Navigator Technology Takes GPS to a New High

GPS navigational devices are as ubiquitous as cell phones, freely used by commercial and government users alike to determine location, time, and velocity. These tools, however, are only as good as the signals they receive. Now, NASA engineers have found a way to improve the reception of those signals.

GPS, which stands for the Global Positioning System, is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. GPS originally was intended for military uses, but in the 1980s, the government made the system available for civilian use. GPS systems now are available to users worldwide who need accurate positioning, navigation, and timing services.

Thanks to a team of engineers from the NASA Goddard Space Flight Center in Greenbelt, Md., spacecraft operating in weak-signal areas — such as geosynchronous orbits where communications and weather satellites typically operate — will be able to acquire and track the weak GPS signals to determine their locations, much like motorists who use GPS to determine where they are. For their work developing the Navigator GPS receiver, the Goddard team was nominated for the coveted NASA "Invention of the Year" award, a prize reserved for NASA employees who have secured patents for their inventions. An announcement is expected shortly.

Although millions of people rely on GPS receivers today for terrestrial applications, onboard GPS navigation for spaceflight operations has been much more challenging — particularly for spacecraft operating above the GPS constellation, which is about 20,200 kilometers (12,727 miles) above Earth in an area normally referred to as high-Earth orbit. That is because existing GPS receivers could not adequately pick up the GPS signal, which is transmitted toward Earth, not away from it. As a result, spacecraft above the constellation could not reliably use GPS for tracking and navigational purposes, forcing them to use more expensive ground-tracking assets.

Seeing an opportunity to help lower mission costs, the Navigator team, led by Goddard engineer Luke Winternitz, used Research and Development (R&D) funding to develop algorithms and hardware for a prototype spacecraft GPS receiver that would allow spacecraft to acquire and track weak GPS signals at an altitude of 100,000 km (62,137 miles) — well above the GPS constellation, roughly one quarter of the distance to the moon.

"The R&D investment allowed us to develop the weak-signal Navigator GPS receiver and bring it to fruition," Winternitz says. "Proof of the value of this investment lies in the explosion of flight opportunities and commercialization ventures that have followed."

Since its development, the technology has secured flight opportunities on several new missions. Navigator will serve as the primary navigation sensor on NASA’s Global Precipitation Measurement Mission (GPM), which will study global rain and snowfall when it launches in 2013.

It is considered the enabling navigation technology for another Goddard-managed project, the Magnetospheric MultiScale (MMS) mission. The mission is made up of four identically instrumented spacecraft that will fly in formation in a very high-altitude Earth orbit, while measuring the 3-D structure and dynamics of Earth’s protective magnetosphere. The mission will rely on the Navigator GPS receiver’s improved sensitivity to help the satellites maintain their precise orbital position.

The Air Force Research Laboratory (AFRL) at Kirtland Air Force Base, N.M. is planning to use a Navigator engineering test unit in its "Plug-and-Play" spacecraft, an experimental satellite that can be developed and launched within days because it uses components that hook together in a manner similar to how a computer adds drives or printers via a Universal Serial Bus interface.

The Navigator team also has delivered an engineering test unit to the next-generation weather satellite called GOES-R, which the National Oceanic and Atmospheric Administration plans to launch in 2015. The contractor developing the spacecraft may use Navigator's signal-processing design in the spacecraft’s GPS receiver.

Broad Reach Engineering, an aerospace engineering firm that operates offices in Colorado and Arizona, meanwhile, is pursuing a commercial license for the Navigator signal-processing technology. It plans to use the technology to build a GPS unit for a U.S. government program currently under development. The company also plans to use Navigator to develop other products that could be used in potential commercial satellite programs or scientific missions, says Dan Smith, a Broad Reach project manager.

And if those successes weren't enough, Navigator proved its mettle during a first-of-its-kind experiment carried out during STS-125, the Hubble Space Telescope Servicing Mission last year. While astronauts rendezvoused with and grappled the telescope, the experiment used radar measurements of GPS signals that were reflected off the Hubble to provide range estimates during docking and undocking, proving a key relative navigation sensing technology that could potentially be used in a robotic rendezvous with the Hubble in the future.

