizing the need for further studies to unlock the full potential of stem cell treatments.

Key Facts:

Source: Mayo Clinic

AMayo Clinicstudy shows stem cells derived from patients own fat are safe and may improve sensation and movement after traumaticspinal cord injuries.

The findings from the phase 1 clinical trial appear inNature Communications.

The results of this early research offer insights on the potential of cell therapy for people living with spinal cord injuries and paralysis for whom options to improve function are extremely limited.

In the study of 10 adults, the research team noted seven participants demonstrated improvements based on the American Spinal Injury Association (ASIA) Impairment Scale. Improvements included increased sensation when tested with pinprick and light touch, increased strength in muscle motor groups, and recovery of voluntary anal contraction, which aids in bowel function.

The scale has five levels, ranging from complete loss of function to normal function. The seven participants who improved each moved up at least one level on the ASIA scale. Three patients in the study had no response, meaning they did not improve but did not get worse.

This study documents the safety and potential benefit of stem cells and regenerative medicine, saysMohamad Bydon, M.D., a Mayo Clinic neurosurgeon and first author of the study.

Spinal cord injury is a complex condition. Future research may show whether stem cells in combination with other therapies could be part of a new paradigm of treatment to improve outcomes for patients.

No serious adverse events were reported after stem cell treatment. The most commonly reported side effects were headache and musculoskeletal pain that resolved with over-the-counter treatment.

In addition to evaluating safety, this phase 1 clinical trial had a secondary outcome of assessing changes in motor and sensory function. The authors note that motor and sensory results are to be interpreted with caution given limits of phase 1 trials. Additional research is underway among a larger group of participants to further assess risks and benefits.

The full data on the 10 patients follows a 2019case reportthat highlighted the experience of the first study participant who demonstrated significant improvement in motor and sensory function.

Stem cells mechanism of action not fully understood

In the multidisciplinary clinical trial, participants had spinal cord injuries from motor vehicle accidents, falls and other causes. Six had neck injuries; four had back injuries. Participants ranged in age from 18 to 65.

Participants stem cells were collected by taking a small amount of fat from a 1- to 2-inch incision in the abdomen or thigh. Over four weeks, the cells were expanded in the laboratory to 100 million cells and then injected into the patients lumbar spine in the lower back. Over two years, each study participant was evaluated at Mayo Clinic 10 times.

Although it is understood that stem cells move toward areas of inflammation in this case the location of the spinal cord injury the cells mechanism of interacting with the spinal cord is not fully understood, Dr. Bydon says.

As part of the study, researchers analyzed changes in participants MRIs and cerebrospinal fluid as well as in responses to pain, pressure and other sensation. The investigators are looking for clues to identify injury processes at a cellular level and avenues for potential regeneration and healing.

The spinal cord has limited ability to repair its cells or make new ones. Patients typically experience most of their recovery in the first six to 12 months after injuries occur. Improvement generally stops 12 to 24 months after injury.

One unexpected outcome of the trial was that two patients with cervical spine injuries of the neck received stem cells 22 months after their injuries and improved one level on the ASIA scale after treatment.

Two of three patients with complete injuries of the thoracic spine meaning they had no feeling or movement below their injury between the base of the neck and mid-back moved up two ASIA levels after treatment.

Each regained some sensation and some control of movement below the level of injury. Based on researchers understanding of traumatic thoracic spinal cord injury, only 5% of people with a complete injury would be expected to regain any feeling or movement.

In spinal cord injury, even a mild improvement can make a significant difference in that patients quality of life, Dr. Bydon says.

Stem cells are used mainly in research in the U.S., and fat-derived stem cell treatment for spinal cord injury is considered experimental by the Food and Drug Administration.

Between 250,000 and 500,000 people worldwide suffer a spinal cord injury each year, according to theWorld Health Organization.

An important next step is assessing the effectiveness of stem cell therapies and subsets of patients who would most benefit, Dr. Bydon says. Research is continuing with a larger, controlled trial that randomly assigns patients to receive either the stem cell treatment or a placebo without stem cells.

For years, treatment of spinal cord injury has been limited to supportive care, more specifically stabilization surgery and physical therapy, Dr. Bydon says.

Many historical textbooks state that this condition does not improve. In recent years, we have seen findings from the medical and scientific community that challenge prior assumptions. This research is a step forward toward the ultimate goal of improving treatments for patients.

Dr. Bydon is the Charles B. and Ann L. Johnson Professor of Neurosurgery. This research was made possible with support from Leonard A. Lauder, C and A Johnson Family Foundation, The Park Foundation, Sanger Family Foundation, Eileen R.B. and Steve D. Scheel, Schultz Family Foundation, and other generous Mayo Clinic benefactors. The research is funded in part by a Mayo Clinic Transform the Practice grant.

Review thestudyfor a complete list of authors and funding.

Author: Megan Luihn Source: Mayo Clinic Contact: Megan Luihn Mayo Clinic Image: The image is credited to Neuroscience News

Original Research: Open access. Intrathecal delivery of adipose-derived mesenchymal stem cells in traumatic spinal cord injury: Phase I trial byMohamad Bydon et al. Nature Communications

Abstract

Intrathecal delivery of adipose-derived mesenchymal stem cells in traumatic spinal cord injury: Phase I trial

Intrathecal delivery of autologous culture-expanded adipose tissue-derived mesenchymal stem cells (AD-MSC) could be utilized to treat traumatic spinal cord injury (SCI).

This Phase I trial (ClinicalTrials.gov: NCT03308565) included 10 patients with American Spinal Injury Association Impairment Scale (AIS) grade A or B at the time of injury.

The studys primary outcome was the safety profile, as captured by the nature and frequency of adverse events.

Secondary outcomes included changes in sensory and motor scores, imaging, cerebrospinal fluid markers, and somatosensory evoked potentials. The manufacturing and delivery of the regimen were successful for all patients.

The most commonly reported adverse events were headache and musculoskeletal pain, observed in 8 patients. No serious AEs were observed. At final follow-up, seven patients demonstrated improvement in AIS grade from the time of injection.

In conclusion, the study met the primary endpoint, demonstrating that AD-MSC harvesting and administration were well-tolerated in patients with traumatic SCI.

Excerpt from:

Stem Cells Spark Hope in Spinal Cord Recovery - Neuroscience News

James Shapiro, MD: Insulin Production In T1D Patients After Stem Cell Therapy – MD Magazine

Recently, data from studies developing novel cell replacement therapies to address significant unmet needs in severe disease, including type 1 diabetes (T1D).

The study in question is an ongoing, first-in-human Phase study that reported that its stem-cell therapy produced insulin in people with severe T1D. A total of 17 patients were implanted with the ViaCyte PEC-Direct device at 6 different centers, with the device comprising pancreatic cells (PEC-01) contained within pouches for subcutaneous placement.

In an interview with HCPLive, James Shapiro MD PhD, Canada Research Chair and Director of the Islet Transplant Program at the University of Alberta and lead author of the Cell Reports Medicine report, discussed the findings of the study and what they ultimately represent.

It was a very successful trial in terms of demonstrating the safety, it was absolutely safe for patients, while they were, you know, many different potential side effects on the anti rejection drugs and the minor surgeries that the patients went through, they tolerated the placement and the removal of the devices exceedingly well, Shapiro said.

The trial results indicated 34% of patients had evidence of C-peptide production, while 63% of patients had evidence of surviving insulin producing cells at different time points when the devices were taken out and examined under a microscope.

Shapiro went on to describe the next wave of trials using gene-edited products that will not require anti-rejection drugs, called PEC-QT. He noted the difference between a treatment and a cure is the limitless source of cells and lack of need for rejection drugs.

I think if that happened, then we really would have a therapy that could be given to children just diagnosed with diabetes, they could be given to patients with all forms of diabetes, not just patients with T1D, he said. So, I think this does herald a big step forward for for stem cell based therapists in the cure potential curative treatment for all forms of diabetes.

Read more here:

James Shapiro, MD: Insulin Production In T1D Patients After Stem Cell Therapy - MD Magazine

ROR2 expression predicts human induced pluripotent stem cell differentiation into neural stem/progenitor cells and … – Nature.com

Cell culture

Commercially available hiPSC lines were used in this study (Supplementary Table 1). HiPSC lines were obtained from RIKEN Cell Bank (201B7, 253G1, 409B2, HiPS-RIKEN-1A, HiPS-RIKEN-2A, and HiPS-RIKEN-12A), American Type Culture Collection (ATCC-DYR0110 hiPSC and ATCC-HYR01103 hiPSC), JCRB Cell Bank (Tic), and System Biosciences (human mc-iPS). HiPSCs were screened for mycoplasma contamination and hiPSCs used in this study were mycoplasma-free. Undifferentiated hiPSCs were maintained on an iMatrix-511 (Nippi) in StemFit AK02 medium (Ajinomoto). All cells were cultured at 37C in a humidified atmosphere containing 5% CO2 and 95% air.

Differentiation of hiPSCs into NS/PCs was induced, as previously reported, with a few modifications. For adhesive differentiation, hiPSCs were detached through incubation with StemPro Accutase (Thermo Fisher Scientific) containing 10M Y-27632 for 10min and seeded onto 24-well cell culture plates (BD Biosciences) coated with iMatrix at a density of 25,000 cells/cm2 for 23days before NS/PC induction. Confluent hiPSCs were treated with 10M of the ALK inhibitor SB431542 (Stemgent) and 500ng/mL of Noggin (R&D systems) in DMEM/F12 medium containing 20% KSR. The medium was replaced on days 1 and 2. On day 6 of differentiation, SB431542 was withdrawn, and increasing amounts of N2 media (25%, 50%, and 75%) were added to the knockout serum replacement medium every 2days while maintaining 500ng/mL of Noggin. For suspension differentiation, hiPSCs were treated with 10M Y-27632 for 1h at 37C and dissociated with StemPro Accutase (Thermo Fisher Scientific) containing 10M Y-27632 for 10min to generate single-cell suspensions and suspended in B27N2-based medium [DMEM/F12 with 15mM HEPES, 5% B27, and 5% N2 supplements (Life Technologies), 10M SB431542, 2M Dorsomorphin (Fujifilm), and 10ng/mL bFGF (R&D systems)]. The completely dissociated cells were seeded into ultralow attachment 96-well plates (PrimeSurface 96-well, Sumitomo Bakelite) at 9,000 cells/well, centrifuged at 700g for 3min (quick aggregation). The medium was changed daily for up to 10days; for the first 3days, 10M of Y-27632 was added. Total RNA was obtained from 40 wells of neuro spheres per sample. For microarray analysis, hiPSCs were differentiated into NS/PCs using a STEMdiff SMADi Neural Induction Kit (Stem Cell Technologies) according to the manufacturers instructions. Briefly, hiPSCs were maintained on an iMatrix-coated plate in StemFitAK02 media (Ajinomoto) before NS/PC induction. Cells were harvested using Accutase (Thermo Fisher Scientific); 2106 cells were transferred to a Matrigel-coated 6-well plate in STEMdiff Neural Induction Medium+SMADi (Stem Cell Technologies) supplemented with 10M Y-27632. The medium was replenished daily with warmed (37C) STEMdiff Neural Induction Medium+SMADi until the culture was terminated. Cells were passaged every 7days, and RNA was extracted from cells harvested at passages (days 7, 14, and 21).

Total RNA was isolated from hiPSCs or differentiated cells using the RNeasy Mini Kit (Qiagen) and treated with DNase I according to the manufacturers instructions. qRT-PCR was performed using a QuantiTect Probe One-Step RT-PCR Kit (Qiagen) on a STEPONEPLUS Real-Time PCR System (Applied Biosystems). The expression levels of target genes were normalized to those of the GAPDH transcript or 18S rRNA, which were quantified using TaqMan human Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control reagents (Applied Biosystems) or eukaryotic 18S rRNA endogenous controls (Applied Biosystems), respectively. The probes and primers were obtained from Sigma-Aldrich. The used primer and probe sequences are listed in Supplementary Table 2. PCA was performed using SYSTAT 13 software (Systat Software Inc.) after data standardization (z-scoring) for each NS/PC marker gene.

To identify microarray probe sets related to the differentiation of hiPSCs into NS/PC, correlations between the intensity value rank of the filtered probe sets and the PC1 rank in the 10 hiPSC lines were determined by calculating Spearmans rank correlation coefficients (rs), as described in a previous study26. Probe sets exhibiting statistically significant correlations (P<0.01) were selected. When n=10 data points, the observed value of rs should exceed 0.794 (positively correlated) or less than 0.794 (negatively correlated) to be considered statistically significant (P<0.01).

ROR2 KD cells were generated by infecting R-2A cells with MISSION Lentiviral Transduction Particle expressing ROR2-targeted shRNAs (#1: TRCN0000199888, #2: TRCN0000001492) or MISSIONpLKO.1-puro Control Non-Mammalian shRNA Control Transduction Articles (Sigma, SHC002V), according to the manufacturers instructions. Media containing viruses were collected 48h after transfection, and the cells were transduced with the viruses using 8g/mL polybrene (Sigma-Aldrich) for 24h. The cells were selected using 2g/mL puromycin (Gibco) for 48h.

The cell lysates were used for western blotting analysis. Proteins were separated using sodium dodecyl sulfatepolyacrylamide gel electrophoresis, transferred to PVDF membranes (Bio-Rad), and blocked for 60min in Blocking One (Nacalai tesque). Primary antibody dilutions were prepared in Can Get Signal immunoreaction enhancer solution (TOYOBO) as follows: anti-ROR2 antibody (AF2064; R&D Systems) 1:1000, anti--actin antibody (A5441; Sigma-Aldrich) 1:2000. Membranes were incubated with HRP-conjugated anti-mouse IgG (Invitrogen) or anti-goat IgG (Invitrogen). Proteins were visualized using ECL Prime Western Blotting Detection Reagent (GE Healthcare) and the ChemiDoc Touch Imaging System (Bio-Rad).

HiPSC-derived NS/PC or forebrain neuron was fixed in 4% paraformaldehyde in PBS (Nacalai) for 20min at 25C. After washing with PBS, the cells were permeabilized with 0.2% Triton-X100 (Merk) in PBS for 15min and blocked with Blocking One (Nacalai) for 30min. The samples were incubated for 1h with primary antibodies (anti-PAX6 antibody [PRB-278P-100, BioLegend], anti-MAP2 antibody [MAB8304, R&D systems], and anti-GAD1 antibody [AF2086, BioLegend]). Indirect immunostaining was performed with the secondary antibody (anti-rabbit IgG/Alexa Fluor 555 [A27039, Thermo Fisher Scientific], anti-goat IgG/Alexa Fluor 488 [A32814, Thermo Fisher Scientific], and anti-mouse IgG/Alexa Fluor 488 [A28175, Thermo Fisher Scientific]) for 1h and examined under a BZ-X810 fluorescence microscope (Keyence).

ROR2 overexpression cells were generated by infecting 253G1 cells with lentiviral particles expressing ROR2. Briefly, the nucleotide sequence of the human ROR2 open reading frame (NM_004560) was de novo synthesized (Eurofins Genomics) and cloned into the pLVSIN-EF1 puromycin vector (Takara Clontech). Lentivirus packaging and virus infection were performed as described above.

Total RNA was extracted from hiPSC-derived NS/PC cells using an RNeasy Mini Kit (QIAGEN) according to the manufacturers instructions. Total RNA (100ng per sample) was used as the input for the Clariom D Assay (Thermo Fisher Scientific). Target preparation was performed using a Gene Chip WT PLUS Reagent Kit (Thermo Fisher Scientific) according to the manufacturers instructions. Hybridization was performed in a Gene Chip Hybridization Oven 645 for 16h at 45C. Gene chips were scanned using a GeneChip Scanner 3000. Array quality control was performed using Transcriptome Analysis Console software (version 4.0.2.15). The National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) accession number for the microarray data is GSE233228.