"No question. The Navigator team has experienced an incredible level of success," says John Carl Adams, an assistant chief of technology for Goddard’s Applied Engineering and Technology Directorate’s mission engineering and systems analysis division. "I attribute their accomplishment to technical know-how, but also to a healthy entrepreneurial spirit. These guys saw a need and developed a solution, which is now driving down mission costs for civilian and military space programs and extending the range of spacecraft GPS sensing to geosynchronous orbits and beyond."

More Advances Planned

The team is now looking to further improve the technology.

Winternitz and his team are developing the next-generation Navigator receiver — one that can acquire the GPS signal even if the spacecraft carrying the receiver is located at lunar distances. Such a capability would reduce mission operational costs because ground controllers could track spacecraft via GPS rather than with expensive ground stations.

"We expect that the evolution of Navigator’s capabilities will open up a host of new applications and funding sources, including exploration and high-altitude science missions," Winternitz says. "Navigator’s selling points will continue to be that it can offer better navigation performance in weak-signal and highly dynamic environments."

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


NASAs Global Hawk Completes First Science Flight

The Global Hawk can fly autonomously to altitudes above 60,000 feet  -- roughly twice as high as a commercial airliner -- and as far as  11,000 nautical miles.
The Global Hawk can fly autonomously to altitudes above 60,000 feet -- roughly twice as high as a commercial airliner -- and as far as 11,000 nautical miles. Operators pre-program a flight path, and then the plane flies itself for as long as 30 hours. › Larger image
NASA has successfully completed the first science flight of the Global Hawk unpiloted aircraft system over the Pacific Ocean. The flight was the first of five scheduled for this month's Global Hawk Pacific, or GloPac, mission to study atmospheric science over the Pacific and Arctic oceans.

The Global Hawk is a robotic plane that can fly autonomously to altitudes above 18,288 meters (60,000 feet) -- roughly twice as high as a commercial airliner -- and as far as 20,372 kilometers (11,000 nautical miles), which is half the circumference of Earth. Operators pre-program a flight path, then the plane flies itself for as long as 30 hours, staying in contact through satellite and line-of-site communications links to a ground control station at NASA's Dryden Flight Research Center in California's Mojave Desert.

"The Global Hawk is a revolutionary aircraft for science because of its enormous range and endurance," said Paul Newman, co-mission scientist for GloPac and an atmospheric scientist from NASA's Goddard Space Flight Center in Greenbelt, Md. "No other science platform provides the range and time to sample rapidly evolving atmospheric phenomena. This mission is our first opportunity to demonstrate the unique capabilities of this plane, while gathering atmospheric data in a region that is poorly sampled."

GloPac researchers plan to directly measure and sample greenhouse gases, ozone-depleting substances, aerosols and constituents of air quality in the upper troposphere and lower stratosphere. GloPac's measurements will cover longer time periods and greater geographic distances than any other science aircraft.

During Wednesday's flight, the plane flew approximately 8,334 kilometers (4,500 nautical miles) along a flight path that took it to 150.3 degrees West longitude, and 54.6 degrees North latitude, just south of Alaska's Kodiak Island. The flight lasted just over 14 hours and flew up to 18,562 meters (60,900 feet). The mission is a joint project with the National Oceanic and Atmospheric Administration, or NOAA.

<!--JPLIMAGEMARKER __JPL_ALTTEXT_2__JPL_CAPTION_2
› Browse version of image
-->

The plane carries 11 instruments to sample the chemical composition of the troposphere and stratosphere, including two from NASA's Jet Propulsion Laboratory, Pasadena, Calif.. The instruments profile the dynamics and meteorology of both layers and observe the distribution of clouds and aerosol particles. Project scientists expect to take observations from the equator north to the Arctic Circle and west of Hawaii.

Although the plane is designed to fly on its own, pilots can change its course or altitude based on interesting atmospheric phenomena ahead. Researchers have the ability via communications links to control their instruments from the ground.