Differentiation of hiPSCs into mature nerves was performed according to the manufacturers instructions using the STEMdiff Forebrain Neuron Differentiation Kit (#08600, STEMCELL Technologies) for forebrain-type nerves and the STEMdiff Midbrain Neuron Differentiation Kit (#100-0038, STEMCELL Technologies) for midbrain nerves. Using the STEMdiff SMADi Neural Induction Kit (Stem Cell Technologies) monolayer culture protocol described above, hiPSCs were differentiated into NS/PC, and mature neural differentiation was induced.

For midbrain neuron differentiation, hiPSC-derived NS/PCs (day21, passage 3) were detached using Accutase and seeded into PLO (Sigma)-and laminin (Sigma)-coated 12-well plate at a density of 1.25105 cells/cm2 culture in STEMdiff Neural Induction Medium+SMADi medium for 24h. The complete medium was replaced daily for 6days with STEMdiff Midbrain Neuron Differentiation Medium. The midbrain neural precursors (day 7) were detached using ACCUTASE and seeded into PLO-and Laminin-coated 12-well plate at a density of 5104 cells/cm2 in STEMdiff Midbrain Neuron Maturation medium with a half-medium change every 23days for 14days.

For forebrain-type neuron differentiation, hiPSC-derived NS/PCs (day21, passage 3) were detached using Accutase and then seeded into PLO-and Laminin-coated 12-well plate at a density of 1.25105 cells/cm2 culture in STEMdiff Neural Induction Medium+SMADi medium for 24h. The full medium was replaced daily for 6days with STEMdiff Forebrain Neuron Differentiation medium. The forebrain neural precursors (day7) were detached using Accutase and seeded into PLO- and Laminin-coated 12-well plate at a density of 5104 cells/cm2 in STEMdiff Forebrain Neuron Maturation media with a half-medium change every 23days for 14days.

Statistical analyses were performed using Prism 9 software (version 9.5.1; GraphPad Software Inc.). Data are presented as meanstandard deviation (SD). For comparison between two groups the t-test was applied; in cases where another statistic test was applied, it is mentioned accordingly. Statistical significance was set at P<0.05.

Read the original:

ROR2 expression predicts human induced pluripotent stem cell differentiation into neural stem/progenitor cells and ... - Nature.com

Global Stem Cell Therapy Market to Reach Value of USD 26.15 Billion by 2030 | Skyquest Technology – GlobeNewswire

Westford,USA, Jan. 02, 2024 (GLOBE NEWSWIRE) -- According to SkyQuest report, the global stem cell therapy market is experiencing substantial growth, primarily propelled by the increasing burden of chronic diseases such as cardiovascular disorders, neurodegenerative conditions, and orthopedic injuries. These debilitating ailments have placed a significant strain on healthcare systems worldwide.

Get sample copy of this report:

https://www.skyquestt.com/sample-request/stem-cell-therapy-market

Browse in-depth TOC on the "Stem Cell Therapy Market"

The field of stem cell research has undergone a remarkable transformation driven by significant advances in technology and scientific understanding. These breakthroughs have broadened our knowledge of stem cells and expanded their potential applications in the global stem cell therapy market. Innovative methods for isolating, growing, and differentiating stem cells have been developed, facilitating their use in various therapeutic environments.

Report Scope & Segmentation:

Browse summary of the report and Complete Table of Contents (ToC):

https://www.skyquestt.com/report/stem-cell-therapy-market

Prominent Players in Global Stem Cell Therapy Market

Allogeneic Therapy Segment is Expected to Rise Significantly due to Increasing Popularity of Stem Cell Banking

Allogeneic therapy segment has emerged as the dominant force in the stem cell therapy market, commanding a substantial market share of 59.14% in 2022. This remarkable growth can be attributed to several key factors. Firstly, allogeneic therapies often come with higher pricing, contributing significantly to revenue generation. Moreover, the increasing popularity of stem cell banking, which involves collecting and storing allogeneic stem cells for potential future use, has driven demand for these therapies.

The market in North America has firmly established its dominance in the stem cell therapy market, commanding the largest revenue share at 44.56% in 2022. One key driver is the presence of innovative companies and major regional market players. North America is home to a robust and dynamic biotechnology and pharmaceutical industry, fostering stem cell therapy product development, production, and commercialization.

Autologous Therapy Segment is Expected to Dominate Market Due to Lower Risk of Complications

Autologous therapy segment is poised to experience significant growth over the forecast period, and several key factors contribute to this trajectory in the stem cell therapy market. One primary driver is the lower risk of complications associated with autologous treatments, as these therapies utilize a patient's stem cells, minimizing the chances of immune rejection or adverse reactions. Additionally, autologous therapies are often more affordable and accessible for patients, making them attractive.

Regional market in the Asia Pacific region is poised to become a significant growth driver in the stem cell therapy market, with a projected CAGR of 16.09% expected from 2023 to 2030. The region boasts a robust product pipeline of stem cell-based therapies, with ongoing research and development initiatives driving innovation.

A comprehensive analysis of the major players in the stem cell therapy market has been recently conducted. The report encompasses various aspects of the market, including collaborations, mergers, innovative business policies, and strategies, providing valuable insights into key trends and breakthroughs in the market. Furthermore, the report scrutinizes the market share of the top segments and presents a detailed geographic analysis. Lastly, the report highlights the major players in the industry and their endeavors to develop innovative solutions to cater to the growing demand.

Key Developments in Stem Cell Therapy Market

Speak to Analyst for your custom requirements:

https://www.skyquestt.com/speak-with-analyst/stem-cell-therapy-market

Key Questions Answered in the Stem Cell Therapy Market Report

Related Reports in SkyQuests Library:

Global Protein Therapeutics Market

Global Chemiluminescence Immunoassay Analyzers Market

Global Biobanking Market

Global Epigenetics Market

Global Microplate Reader Market

About Us:

SkyQuest Technologyis leading growth consulting firm providing market intelligence, commercialization and technology services. It has 450+ happy clients globally.

Address:

1 Apache Way, Westford, Massachusetts 01886

Phone:

USA (+1) 617-230-0741

Email:sales@skyquestt.com

LinkedInFacebookTwitter

View original post here:

Global Stem Cell Therapy Market to Reach Value of USD 26.15 Billion by 2030 | Skyquest Technology - GlobeNewswire

FDA Warns About Stem Cell Therapies | FDA – U.S. Food and Drug …

Espaol

Researchers hope stem cells will one day be effective in the treatment of many medical conditions and diseases. But unproven stem cell treatments can be unsafeso get all of the facts if youre considering any treatment.

Stem cells have been called everything from cure-alls to miracle treatments. But dont believe the hype. Some unscrupulous providers offer stem cell products that are both unapproved and unproven. So beware of potentially dangerous proceduresand confirm whats really being offered before you consider any treatment.

The facts: Stem cell therapies may offer the potential to treat diseases or conditions for which few treatments exist. Sometimes called the bodys master cells, stem cells are the cells that develop into blood, brain, bones, and all of the bodys organs. They have the potential to repair, restore, replace, and regenerate cells, and could possibly be used to treat many medical conditions and diseases.

But the U.S. Food and Drug Administration is concerned that some patients seeking cures and remedies are vulnerable to stem cell treatments that are illegal and potentially harmful. And the FDA is increasing its oversight and enforcement to protect people from dishonest and unscrupulous stem cell clinics, while continuing to encourage innovation so that the medical industry can properly harness the potential of stem cell products.

To do your part to stay safe, make sure that any stem cell treatment you are considering is either:

And see the boxed section below for more advice.

The FDA has the authority to regulate stem cell products in the United States.

Today, doctors routinely use stem cells that come from bone marrow or blood in transplant procedures to treat patients with cancer and disorders of the blood and immune system.

With limited exceptions, investigational products must also go through a thorough FDA review process as investigators prepare to determine the safety and effectiveness of products in well-controlled human studies, called clinical trials. The FDA has reviewed many stem cell products for use in these studies.

As part of the FDAs review, investigators must show how each product will be manufactured so the FDA can make sure appropriate steps are being taken to help assure the products safety, purity, and strength (potency). The FDA also requires sufficient data from animal studies to help evaluate any potential risks associated with product use. (You can learn more about clinical trials on the FDAs website.)

That said, some clinics may inappropriately advertise stem cell clinical trials without submitting an IND. Some clinics also may falsely advertise that FDA review and approval of the stem cell therapy is unnecessary. But when clinical trials are not conducted under an IND, it means that the FDA has not reviewed the experimental therapy to help make sure it is reasonably safe. So be cautious about these treatments.

About FDA-approved Products Derived from Stem Cells

The only stem cell-based products that are FDA-approved for use in the United States consist of blood-forming stem cells (hematopoietic progenitor cells) derived from cord blood.

These products are approved for limited use in patients with disorders that affect the body system that is involved in the production of blood (called the hematopoietic system). These FDA-approved stem cell products are listed on the FDA website. Bone marrow also is used for these treatments but is generally not regulated by the FDA for this use.

All medical treatments have benefits and risks. But unproven stem cell therapies can be particularly unsafe.

For instance, attendees at a 2016 FDA public workshop discussed several cases of severe adverse events. One patient became blind due to an injection of stem cells into the eye. Another patient received a spinal cord injection that caused the growth of a spinal tumor.

Other potential safety concerns for unproven treatments include:

Note: Even if stem cells are your own cells, there are still safety risks such as those noted above. In addition, if cells are manipulated after removal, there is a risk of contamination of the cells.

When stem cell products are used in unapproved waysor when they are processed in ways that are more than minimally manipulated, which relates to the nature and degree of processingthe FDA may take (and has already taken) a variety of administrative and judicial actions, including criminal enforcement, depending on the violations involved.

In August 2017, the FDA announced increased enforcement of regulations and oversight of stem cell clinics. To learn more, see the statement from FDA Commissioner Scott Gottlieb, M.D., on the FDA website.

And in March 2017, to further clarify the benefits and risks of stem cell therapy, the FDA published a perspective article in the New England Journal of Medicine.

The FDA will continue to help with the development and licensing of new stem cell therapies where the scientific evidence supports the products safety and effectiveness.

Know that the FDA plays a role in stem cell treatment oversight. You may be told that because these are your cells, the FDA does not need to review or approve the treatment. That is not true.

Stem cell products have the potential to treat many medical conditions and diseases. But for almost all of these products, it is not yet known whether the product has any benefitor if the product is safe to use.

If you're considering treatment in the United States:

If you're considering treatment in another country:

Follow this link:

FDA Warns About Stem Cell Therapies | FDA - U.S. Food and Drug ...

Stem-cell therapy – Wikipedia

Use of stem cells to treat or prevent a disease or condition

Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition.[1] As of 2016[update], the only established therapy using stem cells is hematopoietic stem cell transplantation.[2] This usually takes the form of a bone-marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases[3] and conditions such as diabetes and heart disease.

Stem-cell therapy has become controversial following developments such as the ability of scientists to isolate and culture embryonic stem cells, to create stem cells using somatic cell nuclear transfer and their use of techniques to create induced pluripotent stem cells. This controversy is often related to abortion politics and to human cloning. Additionally, efforts to market treatments based on transplant of stored umbilical cord blood have been controversial.

For over 30 years, hematopoietic stem cell transplantation (HSCT) has been used to treat people with conditions such as leukaemia and lymphoma; this is the only widely practiced form of stem-cell therapy.[4][5][6] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. This is the side effect of conventional chemotherapy strategies that the stem-cell transplant attempts to reverse; a donor's healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host's body during treatment. The transplanted cells also generate an immune response that helps to kill off the cancer cells; this process can go too far, however, leading to graft vs host disease, the most serious side effect of this treatment.[7]

Another stem-cell therapy, called Prochymal, was conditionally approved in Canada in 2012 for the management of acute graft-vs-host disease in children who are unresponsive to steroids.[8] It is an allogenic stem therapy based on mesenchymal stem cells (MSCs) derived from the bone marrow of adult donors. MSCs are purified from the marrow, cultured and packaged, with up to 10,000 doses derived from a single donor. The doses are stored frozen until needed.[9]

The FDA has approved five hematopoietic stem-cell products derived from umbilical-cord blood, for the treatment of blood and immunological diseases.[10]

In 2014, the European Medicines Agency recommended approval of limbal stem cells for people with severe limbal stem cell deficiency due to burns in the eye.[11]

Stem cells are being studied for a number of reasons. The molecules and exosomes released from stem cells are also being studied in an effort to make medications.[12] In addition to the functions of the cells themselves, paracrine soluble factors produced by stem cells, known as the stem cell secretome, have been found to be another mechanism by which stem cell-based therapies mediate their effects in degenerative, autoimmune, and inflammatory diseases.[13]

To be used for research or treatment applications, large numbers of high-quality stem cells are needed. Thus, it is necessary to develop culture systems which produce pure populations of tissue-specific stem-cells in vitro without the loss of stem-cell potential. Two main approaches are taken for this purpose: two-dimensional and three-dimensional cell culture.[14]

Cell culture in two dimensions has been routinely performed in thousands of laboratories worldwide for the past four decades. In two-dimensional platforms, cells are typically exposed to a solid, rigid flat surface on the basal side and to liquid at the apicalsurface. Inhabiting such a two-dimensional rigid substrate requires a dramatic adaption for the surviving cells because they lack the extracellular matrix that is unique to each cell type and which may alter cell metabolism and reduce its functionality.[14]

Three-dimensional cell culture systems may create a biomimicking microenvironment for stem cells, resembling their native three-dimensional extracellular matrix (ECM). Advanced biomaterials have significantly contributed to three-dimensional cell culture systems in recent decades, and more unique and complex biomaterials have been proposed for improving stem-cell proliferation and controlled differentiation. Among them, nanostructured biomaterials are of particular interest because they have the advantage of a high surface-to-volume ratio, and they mimic the physical and biological features of natural ECM at the nanoscale.[14]

Research has been conducted on the effects of stem cells on animal models of brain degeneration, such as in Parkinson's disease, Amyotrophic lateral sclerosis, and Alzheimer's disease.[15][16][17] Preliminary studies related to multiple sclerosis have been conducted,[18][19][20] and a 2020 phase 2 trial found significantly improved outcomes for mesenchymal stem cell treated patients compared to those receiving a sham treatment.[21] In January 2021 the FDA approved the first clinical trial for an investigational stem cell therapy to restore lost brain cells in people with advanced Parkinsons disease.[22]

Healthy adult brains contain neural stem cells, which divide to maintain general stem-cell numbers, or become progenitor cells. In healthy adult laboratory animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). Pharmacological activation of endogenous neural stem cells has been reported to induce neuroprotection and behavioral recovery in adult rat models of neurological disorder.[23][24][25]

Stroke and traumatic brain injury lead to cell death, characterized by a loss of neurons and oligodendrocytes within the brain. Clinical and animal studies have been conducted into the use of stem cells in cases of spinal cord injury.[26][27][28][20]

A small-scale study on individuals 60 year or older with aging frailty showed, after intravenous treatment with Mesenchymal stem cells (MSC) from healthy young donors, showed significant improvements in physical performance measures. MSC helps with the blockade of inflammation by decreasing it, causing the effects of frailty to reverse.

Stem cells are studied in people with severe heart disease.[29] The work by Bodo-Eckehard Strauer[30] was discredited by identifying hundreds of factual contradictions.[31] Among several clinical trials reporting that adult stem cell therapy is safe and effective, actual evidence of benefit has been reported from only a few studies.[32] Some preliminary clinical trials achieved only modest improvements in heart function following use of bone marrow stem cell therapy.[33][34]

Stem-cell therapy for treatment of myocardial infarction usually makes use of autologous bone-marrow stem cells, but other types of adult stem cells may be used, such as adipose-derived stem cells.[35]

Possible mechanisms of recovery include:[15]

In 2013, studies of autologous bone-marrow stem cells on ventricular function were found to contain "hundreds" of discrepancies.[36] Critics report that of 48 reports, just five underlying trials seemed to be used, and that in many cases whether they were randomized or merely observational accepter-versus-rejecter, was contradictory between reports of the same trial. One pair of reports of identical baseline characteristics and final results, was presented in two publications as, respectively, a 578-patient randomized trial and as a 391-subject observational study. Other reports required (impossible) negative standard deviations in subsets of people, or contained fractional subjects, negative NYHA classes. Overall, many more people were reported as having receiving stem cells in trials, than the number of stem cells processed in the hospital's laboratory during that time. A university investigation, closed in 2012 without reporting, was reopened in July 2013.[37]

In 2014, a meta-analysis on stem cell therapy using bone-marrow stem cells for heart disease revealed discrepancies in published clinical trial reports, whereby studies with a higher number of discrepancies showed an increase in effect sizes.[38] Another meta-analysis based on the intra-subject data of 12 randomized trials was unable to find any significant benefits of stem cell therapy on primary endpoints, such as major adverse events or increase in heart function measures, concluding there was no benefit.[39]

The TIME trial, which used a randomized, double-blind, placebo-controlled trial design, concluded that "bone marrow mononuclear cells administration did not improve recovery of LV function over 2 years" in people who had a myocardial infarction.[40] Accordingly, the BOOST-2 trial conducted in 10 medical centers in Germany and Norway reported that the trial result "does not support the use of nucleated BMCs in patients with STEMI and moderately reduced LVEF".[41] Furthermore, the trial also did not meet any other secondary MRI endpoints,[42] leading to a conclusion that intracoronary bone marrow stem cell therapy does not offer a functional or clinical benefit.[43]

The specificity of the human immune-cell repertoire is what allows the human body to defend itself from rapidly adapting antigens. However, the immune system is vulnerable to degradation upon the pathogenesis of disease, and because of the critical role that it plays in overall defense, its degradation is often fatal to the organism as a whole. Diseases of hematopoietic cells are diagnosed and classified via a subspecialty of pathology known as hematopathology. The specificity of the immune cells is what allows recognition of foreign antigens, causing further challenges in the treatment of immune disease. Identical matches between donor and recipient must be made for successful transplantation treatments, but matches are uncommon, even between first-degree relatives. Research using both hematopoietic adult stem cells and embryonic stem cells has provided insight into the possible mechanisms and methods of treatment for many of these ailments.[44]

Fully mature human red blood cells may be generated ex vivo by hematopoietic stem cells (HSCs), which are precursors of red blood cells. In this process, HSCs are grown together with stromal cells, creating an environment that mimics the conditions of bone marrow, the natural site of red-blood-cell growth. Erythropoietin, a growth factor, is added, coaxing the stem cells to complete terminal differentiation into red blood cells.[45] Further research into this technique should have potential benefits to gene therapy, blood transfusion, and topical medicine.

In 2004, scientists at King's College London discovered a way to cultivate a complete tooth in mice[46] and were able to grow bioengineered teeth stand-alone in the laboratory. Researchers are confident that the tooth regeneration technology can be used to grow live teeth in people.

In theory, stem cells taken from the patient could be coaxed in the lab turning into a tooth bud which, when implanted in the gums, will give rise to a new tooth, and would be expected to be grown in a time over three weeks.[47] It will fuse with the jawbone and release chemicals that encourage nerves and blood vessels to connect with it. The process is similar to what happens when humans grow their original adult teeth. Many challenges remain, however, before stem cells could be a choice for the replacement of missing teeth in the future.[48][49]

Heller has reported success in re-growing cochlea hair cells with the use of embryonic stem cells.[50]

In a 2019 review that looked at hearing regeneration and regenerative medicine, stem cell-derived otic progenitors have the potential to greatly improve hearing.[51]

Since 2003, researchers have successfully transplanted corneal stem cells into damaged eyes to restore vision. "Sheets of retinal cells used by the team are harvested from aborted fetuses, which some people find objectionable." When these sheets are transplanted over the damaged cornea, the stem cells stimulate renewed repair, eventually restore vision.[52] The latest such development was in June 2005, when researchers at the Queen Victoria Hospital of Sussex, England were able to restore the sight of forty people using the same technique. The group, led by Sheraz Daya, was able to successfully use adult stem cells obtained from the patient, a relative, or even a cadaver. Further rounds of trials are ongoing.[53]

People with Type 1 diabetes lose the function of insulin-producing beta cells within the pancreas.[54] In recent experiments, scientists have been able to coax embryonic stem cell to turn into beta cells in the lab. In theory if the beta cell is transplanted successfully, they will be able to replace malfunctioning ones in a diabetic patient.[55]

Use of mesenchymal stem cells (MSCs) derived from adult stem cells is under preliminary research for potential orthopedic applications in bone and muscle trauma, cartilage repair, osteoarthritis, intervertebral disc surgery, rotator cuff surgery, and musculoskeletal disorders, among others.[56] Other areas of orthopedic research for uses of MSCs include tissue engineering and regenerative medicine.[56]

Stem cells can also be used to stimulate the growth of human tissues. In an adult, wounded tissue is most often replaced by scar tissue, which is characterized in the skin by disorganized collagen structure, loss of hair follicles and irregular vascular structure. In the case of wounded fetal tissue, however, wounded tissue is replaced with normal tissue through the activity of stem cells.[57] A possible method for tissue regeneration in adults is to place adult stem cell "seeds" inside a tissue bed "soil" in a wound bed and allow the stem cells to stimulate differentiation in the tissue bed cells. This method elicits a regenerative response more similar to fetal wound-healing than adult scar tissue formation.[57] Researchers are still investigating different aspects of the "soil" tissue that are conducive to regeneration.[57] Because of the general healing capabilities of stem cells, they have gained interest for the treatment of cutaneous wounds, such as in skin cancer.[58]

Destruction of the immune system by the HIV is driven by the loss of CD4+ T cells in the peripheral blood and lymphoid tissues. Viral entry into CD4+ cells is mediated by the interaction with a cellular chemokine receptor, the most common of which are CCR5 and CXCR4. Because subsequent viral replication requires cellular gene expression processes, activated CD4+ cells are the primary targets of productive HIV infection.[59] Recently scientists have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC).[60]

Stem cells are thought to mediate repair via five primary mechanisms: 1) providing an anti-inflammatory effect, 2) homing to damaged tissues and recruiting other cells, such as endothelial progenitor cells, that are necessary for tissue growth, 3) supporting tissue remodeling over scar formation, 4) inhibiting apoptosis, and 5) differentiating into bone, cartilage, tendon, and ligament tissue.[61][62]

To further enrich blood supply to the damaged areas, and consequently promote tissue regeneration, platelet-rich plasma could be used in conjunction with stem cell transplantation.[63][64] The efficacy of some stem cell populations may also be affected by the method of delivery; for instance, to regenerate bone, stem cells are often introduced in a scaffold where they produce the minerals necessary for generation of functional bone.[63][64][65][66]

Stem cells have also been shown to have a low immunogenicity due to the relatively low number of MHC molecules found on their surface. In addition, they have been found to secrete chemokines that alter the immune response and promote tolerance of the new tissue. This allows for allogeneic treatments to be performed without a high rejection risk.[67]

The ability to grow up functional adult tissues indefinitely in culture through Directed differentiation creates new opportunities for drug research. Researchers are able to grow up differentiated cell lines and then test new drugs on each cell type to examine possible interactions in vitro before performing in vivo studies. This is critical in the development of drugs for use in veterinary research because of the possibilities of species-specific interactions. The hope is that having these cell lines available for research use will reduce the need for research animals used because effects on human tissue in vitro will provide insight not normally known before the animal testing phase.[68]

Stem cells are being explored for use in conservation efforts. Spermatogonial stem cells have been harvested from a rat and placed into a mouse host and fully mature sperm were produced with the ability to produce viable offspring. Currently research is underway to find suitable hosts for the introduction of donor spermatogonial stem cells. If this becomes a viable option for conservationists, sperm can be produced from high genetic quality individuals who die before reaching sexual maturity, preserving a line that would otherwise be lost.[69]

Most stem cells intended for regenerative therapy are generally isolated either from the patient's bone marrow or from adipose tissue.[64][66] Mesenchymal stem cells can differentiate into the cells that make up bone, cartilage, tendons, and ligaments, as well as muscle, neural and other progenitor tissues. They have been the main type of stem cells studied in the treatment of diseases affecting these tissues.[70][71] The number of stem cells transplanted into damaged tissue may alter the efficacy of treatment. Accordingly, stem cells derived from bone marrow aspirates, for instance, are cultured in specialized laboratories for expansion to millions of cells.[64][66] Although adipose-derived tissue also requires processing prior to use, the culturing methodology for adipose-derived stem cells is not as extensive as that for bone marrow-derived cells.[72] While it is thought that bone-marrow-derived stem cells are preferred for bone, cartilage, ligament, and tendon repair, others believe that the less challenging collection techniques and the multi-cellular microenvironment already present in adipose-derived stem cell fractions make the latter the preferred source for autologous transplantation.[63]

New sources of mesenchymal stem cells are being researched, including stem cells present in the skin and dermis which are of interest because of the ease at which they can be harvested with minimal risk to the animal.[73] Hematopoietic stem cells have also been discovered to be travelling in the blood stream and possess equal differentiating ability as other mesenchymal stem cells, again with a very non-invasive harvesting technique.[74]

There has been more recent interest in the use of extra embryonic mesenchymal stem cells. Research is underway to examine the differentiating capabilities of stem cells found in the umbilical cord, yolk sac and placenta of different animals. These stem cells are thought to have more differentiating ability than their adult counterparts, including the ability to more readily form tissues of endodermal and ectodermal origin.[67]

There is widespread controversy over the use of human embryonic stem cells. This controversy primarily targets the techniques used to derive new embryonic stem cell lines, which often requires the destruction of the blastocyst. Opposition to the use of human embryonic stem cells in research is often based on philosophical, moral, or religious objections.[75] There is other stem cell research that does not involve the destruction of a human embryo, and such research involves adult stem cells, amniotic stem cells, and induced pluripotent stem cells.

On 23 January 2009, the US Food and Drug Administration gave clearance to Geron Corporation for the initiation of the first clinical trial of an embryonic stem-cell-based therapy on humans. The trial aimed to evaluate the drug GRNOPC1, embryonic stem cell-derived oligodendrocyte progenitor cells, on people with acute spinal cord injury. The trial was discontinued in November 2011 so that the company could focus on therapies in the "current environment of capital scarcity and uncertain economic conditions".[76] In 2013 biotechnology and regenerative medicine company BioTime (AMEX:BTX) acquired Geron's stem cell assets in a stock transaction, with the aim of restarting the clinical trial.[77]

Scientists have reported that MSCs when transfused immediately within few hours post thawing may show reduced function or show decreased efficacy in treating diseases as compared to those MSCs which are in log phase of cell growth (fresh), so cryopreserved MSCs should be brought back into log phase of cell growth in invitro culture before administration. Re-culturing of MSCs will help in recovering from the shock the cells get during freezing and thawing. Various MSC clinical trials which used cryopreserved product immediately post thaw have failed as compared to those clinical trials which used fresh MSCs.[78]

Research has been conducted on horses, dogs, and cats can benefit the development of stem cell treatments in veterinary medicine and can target a wide range of injuries and diseases such as myocardial infarction, stroke, tendon and ligament damage, osteoarthritis, osteochondrosis and muscular dystrophy both in large animals, as well as humans.[79][80][81][82] While investigation of cell-based therapeutics generally reflects human medical needs, the high degree of frequency and severity of certain injuries in racehorses has put veterinary medicine at the forefront of this novel regenerative approach.[83] Companion animals can serve as clinically relevant models that closely mimic human disease.[84][85]

Veterinary applications of stem cell therapy as a means of tissue regeneration have been largely shaped by research that began with the use of adult-derived mesenchymal stem cells to treat animals with injuries or defects affecting bone, cartilage, ligaments and/or tendons.[86][70][87] There are two main categories of stem cells used for treatments: allogeneic stem cells derived from a genetically different donor within the same species[66][88] and autologous mesenchymal stem cells, derived from the patient prior to use in various treatments.[63] A third category, xenogenic stem cells, or stem cells derived from different species, are used primarily for research purposes, especially for human treatments.[68]

Bone has a unique and well documented natural healing process that normally is sufficient to repair fractures and other common injuries. Misaligned breaks due to severe trauma, as well as treatments like tumor resections of bone cancer, are prone to improper healing if left to the natural process alone. Scaffolds composed of natural and artificial components are seeded with mesenchymal stem cells and placed in the defect. Within four weeks of placing the scaffold, newly formed bone begins to integrate with the old bone and within 32 weeks, full union is achieved.[89] Further studies are necessary to fully characterize the use of cell-based therapeutics for treatment of bone fractures.

Stem cells have been used to treat degenerative bone diseases. The normally recommended treatment for dogs that have LeggCalvePerthes disease is to remove the head of the femur after the degeneration has progressed. Recently, mesenchymal stem cells have been injected directly in to the head of the femur, with success not only in bone regeneration, but also in pain reduction.[89]

Autologous stem cell-based treatments for ligament injury, tendon injury, osteoarthritis, osteochondrosis, and sub-chondral bone cysts have been commercially available to practicing veterinarians to treat horses since 2003 in the United States and since 2006 in the United Kingdom. Autologous stem cell based treatments for tendon injury, ligament injury, and osteoarthritis in dogs have been available to veterinarians in the United States since 2005. Over 3000 privately owned horses and dogs have been treated with autologous adipose-derived stem cells. The efficacy of these treatments has been shown in double-blind clinical trials for dogs with osteoarthritis of the hip and elbow and horses with tendon damage.[90][91]

Race horses are especially prone to injuries of the tendon and ligaments. Conventional therapies are very unsuccessful in returning the horse to full functioning potential. Natural healing, guided by the conventional treatments, leads to the formation of fibrous scar tissue that reduces flexibility and full joint movement. Traditional treatments prevented a large number of horses from returning to full activity and also have a high incidence of re-injury due to the stiff nature of the scarred tendon. Introduction of both bone marrow and adipose derived stem cells, along with natural mechanical stimulus promoted the regeneration of tendon tissue. The natural movement promoted the alignment of the new fibers and tendocytes with the natural alignment found in uninjured tendons. Stem cell treatment not only allowed more horses to return to full duty and also greatly reduced the re-injury rate over a three-year period.[67]

The use of embryonic stem cells has also been applied to tendon repair. The embryonic stem cells were shown to have a better survival rate in the tendon as well as better migrating capabilities to reach all areas of damaged tendon. The overall repair quality was also higher, with better tendon architecture and collagen formed. There was also no tumor formation seen during the three-month experimental period. Long-term studies need to be carried out to examine the long-term efficacy and risks associated with the use of embryonic stem cells.[67] Similar results have been found in small animals.[67]

Osteoarthritis is the main cause of joint pain both in animals and humans. Horses and dogs are most frequently affected by arthritis. Natural cartilage regeneration is very limited. Different types of mesenchymal stem cells and other additives are still being researched to find the best type of cell and method for long-term treatment.[67]

Adipose-derived mesenchymal cells are currently the most often used for stem cell treatment of osteoarthritis because of the non-invasive harvesting. This is a recently developed, non-invasive technique developed for easier clinical use. Dogs receiving this treatment showed greater flexibility in their joints and less pain.[92]

Stem cells have successfully been used to ameliorate healing in the heart after myocardial infarction in dogs. Adipose and bone marrow derived stem cells were removed and induced to a cardiac cell fate before being injected into the heart. The heart was found to have improved contractility and a reduction in the damaged area four weeks after the stem cells were applied.[93]

A different trial is underway for a patch made of a porous substance onto which the stem cells are "seeded" in order to induce tissue regeneration in heart defects. Tissue was regenerated and the patch was well incorporated into the heart tissue. This is thought to be due, in part, to improved angiogenesis and reduction of inflammation. Although cardiomyocytes were produced from the mesenchymal stem cells, they did not appear to be contractile. Other treatments that induced a cardiac fate in the cells before transplanting had greater success at creating contractile heart tissue.[94]

Recent research, such as the European nTRACK research project, aims to demonstrate that multimodal nanoparticles can structurally and functionally track stem cell in muscle regeneration therapy. The idea is to label stem cells with gold nano-particles that are fully characterised for uptake, functionality, and safety. The labelled stem cells will be injected into an injured muscle and tracked using imaging systems.[95] However, the system still needs to be demonstrated at lab scale.

Spinal cord injuries are one of the most common traumas brought into veterinary hospitals.[89] Spinal injuries occur in two ways after the trauma: the primary mechanical damage, and in secondary processes, like inflammation and scar formation, in the days following the trauma. These cells involved in the secondary damage response secrete factors that promote scar formation and inhibit cellular regeneration. Mesenchymal stem cells that are induced to a neural cell fate are loaded onto a porous scaffold and are then implanted at the site of injury. The cells and scaffold secrete factors that counteract those secreted by scar forming cells and promote neural regeneration. Eight weeks later, dogs treated with stem cells showed immense improvement over those treated with conventional therapies. Dogs treated with stem cells were able to occasionally support their own weight, which has not been seen in dogs undergoing conventional therapies.[96][97][98]

In a study to evaluate the treatment of experimentally induced MS in dogs using laser activated non-expanded adipose derived stem cells. The results showed amelioration of the clinical signs over time confirmed by the resolution of the previous lesions on MRI. Positive migration of the injected cells to the site of lesion, increased remyelination detected by Myelin Basic Proteins, positive differentiation into Olig2 positive oligodendrocytes, prevented the glial scar formation and restored axonal architecture.[20]

Treatments are also in clinical trials to repair and regenerate peripheral nerves. Peripheral nerves are more likely to be damaged, but the effects of the damage are not as widespread as seen in injuries to the spinal cord. Treatments are currently in clinical trials to repair severed nerves, with early success. Stem cells induced to a neural fate injected in to a severed nerve. Within four weeks, regeneration of previously damaged stem cells and completely formed nerve bundles were observed.[73]

Stem cells are also in clinical phases for treatment in ophthalmology. Hematopoietic stem cells have been used to treat corneal ulcers of different origin of several horses. These ulcers were resistant to conventional treatments available, but quickly responded positively to the stem cell treatment. Stem cells were also able to restore sight in one eye of a horse with retinal detachment, allowing the horse to return to daily activities.[74]

In the late 1990s and early 2000s, there was an initial wave of companies and clinics offering stem cell therapy, while not substantiating health claims or having regulatory approval.[99] By 2012, a second wave of companies and clinics had emerged, usually located in developing countries where medicine is less regulated and offering stem cell therapies on a medical tourism model.[100][101] Like the first wave companies and clinics, they made similar strong, but unsubstantiated, claims, mainly by clinics in the United States, Mexico, Thailand, India, and South Africa.[100][101] By 2016, research indicated that there were more than 550 stem cell clinics in the US alone selling generally unproven therapies for a wide array of medical conditions in almost every state in the country,[102] altering the dynamic of stem cell tourism. In 2018, the FDA sent a warning letter to StemGenex Biologic Laboratories in San Diego, which marketed a service in which it took body fat from people, processed it into mixtures it said contained various forms of stem cells, and administered it back to the person by inhalation, intravenously, or infusion into their spinal cords; the company said the treatment was useful for many chronic and life-threatening conditions.[103]

Costs of stem cell therapies range widely by clinic, condition, and cell type, but most commonly range between $10,000-$20,000.[104] Insurance does not cover stem cell injections at clinics so patients often use on-line fundraising.[105] In 2018, the US Federal Trade Commission found health centers and an individual physician making unsubstantiated claims for stem cell therapies, and forced refunds of some $500,000.[106] The FDA filed suit against two stem cell clinic firms around the same time, seeking permanent injunctions against their marketing and use of unapproved adipose stem cell products.[107]

Although according to the NIH no stem cell treatments have been approved for COVID-19 and the agency recommends against the use of MSCs for the disease,[108] some stem cell clinics began marketing both unproven and non-FDA-approved stem cells and exosomes for COVID-19 in 2020.[109] The FDA took prompt action by sending letters to the firms in question.[110][111] The FTC also warned a stem cell firm for COVID-19-related marketing.[112][113]

View original post here:

Stem-cell therapy - Wikipedia

Stem Cell Transplantation: What it Is, Process & Procedure

OverviewWhat is a stem cell transplant?

Healthcare providers use stem cell transplants to treat people who have life-threatening cancer or blood diseases caused by abnormal blood cells. A stem cell transplant helps your body replace those blood cells with healthy or normal blood cells. If you receive a stem cell transplant, your provider may use your own healthy stem cells or donor stem cells.

Your blood cells come from stem cells in your bone marrow. Your bone marrow constantly creates new stem cells that become blood cells. Stem cell transplants can involve stem cells taken from bone marrow or from blood. Providers sometimes refer to stem cell and bone marrow transplants as haematopoietic stem cell transplants (HSCT). This article focuses on stem cells taken from blood.

Healthcare providers use stem cells to replace unhealthy blood cells that cause conditions such as several types of leukemia, lymphoma and testicular cancer. They also use transplanted stem cells to treat several types of anemia. Some people who have multiple sclerosis may benefit by receiving healthy stem cells. Researchers are investigating ways to treat other autoimmune diseases with stem cell transplants.

Healthcare providers typically use stem cell transplants to treat life-threatening cancer or blood diseases. Unfortunately, not everyone who has those conditions can have the procedure. Here are factors providers take into consideration:

Recently data reported nearly 23,000 people had stem cell transplants in 2018.

To understand how stem cell transplants work, it may help to know more about stem cells and their role in your body:

Healthcare providers obtain stem cells from several sources:

If youre a candidate for a stem cell transplant, your healthcare provider will perform the following tests to confirm youre physically able to manage transplantation processes, including pre-treatment chemotherapy called conditioning and transplantation side effects:

Before your blood tests, your provider may place a central venous catheter (CVC) in one of the large veins in your upper chest. CVCs are tubes that serve as central lines that providers use to take blood and provide medication and fluids. CVCs eliminate repeated needle sticks to draw blood or insert intravenous tubes throughout the transplantation process.

Transplant conditioning is intensive chemotherapy and/or radiation therapy that kills cancer cells in your bone marrow. Conditioning also kills existing blood cells.

If youre receiving your own stem cells, your provider may give you medication to boost your stem cell production. Theyll do follow-up blood tests to check on stem cell production.

If youre receiving your own stem cells, your providers will take blood so they can remove healthy stem cells for transplant. . To do that, they connect veins in both of your arms to a cell separator machine. The machine pulls your blood from one arm, filters the blood and then returns it to through your other arm. This process doesnt hurt. Providers may need to take blood more than once to ensure they have enough stem cells to transplant. The actual transplantation involves receiving your stem cells via your CVC.

Just like someone receiving their own cells, youll receive healthy stem cells via your CVC.

Your new stem cells will need time to produce new blood cells. If you received donor stem cells, your transplanted stem cells will replace unhealthy stem cells and begin to build a new immune system. This process is engraftment.

Either way, you may need to stay in or close to the hospital for several months so your healthcare providers can support your recovery and monitor your progress. Heres what you can expect after your stem cell transplant:

Successful stem cell transplants may help people when previous treatments dont slow or eliminate certain cancers.

The greatest risk is that youll go through the procedure and your transplanted stem cells cant slow or eliminate your illness.

Allogeneic and autologous stem cell transplants have different complications. Allogeneic stem cell transplants can result in graft versus host disease. This happens when your immune system attacks new stem cells. Potential complications will vary based on your overall health, age and previous treatment. If youre considering a stem cell transplant, your healthcare provider will outline potential complications so you can weigh those risks against potential benefits.

It can take several weeks to several months to recover from a stem cell transplant. Your healthcare provider may recommend you stay in or near the hospital or transplant center for the first 100 days after your procedure.

Its difficult to calculate an overall success rate. That said, the most recent data show the highest number of stem cell transplants involved people with multiple myeloma or Hodgkin and non-Hodgkin lymphoma who received autologous stem cell transplants. Here is information on three-year survival rates:

A successful stem cell transplant can change your life, curing your condition or slowing its growth. But its not an overnight transformation. It can take a year or more for you to recover. Here are some challenges and ways to overcome them:

You may have days when you feel exhausted and days when you feel fine. A hard day doesnt mean youre not doing well. It means you need to give yourself a break and take it easy.

Youll have regular follow-up appointments with your provider. But its important to remember your immune system likely will be weak for a year or so after your transplantation. Contact your provider right away if you develop any of the following symptoms:

A note from Cleveland Clinic

If youve been coping with cancer or a blood disease, a stem cell transplant can be a new lease on life. It can mean hope for a cure or remission when other treatments havent worked. But stem cell transplants come with demanding physical challenges and significant risks. Not everyone who has cancer or blood conditions is a candidate for a stem cell transplant. Unfortunately, not everyone who is a candidate but needs donor stem cells finds a donor. If youre considering a stem cell transplant, talk to your healthcare provider about potential risks and benefits. Theyll evaluate your situation, your options and potential outcomes.

Original post:

Stem Cell Transplantation: What it Is, Process & Procedure

Stem Cell Therapy for Arthritis | Arthritis-health

Experts are researching ways to use stem cells to treat arthritis in the knee and other joints. Many doctors already use stem cell therapy to treat arthritis, but it is not considered standard practice.

There is a lot of debate around stem cell treatment, and it is helpful for potential patients to understand what stem cells are and the issues surrounding their use in arthritis therapy.

Stem cells are located throughout the body. What makes stem cells special is that they can:

See What Are Stem Cells?

Advocates of stem cell treatments hypothesize that, when placed into a certain environment, stem cells can transform to accommodate a certain need. For example, stem cells that are placed near damaged cartilage are hypothesized to develop into cartilage tissue.

See What Is Cartilage?

Stem cells can be applied during a surgery (such as the surgical repair of a torn knee meniscus) or delivered through injections directly into the arthritis joint.

Watch: Knee Meniscus Tear Video

When administering stem cell injections, many physicians use medical imaging, such as ultrasound, in order to deliver cells precisely to the site of cartilage damage.

The most common type of stem cells used for treating arthritis are mesenchymal stem cells. Mesenchymal stem cells are usually collected from the patients fat tissue, blood, or bone marrow.

The process of collecting cells is often called harvesting.

Bone marrow is usually taken from the pelvic bone using a needle and syringe, a process called bone marrow aspiration. The patient is given a local anesthetic and may also be given a sedative before the procedure.

There are no professional medical guidelines for who can and cannot receive stem cell therapy for arthritis. For now, the decision about who gets stem cell therapy is up to patients and doctors.

See Arthritis Treatment Specialists

There is some evidence that people with severe arthritis can benefit from stem cell therapy. Pers YM, Rackwitz L, Ferreira R, et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl Med. 2016;5(7):847-56. Most research indicates that younger patients who have relatively mild osteoarthritis or cartilage damage see the most benefit. Filardo G, Perdisa F, Roffi A, Marcacci M, Kon E. Stem cells in articular cartilage regeneration. J Orthop Surg Res. 2016;11:42.

See What Is Osteoarthritis?

Some doctors have certain criteria for recommending stem cell therapy. For example, they only recommend it to patients who are healthy and have relatively little cartilage damage. Other doctors make recommendations on a case-by-case basis.

Stem cell therapy is a promising but still unproven treatment, and will not be covered by most insurance companies.

Visit link:

Stem Cell Therapy for Arthritis | Arthritis-health

Induced pluripotent stem cell – Wikipedia

Pluripotent stem cell generated directly from a somatic cell

Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka's lab in Kyoto, Japan, who showed in 2006 that the introduction of four specific genes (named Myc, Oct3/4, Sox2 and Klf4), collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells.[1] He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."[2]

Pluripotent stem cells hold promise in the field of regenerative medicine.[3] Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic, and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.

The most well-known type of pluripotent stem cell is the embryonic stem cell. However, since the generation of embryonic stem cells involves destruction (or at least manipulation)[4] of the pre-implantation stage embryo, there has been much controversy surrounding their use. Patient-matched embryonic stem cell lines can now be derived using somatic cell nuclear transfer (SCNT).

Since iPSCs can be derived directly from adult tissues, they not only bypass the need for embryos, but can be made in a patient-matched manner, which means that each individual could have their own pluripotent stem cell line. These unlimited supplies of autologous cells could be used to generate transplants without the risk of immune rejection. While the iPSC technology has not yet advanced to a stage where therapeutic transplants have been deemed safe, iPSCs are readily being used in personalized drug discovery efforts and understanding the patient-specific basis of disease.[5]

Yamanaka named iPSCs with a lower case "i" due to the popularity of the iPod and other products.[7][8][9][10][dubious discuss]

In his Nobel seminar, Yamanaka cited the earlier seminal work of Harold Weintraub on the role of myoblast determination protein 1 (MyoD) in reprogramming cell fate to a muscle lineage as an important precursor to the discovery of iPSCs.[11]

iPSCs are typically derived by introducing products of specific sets of pluripotency-associated genes, or "reprogramming factors", into a given cell type. The original set of reprogramming factors (also dubbed Yamanaka factors) are the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and cMyc. While this combination is most conventional in producing iPSCs, each of the factors can be functionally replaced by related transcription factors, miRNAs, small molecules, or even non-related genes such as lineage specifiers.[12]It is also clear that pro-mitotic factors such as C-MYC/L-MYC or repression of cell cycle checkpoints, such as p53, are conduits to creating a compliant cellular state for iPSC reprograming .[13]

iPSC derivation is typically a slow and inefficient process, taking 12 weeks for mouse cells and 34 weeks for human cells, with efficiencies around 0.010.1%. However, considerable advances have been made in improving the efficiency and the time it takes to obtain iPSCs. Upon introduction of reprogramming factors, cells begin to form colonies that resemble pluripotent stem cells, which can be isolated based on their morphology, conditions that select for their growth, or through expression of surface markers or reporter genes.

Induced pluripotent stem cells were first generated by Shinya Yamanaka's team at Kyoto University, Japan, in 2006.[1] They hypothesized that genes important to embryonic stem cell (ESC) function might be able to induce an embryonic state in adult cells. They chose twenty-four genes previously identified as important in ESCs and used retroviruses to deliver these genes to mouse fibroblasts. The fibroblasts were engineered so that any cells reactivating the ESC-specific gene, Fbx15, could be isolated using antibiotic selection.

Upon delivery of all twenty-four factors, ESC-like colonies emerged that reactivated the Fbx15 reporter and could propagate indefinitely. To identify the genes necessary for reprogramming, the researchers removed one factor at a time from the pool of twenty-four. By this process, they identified four factors, Oct4, Sox2, cMyc, and Klf4, which were each necessary and together sufficient to generate ESC-like colonies under selection for reactivation of Fbx15.

In June 2007, three separate research groups, including that of Yamanaka's, a Harvard/University of California, Los Angeles collaboration, and a group at MIT, published studies that substantially improved on the reprogramming approach, giving rise to iPSCs that were indistinguishable from ESCs. Unlike the first generation of iPSCs, these second generation iPSCs produced viable chimeric mice and contributed to the mouse germline, thereby achieving the 'gold standard' for pluripotent stem cells.

These second-generation iPSCs were derived from mouse fibroblasts by retroviral-mediated expression of the same four transcription factors (Oct4, Sox2, cMyc, Klf4). However, instead of using Fbx15 to select for pluripotent cells, the researchers used Nanog, a gene that is functionally important in ESCs. By using this different strategy, the researchers created iPSCs that were functionally identical to ESCs.[14][15][16][17]

Reprogramming of human cells to iPSCs was reported in November 2007 by two independent research groups: Shinya Yamanaka of Kyoto University, Japan, who pioneered the original iPSC method, and James Thomson of University of Wisconsin-Madison who was the first to derive human embryonic stem cells. With the same principle used in mouse reprogramming, Yamanaka's group successfully transformed human fibroblasts into iPSCs with the same four pivotal genes, Oct4, Sox2, Klf4, and cMyc, using a retroviral system,[18] while Thomson and colleagues used a different set of factors, Oct4, Sox2, Nanog, and Lin28, using a lentiviral system.[19]

Obtaining fibroblasts to produce iPSCs involves a skin biopsy, and there has been a push towards identifying cell types that are more easily accessible.[20][21] In 2008, iPSCs were derived from human keratinocytes, which could be obtained from a single hair pluck.[22][23] In 2010, iPSCs were derived from peripheral blood cells,[24][25] and in 2012, iPSCs were made from renal epithelial cells in the urine.[26]

Other considerations for starting cell type include mutational load (for example, skin cells may harbor more mutations due to UV exposure),[20][21] time it takes to expand the population of starting cells,[20] and the ability to differentiate into a given cell type.[27]

[citation needed]

The generation of induced pluripotent cells is crucially dependent on the transcription factors used for the induction.

Oct-3/4 and certain products of the Sox gene family (Sox1, Sox2, Sox3, and Sox15) have been identified as crucial transcriptional regulators involved in the induction process whose absence makes induction impossible. Additional genes, however, including certain members of the Klf family (Klf1, Klf2, Klf4, and Klf5), the Myc family (c-myc, L-myc, and N-myc), Nanog, and LIN28, have been identified to increase the induction efficiency.

Although the methods pioneered by Yamanaka and others have demonstrated that adult cells can be reprogrammed to iPS cells, there are still challenges associated with this technology:

The table on the right summarizes the key strategies and techniques used to develop iPS cells in the first five years after Yamanaka et al.'s 2006 breakthrough. Rows of similar colors represent studies that used similar strategies for reprogramming.

One of the main strategies for avoiding problems (1) and (2) has been to use small molecules that can mimic the effects of transcription factors. These compounds can compensate for a reprogramming factor that does not effectively target the genome or fails at reprogramming for another reason; thus they raise reprogramming efficiency. They also avoid the problem of genomic integration, which in some cases contributes to tumor genesis. Key studies using such strategy were conducted in 2008. Melton et al. studied the effects of histone deacetylase (HDAC) inhibitor valproic acid. They found that it increased reprogramming efficiency 100-fold (compared to Yamanaka's traditional transcription factor method).[42] The researchers proposed that this compound was mimicking the signaling that is usually caused by the transcription factor c-Myc. A similar type of compensation mechanism was proposed to mimic the effects of Sox2. In 2008, Ding et al. used the inhibition of histone methyl transferase (HMT) with BIX-01294 in combination with the activation of calcium channels in the plasma membrane in order to increase reprogramming efficiency.[43] Deng et al. of Beijing University reported in July 2013 that induced pluripotent stem cells can be created without any genetic modification. They used a cocktail of seven small-molecule compounds including DZNep to induce the mouse somatic cells into stem cells which they called CiPS cells with the efficiency at 0.2% comparable to those using standard iPSC production techniques. The CiPS cells were introduced into developing mouse embryos and were found to contribute to all major cells types, proving its pluripotency.[44][45]

Ding et al. demonstrated an alternative to transcription factor reprogramming through the use of drug-like chemicals. By studying the MET (mesenchymal-epithelial transition) process in which fibroblasts are pushed to a stem-cell like state, Ding's group identified two chemicals ALK5 inhibitor SB431412 and MEK (mitogen-activated protein kinase) inhibitor PD0325901 which was found to increase the efficiency of the classical genetic method by 100 fold. Adding a third compound known to be involved in the cell survival pathway, Thiazovivin further increases the efficiency by 200 fold. Using the combination of these three compounds also decreased the reprogramming process of the human fibroblasts from four weeks to two weeks.[46][47]

In April 2009, it was demonstrated that generation of iPS cells is possible without any genetic alteration of the adult cell: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency.[48] The acronym given for those iPSCs is piPSCs (protein-induced pluripotent stem cells).

Another key strategy for avoiding problems such as tumorgenesis and low throughput has been to use alternate forms of vectors: adenovirus, plasmids, and naked DNA or protein compounds.

In 2008, Hochedlinger et al. used an adenovirus to transport the requisite four transcription factors into the DNA of skin and liver cells of mice, resulting in cells identical to ESCs. The adenovirus is unique from other vectors like viruses and retroviruses because it does not incorporate any of its own genes into the targeted host and avoids the potential for insertional mutagenesis.[43] In 2009, Freed et al. demonstrated successful reprogramming of human fibroblasts to iPS cells.[49] Another advantage of using adenoviruses is that they only need to present for a brief amount of time in order for effective reprogramming to take place.

Also in 2008, Yamanaka et al. found that they could transfer the four necessary genes with a plasmid.[35] The Yamanaka group successfully reprogrammed mouse cells by transfection with two plasmid constructs carrying the reprogramming factors; the first plasmid expressed c-Myc, while the second expressed the other three factors (Oct4, Klf4, and Sox2). Although the plasmid methods avoid viruses, they still require cancer-promoting genes to accomplish reprogramming. The other main issue with these methods is that they tend to be much less efficient compared to retroviral methods. Furthermore, transfected plasmids have been shown to integrate into the host genome and therefore they still pose the risk of insertional mutagenesis. Because non-retroviral approaches have demonstrated such low efficiency levels, researchers have attempted to effectively rescue the technique with what is known as the PiggyBac Transposon System. Several studies have demonstrated that this system can effectively deliver the key reprogramming factors without leaving footprint mutations in the host cell genome. The PiggyBac Transposon System involves the re-excision of exogenous genes, which eliminates the issue of insertional mutagenesis.[citation needed]

In January 2014, two articles were published claiming that a type of pluripotent stem cell can be generated by subjecting the cells to certain types of stress (bacterial toxin, a low pH of 5.7, or physical squeezing); the resulting cells were called STAP cells, for stimulus-triggered acquisition of pluripotency.[50]

In light of difficulties that other labs had replicating the results of the surprising study, in March 2014, one of the co-authors has called for the articles to be retracted.[51] On 4 June 2014, the lead author, Obokata agreed to retract both the papers [52] after she was found to have committed 'research misconduct' as concluded in an investigation by RIKEN on 1 April 2014.[53]

MicroRNAs are short RNA molecules that bind to complementary sequences on messenger RNA and block expression of a gene. Measuring variations in microRNA expression in iPS cells can be used to predict their differentiation potential.[54] Addition of microRNAs can also be used to enhance iPS potential. Several mechanisms have been proposed.[54] ES cell-specific microRNA molecules (such as miR-291, miR-294 and miR-295) enhance the efficiency of induced pluripotency by acting downstream of c-Myc.[55] microRNAs can also block expression of repressors of Yamanaka's four transcription factors, and there may be additional mechanisms induce reprogramming even in the absence of added exogenous transcription factors.[54]

Induced pluripotent stem cells are similar to natural pluripotent stem cells, such as embryonic stem cells, in many aspects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability, but the full extent of their relation to natural pluripotent stem cells is still being assessed.[1]

Gene expression and genome-wide H3K4me3 and H3K27me3 were found to be extremely similar between ES and iPS cells.[56][citation needed] The generated iPSCs were remarkably similar to naturally isolated pluripotent stem cells (such as mouse and human embryonic stem cells, mESCs and hESCs, respectively) in the following respects, thus confirming the identity, authenticity, and pluripotency of iPSCs to naturally isolated pluripotent stem cells:

Recent achievements and future tasks for safe iPSC-based cell therapy are collected in the review of Okano et al.[67]

The task of producing iPS cells continues to be challenging due to the six problems mentioned above. A key tradeoff to overcome is that between efficiency and genomic integration. Most methods that do not rely on the integration of transgenes are inefficient, while those that do rely on the integration of transgenes face the problems of incomplete reprogramming and tumor genesis, although a vast number of techniques and methods have been attempted. Another large set of strategies is to perform a proteomic characterization of iPS cells.[58] Further studies and new strategies should generate optimal solutions to the five main challenges. One approach might attempt to combine the positive attributes of these strategies into an ultimately effective technique for reprogramming cells to iPS cells.

Another approach is the use of iPS cells derived from patients to identify therapeutic drugs able to rescue a phenotype. For instance, iPS cell lines derived from patients affected by ectodermal dysplasia syndrome (EEC), in which the p63 gene is mutated, display abnormal epithelial commitment that could be partially rescued by a small compound.[68]

An attractive feature of human iPS cells is the ability to derive them from adult patients to study the cellular basis of human disease. Since iPS cells are self-renewing and pluripotent, they represent a theoretically unlimited source of patient-derived cells which can be turned into any type of cell in the body. This is particularly important because many other types of human cells derived from patients tend to stop growing after a few passages in laboratory culture. iPS cells have been generated for a wide variety of human genetic diseases, including common disorders such as Down syndrome and polycystic kidney disease.[69][70] In many instances, the patient-derived iPS cells exhibit cellular defects not observed in iPS cells from healthy subjects, providing insight into the pathophysiology of the disease.[71] An international collaborated project, StemBANCC, was formed in 2012 to build a collection of iPS cell lines for drug screening for a variety of disease. Managed by the University of Oxford, the effort pooled funds and resources from 10 pharmaceutical companies and 23 universities. The goal is to generate a library of 1,500 iPS cell lines which will be used in early drug testing by providing a simulated human disease environment.[72] Furthermore, combining hiPSC technology and small molecule or genetically encoded voltage and calcium indicators provided a large-scale and high-throughput platform for cardiovascular drug safety screening.[73][74][75][76]

A proof-of-concept of using induced pluripotent stem cells (iPSCs) to generate human organ for transplantation was reported by researchers from Japan. Human 'liver buds' (iPSC-LBs) were grown from a mixture of three different kinds of stem cells: hepatocytes (for liver function) coaxed from iPSCs; endothelial stem cells (to form lining of blood vessels) from umbilical cord blood; and mesenchymal stem cells (to form connective tissue). This new approach allows different cell types to self-organize into a complex organ, mimicking the process in fetal development. After growing in vitro for a few days, the liver buds were transplanted into mice where the 'liver' quickly connected with the host blood vessels and continued to grow. Most importantly, it performed regular liver functions including metabolizing drugs and producing liver-specific proteins. Further studies will monitor the longevity of the transplanted organ in the host body (ability to integrate or avoid rejection) and whether it will transform into tumors.[77][78] Using this method, cells from one mouse could be used to test 1,000 drug compounds to treat liver disease, and reduce animal use by up to 50,000.[79]

In 2021, a switchable Yamanaka factors-reprogramming-based approach for regeneration of damaged heart without tumor-formation was demonstrated in mice and was successful if the intervention was carried out immediately before or after a heart attack.[80]

Embryonic cord-blood cells were induced into pluripotent stem cells using plasmid DNA. Using cell surface endothelial/pericytic markers CD31 and CD146, researchers identified 'vascular progenitor', the high-quality, multipotent vascular stem cells. After the iPS cells were injected directly into the vitreous of the damaged retina of mice, the stem cells engrafted into the retina, grew and repaired the vascular vessels.[81][82]

Labelled iPSCs-derived NSCs injected into laboratory animals with brain lesions were shown to migrate to the lesions and some motor function improvement was observed.[83]

Beating cardiac muscle cells, iPSC-derived cardiomyocytes, can be mass-produced using chemically defined differentiation protocols.[84][85] These protocols typically modulate the same developmental signaling pathways required for heart development .[86] These iPSC-cardiomyocytes can recapitulate genetic arrhythmias and cardiac drug responses, since they exhibit the same genetic background as the patient from which they were derived.[87][88][89]

In June 2014, Takara Bio received technology transfer from iHeart Japan, a venture company from Kyoto University's iPS Cell Research Institute, to make it possible to exclusively use technologies and patents that induce differentiation of iPS cells into cardiomyocytes in Asia. The company announced the idea of selling cardiomyocytes to pharmaceutical companies and universities to help develop new drugs for heart disease.[90]

On March 9, 2018, the Specified Regenerative Medicine Committee of Osaka University officially approved the world's first clinical research plan to transplant a "myocardial sheet" made from iPS cells into the heart of patients with severe heart failure. Osaka University announced that it had filed an application with the Ministry of Health, Labor and Welfare on the same day.

On May 16, 2018, the clinical research plan was approved by the Ministry of Health, Labor and Welfare's expert group with a condition.[91][92]

In October 2019, a group at Okayama University developed a model of ischemic heart disease using cardiomyocytes differentiated from iPS cells.[93]

Although a pint of donated blood contains about two trillion red blood cells and over 107 million blood donations are collected globally, there is still a critical need for blood for transfusion. In 2014, type O red blood cells were synthesized at the Scottish National Blood Transfusion Service from iPSC. The cells were induced to become a mesoderm and then blood cells and then red blood cells. The final step was to make them eject their nuclei and mature properly. Type O can be transfused into all patients. Human clinical trials were not expected to begin before 2016.[94]

The first human clinical trial using autologous iPSCs was approved by the Japan Ministry Health and was to be conducted in 2014 at the Riken Center for Developmental Biology in Kobe. However the trial was suspended after Japan's new regenerative medicine laws came into effect in November 2015.[95] More specifically, an existing set of guidelines was strengthened to have the force of law (previously mere recommendations).[96] iPSCs derived from skin cells from six patients with wet age-related macular degeneration were reprogrammed to differentiate into retinal pigment epithelial (RPE) cells. The cell sheet would be transplanted into the affected retina where the degenerated RPE tissue was excised. Safety and vision restoration monitoring were to last one to three years.[97][98]

In March 2017, a team led by Masayo Takahashi completed the first successful transplant of iPS-derived retinal cells from a donor into the eye of a person with advanced macular degeneration.[99] However it was reported that they are now having complications.[100] The benefits of using autologous iPSCs are that there is theoretically no risk of rejection and that it eliminates the need to use embryonic stem cells. However, these iPSCs were derived from another person.[98]

New clinical trials involving iPSCs are now ongoing not only in Japan, but also in the US and Europe.[101] Research in 2021 on the trial registry Clinicaltrials.gov identified 129 trial listings mentioning iPSCs, but most were non-interventional.[102]

To make iPSC-based regenerative medicine technologies available to more patients, it is necessary to create universal iPSCs that can be transplanted independently of haplotypes of HLA. The current strategy for the creation of universal iPSCs has two main goals: to remove HLA expression and to prevent NK cells attacks due to deletion of HLA. Deletion of the B2M and CIITA genes using the CRISPR/Cas9 system has been reported to suppress the expression of HLA class I and class II, respectively. To avoid NK cell attacks. transduction of ligands inhibiting NK-cells, such as HLA-E and CD47 has been used.[103] HLA-C is left unchanged, since the 12 common HLA-C alleles are enough to cover 95% of the world's population.[103]

A multipotent mesenchymal stem cell, when induced into pluripotence, holds great promise to slow or reverse aging phenotypes. Such anti-aging properties were demonstrated in early clinical trials in 2017.[104] In 2020, Stanford University researchers concluded after studying elderly mice that old human cells when subjected to the Yamanaka factors, might rejuvenate and become nearly indistinguishable from their younger counterparts.[105]

Link:

Induced pluripotent stem cell - Wikipedia

Stem cell – Wikipedia

Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage.[1] They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

In mammals, roughly 50150 cells make up the inner cell mass during the blastocyst stage of embryonic development, around days 514. These have stem-cell capability. In vivo, they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three germ layers the ectoderm, mesoderm and endoderm at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).

Adult stem cells are found in a few select locations in the body, known as niches, such as those in the bone marrow or gonads. They exist to replenish rapidly lost cell types and are multipotent or unipotent, meaning they only differentiate into a few cell types or one type of cell. In mammals, they include, among others, hematopoietic stem cells, which replenish blood and immune cells, basal cells, which maintain the skin epithelium, and mesenchymal stem cells, which maintain bone, cartilage, muscle and fat cells. Adult stem cells are a small minority of cells; they are vastly outnumbered by the progenitor cells and terminally differentiated cells that they differentiate into.[1]

Research into stem cells grew out of findings by Canadian biologists Ernest McCulloch, James Till and Andrew J. Becker at the University of Toronto and the Ontario Cancer Institute in the 1960s.[2][3] As of 2016[update], the only established medical therapy using stem cells is hematopoietic stem cell transplantation,[4] first performed in 1958 by French oncologist Georges Math. Since 1998 however, it has been possible to culture and differentiate human embryonic stem cells (in stem-cell lines). The process of isolating these cells has been controversial, because it typically results in the destruction of the embryo. Sources for isolating ESCs have been restricted in some European countries and Canada, but others such as the UK and China have promoted the research.[5] Somatic cell nuclear transfer is a cloning method that can be used to create a cloned embryo for the use of its embryonic stem cells in stem cell therapy.[6] In 2006, a Japanese team led by Shinya Yamanaka discovered a method to convert mature body cells back into stem cells. These were termed induced pluripotent stem cells (iPSCs).[7]

The term stem cell was coined by Theodor Boveri and Valentin Haecker in late 19th century.[8] Pioneering works in theory of blood stem cell were conducted in the beginning of 20th century by Artur Pappenheim, Alexander Maximow, Franz Ernst Christian Neumann.[8]

The key properties of a stem cell were first defined by Ernest McCulloch and James Till at the University of Toronto and the Ontario Cancer Institute in the early 1960s. They discovered the blood-forming stem cell, the hematopoietic stem cell (HSC), through their pioneering work in mice. McCulloch and Till began a series of experiments in which bone marrow cells were injected into irradiated mice. They observed lumps in the spleens of the mice that were linearly proportional to the number of bone marrow cells injected. They hypothesized that each lump (colony) was a clone arising from a single marrow cell (stem cell). In subsequent work, McCulloch and Till, joined by graduate student Andrew John Becker and senior scientist Louis Siminovitch, confirmed that each lump did in fact arise from a single cell. Their results were published in Nature in 1963. In that same year, Siminovitch was a lead investigator for studies that found colony-forming cells were capable of self-renewal, which is a key defining property of stem cells that Till and McCulloch had theorized.[9]

The first therapy using stem cells was a bone marrow transplant performed by French oncologist Georges Math in 1958 on five workers at the Vina Nuclear Institute in Yugoslavia who had been affected by a criticality accident. The workers all survived.[10]

In 1981, embryonic stem (ES) cells were first isolated and successfully cultured using mouse blastocysts by British biologists Martin Evans and Matthew Kaufman. This allowed the formation of murine genetic models, a system in which the genes of mice are deleted or altered in order to study their function in pathology. By 1998, embryonic stem cells were first isolated by American biologist James Thomson, which made it possible to have new transplantation methods or various cell types for testing new treatments. In 2006, Shinya Yamanakas team in Kyoto, Japan converted fibroblasts into pluripotent stem cells by modifying the expression of only four genes. The feat represents the origin of induced pluripotent stem cells, known as iPS cells.[7]

In 2011, a female maned wolf, run over by a truck, underwent stem cell treatment at the Zoo Braslia, this being the first recorded case of the use of stem cells to heal injuries in a wild animal.[11][12]

The classical definition of a stem cell requires that it possesses two properties:

Two mechanisms ensure that a stem cell population is maintained (doesn't shrink in size):

1. Asymmetric cell division: a stem cell divides into one mother cell, which is identical to the original stem cell, and another daughter cell, which is differentiated.

When a stem cell self-renews, it divides and does not disrupt the undifferentiated state. This self-renewal demands control of cell cycle as well as upkeep of multipotency or pluripotency, which all depends on the stem cell.[13]

2. Stochastic differentiation: when one stem cell grows and divides into two differentiated daughter cells, another stem cell undergoes mitosis and produces two stem cells identical to the original.

Stem cells use telomerase, a protein that restores telomeres, to protect their DNA and extend their cell division limit (the Hayflick limit).[14]

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[15]

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[18][19] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells shall behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.[20]

Embryonic stem cells (ESCs) are the cells of the inner cell mass of a blastocyst, formed prior to implantation in the uterus.[21] In human embryonic development the blastocyst stage is reached 45 days after fertilization, at which time it consists of 50150 cells. ESCs are pluripotent and give rise during development to all derivatives of the three germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extraembryonic membranes or to the placenta.

During embryonic development the cells of the inner cell mass continuously divide and become more specialized. For example, a portion of the ectoderm in the dorsal part of the embryo specializes as 'neurectoderm', which will become the future central nervous system.[22] Later in development, neurulation causes the neurectoderm to form the neural tube. At the neural tube stage, the anterior portion undergoes encephalization to generate or 'pattern' the basic form of the brain. At this stage of development, the principal cell type of the CNS is considered a neural stem cell.

The neural stem cells self-renew and at some point transition into radial glial progenitor cells (RGPs). Early-formed RGPs self-renew by symmetrical division to form a reservoir group of progenitor cells. These cells transition to a neurogenic state and start to divide asymmetrically to produce a large diversity of many different neuron types, each with unique gene expression, morphological, and functional characteristics. The process of generating neurons from radial glial cells is called neurogenesis. The radial glial cell, has a distinctive bipolar morphology with highly elongated processes spanning the thickness of the neural tube wall. It shares some glial characteristics, most notably the expression of glial fibrillary acidic protein (GFAP).[23][24] The radial glial cell is the primary neural stem cell of the developing vertebrate CNS, and its cell body resides in the ventricular zone, adjacent to the developing ventricular system. Neural stem cells are committed to the neuronal lineages (neurons, astrocytes, and oligodendrocytes), and thus their potency is restricted.[22]

Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES) derived from the early inner cell mass. Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin as an extracellular matrix (for support) and require the presence of leukemia inhibitory factor (LIF) in serum media. A drug cocktail containing inhibitors to GSK3B and the MAPK/ERK pathway, called 2i, has also been shown to maintain pluripotency in stem cell culture.[25] Human ESCs are grown on a feeder layer of mouse embryonic fibroblasts and require the presence of basic fibroblast growth factor (bFGF or FGF-2).[26] Without optimal culture conditions or genetic manipulation,[27] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[28] The cell surface antigens most commonly used to identify hES cells are the glycolipids stage specific embryonic antigen 3 and 4, and the keratan sulfate antigens Tra-1-60 and Tra-1-81. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[29]

By using human embryonic stem cells to produce specialized cells like nerve cells or heart cells in the lab, scientists can gain access to adult human cells without taking tissue from patients. They can then study these specialized adult cells in detail to try to discern complications of diseases, or to study cell reactions to proposed new drugs.

Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.,[30] however, there are currently no approved treatments using ES cells. The first human trial was approved by the US Food and Drug Administration in January 2009.[31] However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal cord injury research. On November 14, 2011 the company conducting the trial (Geron Corporation) announced that it will discontinue further development of its stem cell programs.[32] Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[33] Embryonic stem cells, being pluripotent, require specific signals for correct differentiation if injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Ethical considerations regarding the use of unborn human tissue are another reason for the lack of approved treatments using embryonic stem cells. Many nations currently have moratoria or limitations on either human ES cell research or the production of new human ES cell lines.

Human embryonic stem cell colony on mouse embryonic fibroblast feeder layer

Mesenchymal stem cells (MSC) or mesenchymal stromal cells, also known as medicinal signaling cells are known to be multipotent, which can be found in adult tissues, for example, in the muscle, liver, bone marrow and adipose tissue. Mesenchymal stem cells usually function as structural support in various organs as mentioned above, and control the movement of substances. MSC can differentiate into numerous cell categories as an illustration of adipocytes, osteocytes, and chondrocytes, derived by the mesodermal layer.[34] Where the mesoderm layer provides an increase to the bodys skeletal elements, such as relating to the cartilage or bone. The term meso means middle, infusion originated from the Greek, signifying that mesenchymal cells are able to range and travel in early embryonic growth among the ectodermal and endodermal layers. This mechanism helps with space-filling thus, key for repairing wounds in adult organisms that have to do with mesenchymal cells in the dermis (skin), bone, or muscle.[35]

Mesenchymal stem cells are known to be essential for regenerative medicine. They are broadly studied in clinical trials. Since they are easily isolated and obtain high yield, high plasticity, which makes able to facilitate inflammation and encourage cell growth, cell differentiation, and restoring tissue derived from immunomodulation and immunosuppression. MSC comes from the bone marrow, which requires an aggressive procedure when it comes to isolating the quantity and quality of the isolated cell, and it varies by how old the donor. When comparing the rates of MSC in the bone marrow aspirates and bone marrow stroma, the aspirates tend to have lower rates of MSC than the stroma. MSC are known to be heterogeneous, and they express a high level of pluripotent markers when compared to other types of stem cells, such as embryonic stem cells.[34] MSCs injection leads to wound healing primarily through stimulation of angiogenesis.[36]

Embryonic stem cells (ESCs) have the ability to divide indefinitely while keeping their pluripotency, which is made possible through specialized mechanisms of cell cycle control.[37] Compared to proliferating somatic cells, ESCs have unique cell cycle characteristicssuch as rapid cell division caused by shortened G1 phase, absent G0 phase, and modifications in cell cycle checkpointswhich leaves the cells mostly in S phase at any given time.[37][38] ESCs rapid division is demonstrated by their short doubling time, which ranges from 8 to 10 hours, whereas somatic cells have doubling time of approximately 20 hours or longer.[39] As cells differentiate, these properties change: G1 and G2 phases lengthen, leading to longer cell division cycles. This suggests that a specific cell cycle structure may contribute to the establishment of pluripotency.[37]

Particularly because G1 phase is the phase in which cells have increased sensitivity to differentiation, shortened G1 is one of the key characteristics of ESCs and plays an important role in maintaining undifferentiated phenotype. Although the exact molecular mechanism remains only partially understood, several studies have shown insight on how ESCs progress through G1and potentially other phasesso rapidly.[38]

The cell cycle is regulated by complex network of cyclins, cyclin-dependent kinases (Cdk), cyclin-dependent kinase inhibitors (Cdkn), pocket proteins of the retinoblastoma (Rb) family, and other accessory factors.[39] Foundational insight into the distinctive regulation of ESC cell cycle was gained by studies on mouse ESCs (mESCs).[38] mESCs showed a cell cycle with highly abbreviated G1 phase, which enabled cells to rapidly alternate between M phase and S phase. In a somatic cell cycle, oscillatory activity of Cyclin-Cdk complexes is observed in sequential action, which controls crucial regulators of the cell cycle to induce unidirectional transitions between phases: Cyclin D and Cdk4/6 are active in the G1 phase, while Cyclin E and Cdk2 are active during the late G1 phase and S phase; and Cyclin A and Cdk2 are active in the S phase and G2, while Cyclin B and Cdk1 are active in G2 and M phase.[39] However, in mESCs, this typically ordered and oscillatory activity of Cyclin-Cdk complexes is absent. Rather, the Cyclin E/Cdk2 complex is constitutively active throughout the cycle, keeping retinoblastoma protein (pRb) hyperphosphorylated and thus inactive. This allows for direct transition from M phase to the late G1 phase, leading to absence of D-type cyclins and therefore a shortened G1 phase.[38] Cdk2 activity is crucial for both cell cycle regulation and cell-fate decisions in mESCs; downregulation of Cdk2 activity prolongs G1 phase progression, establishes a somatic cell-like cell cycle, and induces expression of differentiation markers.[40]

In human ESCs (hESCs), the duration of G1 is dramatically shortened. This has been attributed to high mRNA levels of G1-related Cyclin D2 and Cdk4 genes and low levels of cell cycle regulatory proteins that inhibit cell cycle progression at G1, such as p21CipP1, p27Kip1, and p57Kip2.[37][41] Furthermore, regulators of Cdk4 and Cdk6 activity, such as members of the Ink family of inhibitors (p15, p16, p18, and p19), are expressed at low levels or not at all. Thus, similar to mESCs, hESCs show high Cdk activity, with Cdk2 exhibiting the highest kinase activity. Also similar to mESCs, hESCs demonstrate the importance of Cdk2 in G1 phase regulation by showing that G1 to S transition is delayed when Cdk2 activity is inhibited and G1 is arrest when Cdk2 is knocked down.[37] However unlike mESCs, hESCs have a functional G1 phase. hESCs show that the activities of Cyclin E/Cdk2 and Cyclin A/Cdk2 complexes are cell cycle-dependent and the Rb checkpoint in G1 is functional.[39]

ESCs are also characterized by G1 checkpoint non-functionality, even though the G1 checkpoint is crucial for maintaining genomic stability. In response to DNA damage, ESCs do not stop in G1 to repair DNA damages but instead, depend on S and G2/M checkpoints or undergo apoptosis. The absence of G1 checkpoint in ESCs allows for the removal of cells with damaged DNA, hence avoiding potential mutations from inaccurate DNA repair.[37] Consistent with this idea, ESCs are hypersensitive to DNA damage to minimize mutations passed onto the next generation.[39]

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.[42]

There are two types of fetal stem cells:

Adult stem cells, also called somatic (from Greek , "of the body") stem cells, are stem cells which maintain and repair the tissue in which they are found.[44] They can be found in children, as well as adults.[45]

There are three known accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank their own blood for elective surgical procedures.[citation needed]

Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues.[49] Bone marrow is a rich source of adult stem cells,[50] which have been used in treating several conditions including liver cirrhosis,[51] chronic limb ischemia[52] and endstage heart failure.[53] The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years.[54] Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities.[55] DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging).[56]

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).[57][58] Muse cells (multi-lineage differentiating stress enduring cells) are a recently discovered pluripotent stem cell type found in multiple adult tissues, including adipose, dermal fibroblasts, and bone marrow. While rare, muse cells are identifiable by their expression of SSEA-3, a marker for undifferentiated stem cells, and general mesenchymal stem cells markers such as CD90, CD105. When subjected to single cell suspension culture, the cells will generate clusters that are similar to embryoid bodies in morphology as well as gene expression, including canonical pluripotency markers Oct4, Sox2, and Nanog.[59]

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.[60] Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.[61]

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.[62]

With the increasing demand of human adult stem cells for both research and clinical purposes (typically 15 million cells per kg of body weight are required per treatment) it becomes of utmost importance to bridge the gap between the need to expand the cells in vitro and the capability of harnessing the factors underlying replicative senescence. Adult stem cells are known to have a limited lifespan in vitro and to enter replicative senescence almost undetectably upon starting in vitro culturing.[63]

Also called perinatal stem cells, these multipotent stem cells are found in amniotic fluid and umbilical cord blood. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[64]Amniotic stem cells are a topic of active research.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper "Osservatore Romano" called amniotic stem cells "the future of medicine".[65]

It is possible to collect amniotic stem cells for donors or for autologous use: the first US amniotic stem cells bank[66][67] was opened in 2009 in Medford, MA, by Biocell Center Corporation[68][69][70] and collaborates with various hospitals and universities all over the world.[71]

Adult stem cells have limitations with their potency; unlike embryonic stem cells (ESCs), they are not able to differentiate into cells from all three germ layers. As such, they are deemed multipotent.

However, reprogramming allows for the creation of pluripotent cells, induced pluripotent stem cells (iPSCs), from adult cells. These are not adult stem cells, but somatic cells (e.g. epithelial cells) reprogrammed to give rise to cells with pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells with ESC-like capabilities have been derived.[72][73][74] The first demonstration of induced pluripotent stem cells was conducted by Shinya Yamanaka and his colleagues at Kyoto University.[75] They used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 to reprogram mouse fibroblast cells into pluripotent cells.[72][76] Subsequent work used these factors to induce pluripotency in human fibroblast cells.[77] Junying Yu, James Thomson, and their colleagues at the University of WisconsinMadison used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin.[72][78] However, they were able to replicate Yamanaka's finding that inducing pluripotency in human cells was possible.

Induced pluripotent stem cells differ from embryonic stem cells. They share many similar properties, such as pluripotency and differentiation potential, the expression of pluripotency genes, epigenetic patterns, embryoid body and teratoma formation, and viable chimera formation,[75][76] but there are many differences within these properties. The chromatin of iPSCs appears to be more "closed" or methylated than that of ESCs.[75][76] Similarly, the gene expression pattern between ESCs and iPSCs, or even iPSCs sourced from different origins.[75] There are thus questions about the "completeness" of reprogramming and the somatic memory of induced pluripotent stem cells. Despite this, inducing somatic cells to be pluripotent appears to be viable.

As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.[79]

IPSCs has helped the field of medicine significantly by finding numerous ways to cure diseases. Since human IPSCc has given the advantage to make in vitro models to study toxins and pathogenesis.[80]

Furthermore, induced pluripotent stem cells provide several therapeutic advantages. Like ESCs, they are pluripotent. They thus have great differentiation potential; theoretically, they could produce any cell within the human body (if reprogramming to pluripotency was "complete").[75] Moreover, unlike ESCs, they potentially could allow doctors to create a pluripotent stem cell line for each individual patient.[81] Frozen blood samples can be used as a valuable source of induced pluripotent stem cells.[82] Patient specific stem cells allow for the screening for side effects before drug treatment, as well as the reduced risk of transplantation rejection.[81] Despite their current limited use therapeutically, iPSCs hold great potential for future use in medical treatment and research.

The key factors controlling the cell cycle also regulate pluripotency. Thus, manipulation of relevant genes can maintain pluripotency and reprogram somatic cells to an induced pluripotent state.[39] However, reprogramming of somatic cells is often low in efficiency and considered stochastic.[83]

With the idea that a more rapid cell cycle is a key component of pluripotency, reprogramming efficiency can be improved. Methods for improving pluripotency through manipulation of cell cycle regulators include: overexpression of Cyclin D/Cdk4, phosphorylation of Sox2 at S39 and S253, overexpression of Cyclin A and Cyclin E, knockdown of Rb, and knockdown of members of the Cip/Kip family or the Ink family.[39] Furthermore, reprogramming efficiency is correlated with the number of cell divisions happened during the stochastic phase, which is suggested by the growing inefficiency of reprogramming of older or slow diving cells.[84]

Lineage is an important procedure to analyze developing embryos. Since cell lineages shows the relationship between cells at each division. This helps in analyzing stem cell lineages along the way which helps recognize stem cell effectiveness, lifespan, and other factors. With the technique of cell lineage mutant genes can be analyzed in stem cell clones that can help in genetic pathways. These pathways can regulate how the stem cell perform.[85]

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.[86]

An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.[87][88]

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a form of stem cell therapy that has been used for many years because it has proven to be effective in clinical trials.[89][90]

Stem cell implantation may help in strengthening the left-ventricle of the heart, as well as retaining the heart tissue to patients who have suffered from heart attacks in the past.[91]

Stem cell treatments may lower symptoms of the disease or condition that is being treated. The lowering of symptoms may allow patients to reduce the drug intake of the disease or condition. Stem cell treatment may also provide knowledge for society to further stem cell understanding and future treatments.[92] The physicians' creed would be to do no injury, and stem cells make that simpler than ever before. Surgical processes by their character are harmful. Tissue has to be dropped as a way to reach a successful outcome. One may prevent the dangers of surgical interventions using stem cells. Additionally, there's a possibility of disease, and whether the procedure fails, further surgery may be required. Risks associated with anesthesia can also be eliminated with stem cells.[93] On top of that, stem cells have been harvested from the patient's body and redeployed in which they're wanted. Since they come from the patients own body, this is referred to as an autologous treatment. Autologous remedies are thought to be the safest because there's likely zero probability of donor substance rejection.

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the person's previous cells, or because the patient's immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated.

Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types.[94]

Some stem cells form tumors after transplantation;[95] pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency.[96]

Ethical concerns are also raised about the practice of using or researching embryonic stem cells. Harvesting cells from the blastocyst result in the death of the blastocyst. The concern is whether or not the blastocyst should be considered as a human life.[97] The debate on this issue is mainly a philosophical one, not a scientific one.

Stem cell tourism is the industry in which patients (and sometimes their families) travel to another jurisdiction, to obtain stem cell procedures which are not approved but which are advertised on the Internet as proven cures.[98]

The United States, in recent years[when?], has had an explosion of "stem cell clinics".[99] Stem cell procedures are highly profitable for clinics. The advertising sounds authoritative but the efficacy and safety of the procedures is unproven. Patients sometimes experience complications, such as spinal tumors[100] and death. The high expense can also lead to financial ruin.[100] According to researchers, there is a need to educate the public, patients, and doctors about this issue.[101]

According to the International Society for Stem Cell Research, the largest academic organization that advocates for stem cell research, stem cell therapies are under development and cannot yet be said to be proven.[102][103] Doctors should inform patients that clinical trials continue to investigate whether these therapies are safe and effective but that unethical clinics present them as proven.[104]

Some of the fundamental patents covering human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF) they are patents 5,843,780, 6,200,806, and 7,029,913 invented by James A. Thomson. WARF does not enforce these patents against academic scientists, but does enforce them against companies.[105]

In 2006, a request for the US Patent and Trademark Office (USPTO) to re-examine the three patents was filed by the Public Patent Foundation on behalf of its client, the non-profit patent-watchdog group Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights).[105] In the re-examination process, which involves several rounds of discussion between the USPTO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents,[106] however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not.[107][108] Consumer Watchdog appealed the granting of the '913 patent to the USPTO's Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the '913 patent were not patentable.[109] However, WARF was able to re-open prosecution of the case and did so, amending the claims of the '913 patent again to make them more narrow, and in January 2013 the amended claims were allowed.[110]

In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the '913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases.[111] At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.[112]

Diseases and conditions where stem cell treatment is being investigated include:

Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.[132] Research is also underway in generating organoids using stem cells, which would allow for further understanding of human development, organogenesis, and modeling of human diseases.[133]

In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists' growing ability to create stem cells using somatic cell nuclear transfer and techniques to create induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning.[citation needed]

Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.[134]

In August 2021, researchers in the Princess Margaret Cancer Centre at the University Health Network published their discovery of a dormancy mechanism in key stem cells which could help develop cancer treatments in the future.[135]

More:

Stem cell - Wikipedia

Types of Stem Cell and Bone Marrow Transplants – American Cancer Society

Stem cell transplants are used to give back stem cells when the bone marrow has been destroyed by disease, chemotherapy (chemo), or radiation. Depending on where the stem cells come from, the transplant procedure may be called:

They can all be called hematopoietic stem cell transplants.

In a typical stem cell transplant for cancer, very high doses of chemo are used, sometimes along with radiation therapy, to try to kill all the cancer cells. This treatment also kills the stem cells in the bone marrow. This is called myeloablation or myeloablative therapy. Soon after treatment, stem cells are given (transplanted) to replace those that were destroyed. The replacement stem cells are given into a vein, much like ablood transfusion. The goal is that over time, the transplanted cells settle in the bone marrow, begin to grow and make healthy blood cells. This process is called engraftment.

There are 2 main types of transplants. They are named based on who donates the stem cells.

In this type of transplant, the first step is to remove or harvest your own stem cells. Your stem cells are removed from either your bone marrow or your blood, and then frozen. (You can learn more about this process at Whats It Like to Donate Stem Cells?) After you get high doses of chemo and/or radiation as your myeloablative therapy, the stem cells are thawed and given back to you.

Benefits of autologous stem cell transplant: One advantage of autologous stem cell transplant is that youre getting your own cells back. When you get your own stem cells back, you dont have to worry about them (called the engrafted cells or the graft) being rejected by your body.

Risks of autologous stem cell transplant: The grafts can still fail, which means the transplanted stem cells dont go into the bone marrow and make blood cells like they should. Also, autologous transplants cant produce the graft-versus-cancer effect. A possible disadvantage of an autologous transplant is that cancer cells might be collected along with the stem cells and then later put back into your body. Another disadvantage is that your immune system is the same as it was before your transplant. This means the cancer cells were able to escape attack from your immune system before, and may be able to do so again.

This kind of transplant is mainly used to treat certain leukemias, lymphomas, and multiple myeloma. Its sometimes used for other cancers, like testicular cancer and neuroblastoma, and certain cancers in children. Doctors can use autologous transplants for other diseases, too, like systemic sclerosis, multiple sclerosis (MS), and systemic lupus erythematosis (lupus).

To help prevent any remaining cancer cells from being transplanted along with stem cells, some centers treat the stem cells before theyre given back to the patient. This may be called purging. While this might work for some patients, there haven't been enough studies yet to know if this is really a benefit. A possible downside of purging is that some normal stem cells can be lost during this process. This may cause your body to take longer to start making normal blood cells, and you might have very low and unsafe levels of white blood cells or platelets for a longer time. This could increase the risk of infections or bleeding problems.

Another treatment to help kill cancer cells that might be in the returned stem cells involves giving anti-cancer drugs after the transplant. The stem cells are not treated. After transplant, the patient gets anti-cancer drugs to get rid of any cancer cells that may be in the body. This is called in vivo purging. For instance, lenalidomide (Revlimid) may be used in this way for multiple myeloma. The need to remove cancer cells from transplanted stem cells or transplant patients and the best way to do it continues to be researched.

Doing 2 autologous transplants in a row is known as a tandem transplant or a double autologous transplant. In this type of transplant, the patient gets 2 courses of high-dose chemo as myeloablative therapy, each followed by a transplant of their own stem cells. All of the stem cells needed are collected before the first high-dose chemo treatment, and half of them are used for each transplant. Usually, the 2 courses of chemo are given within 6 months. The second one is given after the patient recovers from the first one.

Tandem transplants have become the standard of care for certain cancers. High-risk types of the childhood cancer neuroblastoma and adult multiple myeloma are cancers where tandem transplants seem to show good results. But doctors dont always agree that these are really better than a single transplant for certain cancers. Because this treatment involves 2 transplants, the risk of serious outcomes is higher than for a single transplant.

Sometimes an autologous transplant followed by an allogeneic transplant might also be called a tandem transplant. (See Mini-transplants below.)

Allogeneic stem cell transplants use donor stem cells. In the most common type of allogeneic transplant, the stem cells come from a donor whose tissue type closely matches yours. (This is discussed in Matching patients and donors.) The best donor is a close family member, usually a brother or sister. If you dont have a good match in your family, a donor might be found in the general public through a national registry. This is sometimes called a MUD (matched unrelated donor) transplant. Transplants with a MUD are usually riskier than those with a relative who is a good match.

An allogeneic transplant works about the same way as an autologous transplant. Stem cells are collected from the donor and stored or frozen. After you get high doses of chemo and/or radiation as your myeloablative therapy, the donor's stem cells are thawed and given to you.

Blood taken from the placenta and umbilical cord of newborns is a type of allogeneic transplant. This small volume of cord blood has a high number of stem cells that tend to multiply quickly. Cord blood transplants are done for both adults and children. By 2017, an estimated 700,000 units (batches) of cord blood had been donated for public use. And, even more have been collected for private use. In some studies, the risk of a cancer not going away or coming back after a cord blood transplant was less than after an unrelated donor transplant.

Benefits of allogeneic stem cell transplant: The donor stem cells make their own immune cells, which could help kill any cancer cells that remain after high-dose treatment. This is called the graft-versus-cancer or graft-versus-tumor effect. Other advantages are that the donor can often be asked to donate more stem cells or even white blood cells if needed, and stem cells from healthy donors are free of cancer cells.

Risks of allogeneic stem cell transplants: The transplant, or graft, might not take that is, the transplanted donor stem cells could die or be destroyed by the patients body before settling in the bone marrow. Another risk is that the immune cells from the donor may not just attack the cancer cells they could attack healthy cells in the patients body. This is called graft-versus-host disease. There is also a very small risk of certain infections from the donor cells, even though donors are tested before they donate. A higher risk comes from infections you had previously, and which your immune system has had under control. These infections may surface after allogeneic transplant because your immune system is held in check (suppressed) by medicines called immunosuppressive drugs. Such infections can cause serious problems and even death.

Allogeneic transplant is most often used to treat certain types of leukemia, lymphomas, multiple myeloma, myelodysplastic syndrome, and other bone marrow disorders such as aplastic anemia.

For some people, age or certain health conditions make it more risky to do myeloablative therapy that wipes out all of their bone marrow before a transplant. For those people, doctors can use a type of allogeneic transplant thats sometimes called a mini-transplant. Your doctor might refer to it as a non-myeloablative transplant or mention reduced-intensity conditioning (RIC). Patients getting a mini transplant typically get lower doses of chemo and/or radiation than if they were getting a standard myeloablative transplant. The goal in the mini-transplant is to kill some of the cancer cells (which will also kill some of the bone marrow), and suppress the immune system just enough to allow donor stem cells to settle in the bone marrow.

Unlike the standard allogeneic transplant, cells from both the donor and the patient exist together in the patients body for some time after a mini-transplant. But slowly, over the course of months, the donor cells take over the bone marrow and replace the patients own bone marrow cells. These new cells can then develop an immune response to the cancer and help kill off the patients cancer cells the graft-versus-cancer effect.

One advantage of a mini-transplant is that it uses lower doses of chemo and/or radiation. And because the stem cells arent all killed, blood cell counts dont drop as low while waiting for the new stem cells to start making normal blood cells. This makes it especially useful for older patients and those with other health problems. Rarely, it may be used in patients who have already had a transplant.

Mini-transplants treat some diseases better than others. They may not work well for patients with a lot of cancer in their body or people with fast-growing cancers. Also, although there might be fewer side effects from chemo and radiation than those from a standard allogeneic transplant, the risk of graft-versus-host disease is the same. Some studies have shown that for some cancers and some other blood conditions, both adults and children can have the same kinds of results with a mini-transplant as compared to a standard transplant.

This is a special kind of allogeneic transplant that can only be used when the patient has an identical sibling (twin or triplet) someone who has the exact same tissue type. An advantage of syngeneic stem cell transplant is that graft-versus-host disease will not be a problem. Also, there are no cancer cells in the transplanted stem cells, as there might be in an autologous transplant.

A disadvantage is that because the new immune system is so much like the recipients immune system, theres no graft-versus-cancer effect. Every effort must be made to destroy all the cancer cells before the transplant is done to help keep the cancer from coming back.

Improvements have been made in the use of family members as donors. This kind of transplant is called ahalf-match (haploidentical) transplant for people who dont have fully matching or identical family member. This can be another option to consider, along with cord blood transplant and matched unrelated donor (MUD) transplant.

If possible, it is very important that the donor and recipient are a close tissue match to avoid graft rejection. Graft rejection happens when the recipients immune system recognizes the donor cells as foreign and tries to destroy them as it would a bacteria or virus. Graft rejection can lead to graft failure, but its rare when the donor and recipient are well matched.

A more common problem is that when the donor stem cells make their own immune cells, the new cells may see the patients cells as foreign and attack their new home. This is called graft-versus-host disease. (See Stem Cell Transplant Side Effects for more on this). The new, grafted stem cells attack the body of the person who got the transplant. This is another reason its so important to find the closest match possible.

Many factors play a role in how the immune system knows the difference between self and non-self, but the most important for transplants is the human leukocyte antigen (HLA) system. Human leukocyte antigens are proteins found on the surface of most cells. They make up a persons tissue type, which is different from a persons blood type.

Each person has a number of pairs of HLA antigens. We inherit them from both of our parents and, in turn, pass them on to our children. Doctors try to match these antigens when finding a donor for a person getting a stem cell transplant.

How well the donors and recipients HLA tissue types match plays a large part in whether the transplant will work. A match is best when all 6 of the known major HLA antigens are the same a 6 out of 6 match. People with these matches have a lower chance of graft-versus-host disease, graft rejection, having a weak immune system, and getting serious infections. For bone marrow and peripheral blood stem cell transplants, sometimes a donor with a single mismatched antigen is used a 5 out of 6 match. For cord blood transplants a perfect HLA match doesnt seem to be as important, and even a sample with a couple of mismatched antigens may be OK.

Doctors keep learning more about better ways to match donors. Today, fewer tests may be needed for siblings, since their cells vary less than an unrelated donor. But to reduce the risks of mismatched types between unrelated donors, more than the basic 6 HLA antigens may be tested. For example, sometimes doctors to try and get a 10 out of 10 match. Certain transplant centers now require high-resolution matching, which looks more deeply into tissue types and allow more specific HLA matching.

There are thousands of different combinations of possible HLA tissue types. This can make it hard to find an exact match. HLA antigens are inherited from both parents. If possible, the search for a donor usually starts with the patients brothers and sisters (siblings), who have the same parents as the patient. The chance that any one sibling would be a perfect match (that is, that you both received the same set of HLA antigens from each of your parents) is 1 out of 4.

If a sibling is not a good match, the search could then move on to relatives who are less likely to be a good match parents, half siblings, and extended family, such as aunts, uncles, or cousins. (Spouses are no more likely to be good matches than other people who are not related.) If no relatives are found to be a close match, the transplant team will widen the search to the general public.

As unlikely as it seems, its possible to find a good match with a stranger. To help with this process, the team will use transplant registries, like those listed here. Registries serve as matchmakers between patients and volunteer donors. They can search for and access millions of possible donors and hundreds of thousands of cord blood units.

Be the Match (formerly the National Marrow Donor Program)Toll-free number: 1-800-MARROW-2 (1-800-627-7692)Website: http://www.bethematch.org

Blood & Marrow Transplant Information NetworkToll-free number: 1-888-597-7674Website: http://www.bmtinfonet.org

Depending on a persons tissue typing, several other international registries also are available. Sometimes the best matches are found in people with a similar racial or ethnic background. When compared to other ethnic groups, white people have a better chance of finding a perfect match for stem cell transplant among unrelated donors. This is because ethnic groups have differing HLA types, and in the past there was less diversity in donor registries, or fewer non-White donors. However, the chances of finding an unrelated donor match improve each year, as more volunteers become aware of registries and sign up for them.

Finding an unrelated donor can take months, though cord blood may be a little faster. A single match can require going through millions of records. Also, now that transplant centers are more often using high-resolution tests, matching is becoming more complex. Perfect 10 out of 10 matches at that level are much harder to find. But transplant teams are also getting better at figuring out what kinds of mismatches can be tolerated in which particular situations that is, which mismatched antigens are less likely to affect transplant success and survival.

Keep in mind that there are stages to this process there may be several matches that look promising but dont work out as hoped. The team and registry will keep looking for the best possible match for you. If your team finds an adult donor through a transplant registry, the registry will contact the donor to set up the final testing and donation. If your team finds matching cord blood, the registry will have the cord blood sent to your transplant center.

View original post here:

Types of Stem Cell and Bone Marrow Transplants - American Cancer Society

Novel stem cell therapy for repair of knee cartilage – Mayo Clinic

Dec. 29, 2018

Mayo Clinic offers a unique regenerative medicine approach for repairing knee cartilage, which can be completed in a single surgery. The Food and Drug Administration approved the use of this technique, known as recycled cartilage auto/allo implantation (RECLAIM), in a trial utilizing the stem cell bank in the Mayo Clinic Center for Regenerative Biotherapeutics.

"Mayo is unique in having an adipose-derived allogeneic stem cell bank. It provides us with donor mesenchymal stem cells, which we mix with recycled autologous cells to quickly obtain enough cells to fill the patient's cartilage defect without operating twice," says Daniel B. Saris, M.D., Ph.D., an orthopedic surgeon at Mayo Clinic in Rochester, Minnesota, who specializes in knee surgery and focuses on regenerative medicine.

Close

RECLAIM mixes chondrons from debrided tissue with donor autologous stem cells to create a biologic filler for the repair of damaged knee cartilage. The procedure can be completed in a single surgery.

Dr. Saris previously performed the RECLAIM cartilage repair technique in Europe. "The results, about four years out, are very good comparable to or better than other cell therapies, except these patients achieve normal function after surgery about six months more quickly," he says.

Planning is underway for a clinical trial at Mayo Clinic. RECLAIM is used to repair symptomatic cartilage defects, usually resulting from trauma or an athletic injury. The procedure might be suitable for nonarthritic patients ages 18 to 50 who have fresh cartilage defects.

Existing cell therapy to repair knee cartilage generally involves surgically debriding the cartilage defect and then taking a biopsy of healthy cartilage from the patient. The biopsy is cultured in an outside laboratory, and the cultured cells are implanted weeks later. "We wanted to improve this technique because during the waiting period, the patient's life is on hold, costs increase and the logistics can be complex," Dr. Saris says.

RECLAIM's innovation starts with saving the patient's debrided tissue. "That tissue is always a bit frilly and is normally discarded," Dr. Saris says. "But we found that the cells in that tissue are still very viable. We recycle them."

The resected tissue is processed and, using a rapid isolation protocol, digested into chondrons. Mixing the chondrons with allogeneic stem cells from the stem cell bank provides sufficient cells to immediately re-inject into the patient.

"This is a highly innovative procedure," Dr. Saris says. "You have to find an intricate balance loading enough cells to grow into healthy tissue but not overloading the space so the cells are squished when the patient starts rehab."

Most patients return home on the day of surgery. They generally need to wait nine to 12 months before a full return to sports; that interval provides time for the cartilage to grow and the patient to regain muscle control. "But apart from sports, patients can go back to normal life within days and physical activities within three to four months of surgery," Dr. Saris says.

Mayo Clinic's multidisciplinary approach provides the range of care needed by patients at all stages of knee cartilage repair. Before surgery, advanced imaging helps pinpoint the cartilage defect. "Our physiotherapists and athletic trainers also determine prior to surgery how we can optimize the patient's musculoskeletal control and function, and then work with the patient on rehab after surgery," Dr. Saris says.

Mayo Clinic also has the breadth of orthopedic expertise to manage problems that patients often experience alongside damaged knee cartilage, such as varus deformity and anterior cruciate ligament or meniscus lesions. "If a cartilage repair procedure fails, it's generally because not enough attention was paid to other factors the meniscus or the knee's alignment or stability," Dr. Saris says. "Our unique multidisciplinary team looks at all aspects of a patient's care. Our chances of success for these complex biological reconstructions is therefore high."

The cartilage repair technique illustrates Mayo Clinic's commitment to applying regenerative medicine to orthopedic surgery. "We are focused on patient-centered progress," Dr. Saris says. "We want to make sure there is a safe and efficacious portfolio of regenerative medicine therapies for musculoskeletal problems."

See the original post here:

Novel stem cell therapy for repair of knee cartilage - Mayo Clinic

Celebrities Are Officially Being Sued by FTX Retail Investors

The first civil suit against the crypto exchange FTX was just filed, naming FTX, Sam Bankman-Fried, and 11 of FTX's many celebrity ambassadors.

Welp, that didn't take long. The first civil suit against the still-imploding crypto exchange FTX was just filed in a Florida court, accusing FTX, disgraced CEO Sam Bankman-Fried, and 11 of the exchange's many celebrity ambassadors of preying on "unsophisticated" retail investors.

The list of celeb defendants impressive — honestly, it reads more like an invite list to a posh award show than a lawsuit.

Geriatric quarterback Tom Brady and soon-to-be-ex-wife Gisele Bündchen lead the pack, followed by basketball players Steph Curry and Udonis Haslem, as well as the Golden State Warriors franchise; tennis star Naomi Osaka; baseballers Shoehi Ohtani, Udonis Haslem, and David Ortiz; and quarterback Trevor Laurence.

Also named is comedian Larry David — who starred in that FTX Super Bowl commercial that very specifically told investors that even if they didn't understand crypto, they should definitely invest — and investor Kevin O'Leary of "Shark Tank" fame.

"The Deceptive and failed FTX Platform," reads the suit," "was based upon false representations and deceptive conduct."

"Many incriminating FTX emails and texts... evidence how FTX’s fraudulent scheme was designed to take advantage of unsophisticated investors from across the country," it continues. "As a result, American consumers collectively sustained over $11 billion dollars in damages."

Indeed, a number of FTX promos embraced an attitude similar to the cursed Larry David commercial. In one, Steph Curry tells viewers that with FTX, there's no need to be an "expert," while a Naomi Osaka promotion pushed the idea that crypto trading should be "accessible," "easy," and "fun."

It's also worth noting that this isn't the first suit of its kind. Billionaire Mark Cuban, also of "Shark Tank" fame, was named in a class action lawsuit launched against the bankrupt lender Voyager in August, while reality TV star Kim Kardashian was recently made to pay a roughly $1.2 million fine for hawking the "EthereumMAX" token without disclosing that she was paid to do so.

The FTX suit, however, appears to be the most extensive — and high-profile — of its kind. And while a fine for a million or two is basically a one dollar bill to this tax bracket, $11 billion, even if split amongst a group of 11 exorbitantly wealthy celebs, is a more substantial chunk of change.

Of course, whether anyone actually ever has to pay up remains to be seen. Regardless, it's still a terrible look, and real people got hurt. If there's any defense here, though? At least they didn't promise to be experts.

READ MORE: FTX founder Sam Bankman-Fried hit with class-action lawsuit that also names Brady, Bündchen, Shaq, Curry [Fox Business]

More on the FTX crash: Experts Say Sam Bankman-fried's Best Legal Defense Is to Say He's Just Really, Really Stupid

The post Celebrities Are Officially Being Sued by FTX Retail Investors appeared first on Futurism.

Read more:

Celebrities Are Officially Being Sued by FTX Retail Investors

"Elon" Plummets in Popularity as a Baby Name for Some Reason

According to BabyCenter's

Big Baby

Tesla and SpaceX CEO Elon Musk's name has clearly lost its luster among the parents of newborns.

According to BabyCenter's review of the data the name "Elon" has cratered in popularity over the last year, dropping from 120 babies per million in 2021 to just 90 babies per million, falling in the popularity rankings by 466 spots.

The name had seen a meteoric rise over the last seven or so years, but is currently falling out of favor big time, plummeting back down to 2019 levels.

The read? It seems like Musk's public reputation has been taking a significant hit.

Name Game

There are countless reasons why Musk could be less popular public figure than he was three years ago.

Especially since the start of the COVID-19 pandemic, Musk emerged as a controversial figure, speaking out against vaccinations and lockdowns. He has also become synonymous with an unhealthy work culture, firing practically anybody standing in his way and forcing his employees to work long hours.

The fiasco surrounding Musk's chaotic takeover of Twitter has likely only further besmirched his public image.

For reference, other baby names that have fallen out of fashion include "Kanye" — almost certainly in response to the travails of rapper Kanye West, who's had a years-long relationship with Musk — which fell a whopping 3,410 spots over the last year.

More on Elon Musk: Sad Elon Musk Says He's Overwhelmed In Strange Interview After the Power Went Out

The post "Elon" Plummets in Popularity as a Baby Name for Some Reason appeared first on Futurism.

Originally posted here:

"Elon" Plummets in Popularity as a Baby Name for Some Reason

Sam Bankman-Fried Admits the "Ethics Stuff" Was "Mostly a Front"

In Twitter DMs, FTX founder Sam Bankman-Fried appeared to admit that his

Effecting Change

The disgraced former head of the crypto exchange FTX, Sam Bankman-Fried, built his formidable public persona on the idea that he was a new type of ethical crypto exec. In particular, he was a vocal proponent of "effective altruism" — the vague-but-noble concept of using data to make philanthropic giving as targeted and helpful as possible.

But in a direct message, Vox's Kelsey Piper asked Bankman-Fried if the "ethics stuff" had been "mostly a front."

Bankman-Fried's reply: "Yeah."

"I mean that's not *all* of it," he wrote. "But it's a lot."

Truth Be Told

If the concept of becoming rich to save the world strikes you as iffy, you're not alone — and it appears that even Bankman-Fried himself knows it.

When Piper observed that Bankman-Fried had been "really good at talking about ethics" while actually playing a game, he responded that he "had to be" because he'd been engaged in "this dumb game we woke Westerners play where we say all the right shibboleths and everyone likes us."

Next time you're thinking of investing in crypto, maybe it's worth taking a moment to wonder whether the person running the next exchange might secretly be thinking the same thing.

More on effective altruism: Elon Musk Hired A Professional Gambler to Manage His Philanthropic Donations

The post Sam Bankman-Fried Admits the "Ethics Stuff" Was "Mostly a Front" appeared first on Futurism.

Link:

Sam Bankman-Fried Admits the "Ethics Stuff" Was "Mostly a Front"

FDA Gives First Go Ahead for Lab Grown Meat Product

The FDA has approved a lab grown meat product from Upside Foods for human consumption, which now only needs USDA approval before being sold to customers.

Meat and Greet

Behold, ethical omnivores: the US Food and Drug Administration (FDA) has given a key go-ahead to what could be the first lab grown meat product bound for human consumption in the US.

The decision, a first for cultivated meat in the US, paves the way for Californian startup Upside Foods to start selling its lab-grown chicken product domestically — meaning that now, it only needs approval from the US Department of Agriculture (USDA) before the ersatz chicken can hit restaurant menus.

"The world is experiencing a food revolution and the [FDA] is committed to supporting innovation in the food supply," FDA officials said in a statement. "The agency evaluated the information submitted by Upside Foods as part of a pre-market consultation for their food made from cultured chicken cells and has no further questions at this time about the firm’s safety conclusion."

Upside Foods' products were evaluated via a process in which manufacturers divulge the production process to the agency for review, along with a sample. If everything looks good after inspection, the FDA then sends back a "no further questions" letter to the company.

"We are thrilled at FDA's announcement," said Upside director of communications David Kay in an email to Reuters. "This historic step paves the way for our path to market."

Going Protein

Lab meat like Upside's aren't a plant-based imitation, unlike popular vegan alternatives such as Beyond Burgers. Instead, they're made from real animal cells grown in bioreactors, sparing the lives of actual livestock.

But while at a cellular level the meat may be the same, customers will definitely notice a difference in price. For now, cultivating meat remains an extremely expensive process, so pending USDA approval notwithstanding, it could still be a while before you see it hit the shelves of your local grocer.

To let eager, early customers try out the lab meat, Upside, which already announced its collaboration with Michelin star chef Dominique Crenn last year, will be debuting its chicken at specific upscale restaurants.

"We would want to bring this to people through chefs in the initial stage," CEO Uma Valeti told Wired. "Getting chefs excited about this is a really big deal for us. We want to work with the best partners who know how to cook well, and also give us feedback on what we could do better."

While the FDA's thumbs-up only applies to a specific product of Upside's, it's still a historic decision, signalling a way forward for an industry that's rapidly accruing investment.

Updated to clarify details regarding the FDA's evaluation of the product.

More on lab grown meat: Scientists Cook Comically Tiny Lab-Grown Hamburger

The post FDA Gives First Go Ahead for Lab Grown Meat Product appeared first on Futurism.

Read the original post:

FDA Gives First Go Ahead for Lab Grown Meat Product

Startup Says It’s Building a Giant CO2 Battery in the United States

Italian startup Energy Dome has designed an ingenious battery that uses CO2 to store energy, and it only needs non-exotic materials like steel and water.

Italian Import

Carbon dioxide has a bad rep for its role in driving climate change, but in an unexpected twist, it could also play a key role in storing renewable energy.

The world's first CO2 battery, built by Italian startup Energy Dome, promises to store renewables on an industrial scale, which could help green energy rival fossil fuels in terms of cost and practicality.

After successfully testing the battery at a small scale plant in Sardinia, the company is now bringing its technology to the United States.

"The US market is a primary market for Energy Dome and we are working to become a market leader in the US," an Energy Dome spokesperson told Electrek. "The huge demand of [long duration energy storage] and incentive mechanisms like the Inflation Reduction Act will be key drivers for the industry in the short term."

Storage Solution

As renewables like wind and solar grow, one of the biggest infrastructural obstacles is the storage of the power they produce. Since wind and solar sources aren't always going to be available, engineers need a way to save excess power for days when it's less sunny and windy out, or when there's simply more demand.

One obvious solution is to use conventional battery technology like lithium batteries, to store the energy. The problem is that building giant batteries from rare earth minerals — which can be prone to degradation over time — is expensive, not to mention wasteful.

Energy Dome's CO2 batteries, on the other hand, use mostly "readily available materials" like steel, water, and of course CO2.

In Charge

As its name suggests, the battery works by taking CO2, stored in a giant dome, and compressing it into a liquid by using the excess energy generated from a renewable source. That process generates heat, which is stored alongside the now liquefied CO2, "charging" the battery.

To discharge power, the stored heat is used to vaporize the liquid CO2 back into a gas, powering a turbine that feeds back into the power grid. Crucially, the whole process is self-contained, so no CO2 leaks back into the atmosphere.

The battery could be a game-changer for renewables. As of now, Energy Dome plans to build batteries that can store up to 200 MWh of energy. But we'll have to see how it performs as it gains traction.

More on batteries: Scientists Propose Turning Skyscrapers Into Massive Gravity Batteries

The post Startup Says It's Building a Giant CO2 Battery in the United States appeared first on Futurism.

Here is the original post:

Startup Says It's Building a Giant CO2 Battery in the United States