"The Global Hawk is a fantastic platform because it gives us expanded access to the atmosphere beyond what we have with piloted aircraft," said David Fahey, co-mission scientist and a research physicist at NOAA's Earth System Research Laboratory in Boulder, Colo. "We can go to regions we couldn't reach or go to previously explored regions and study them for extended periods that are impossible with conventional planes."

The timing of GloPac flights should allow scientists to observe the breakup of the polar vortex. The vortex is a large-scale cyclone in the upper troposphere and lower stratosphere that dominates winter weather patterns around the Arctic and is particularly important for understanding ozone depletion in the Northern Hemisphere.

Scientists also expect to gather high-altitude data between 13,716 and 19,812 meters (45,000 and 65,000 feet), where many greenhouse gases and ozone-depleting substances are destroyed. They will measure dust, smoke and pollution that cross the Pacific from Asia and Siberia and affect U.S. air quality.

Global Hawk will make several flights under NASA's Aura satellite and other "A-train" Earth-observing satellites, "allowing us to calibrate and confirm what we see from space," Newman added. GloPac is specifically being conducted in conjunction with NASA's Aura Validation Experiment.

GloPac includes more than 130 researchers and technicians from Goddard, Dryden Flight Research Center, JPL, and Ames Research Center in Moffett Field, Calif. Also involved are NOAA's Earth System Research Laboratory; the University of California, Santa Cruz; Droplet Measurement Technologies of Boulder, Colo.; and the University of Denver.

NASA Dryden and the Northrop Grumman Corp. of Rancho Bernardo, Calif., signed a Space Act Agreement to re-fit and maintain three Global Hawks transferred from the U.S. Air Force for use in high-altitude, long-duration Earth science missions.

For more on GloPac, visit: http://www.nasa.gov/topics/earth/features/global-hawk.html . JPL is managed for NASA by the California Institute of Technology in Pasadena.

For more information on the GloPac instruments, see: http://www.nasa.gov/centers/dryden/research/GloPac/glopac_instruments.html

View my blog's last three great articles...

View this site auto transport car shipping car transport business VoIP business class flights


NASA-Funded Research Suggests Venus is Geologically Alive

Surface warmth on a Venus volcano
This video still shows the volcanic peak Idunn Mons (at 46 degrees south latitude, 214.5 degrees east longitude) in the Imdr Regio area of Venus. › View video
For the first time, scientists have detected clear signs of recent lava flows on the surface of Venus.

The observations reveal that volcanoes on Venus appeared to erupt between a few hundred years to 2.5 million years ago. This suggests the planet may still be geologically active, making Venus one of the few worlds in our solar system that has been volcanically active within the last 3 million years.

The evidence comes from the European Space Agency's Venus Express mission, which has been in orbit around the planet since April 2006. The science results were laid over topographic data from NASA's Magellan spacecraft. Magellan radar-mapped 98 percent of the surface and collected high-resolution gravity data while orbiting Venus from 1990 to 1994.

Scientists see compositional differences compared to the surrounding landscape in three volcanic regions. Relatively young lava flows have been identified by the way they emit infrared radiation. These observations suggest Venus is still capable of volcanic eruptions. The findings appear in the April 8 edition of the journal Science.

"The geological history of Venus has long been a mystery," said Sue Smrekar, a scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and lead author of the paper describing the work. "Previous spacecraft gave us hints of volcanic activity, but we didn't know how long ago that occurred. Now we have strong evidence right at the surface for recent eruptions."

The volcanic provinces, or hotspots, on which Smrekar and her team focused are geologically similar to Hawaii. Scientists previously detected plumes of hot rising material deep under Venus' surface. Those plumes are thought to have produced significant volcanic eruptions. Other data from the planet suggest that volatile gases commonly spewed from volcanoes were breaking down in its atmosphere. The rate of volcanism will help scientists determine how the interior of the planet works and how gases emitted during eruptions affect climate.

Something is smoothing Venus' surface, because the planet has only about 1,000 craters, a relatively small amount compared to other bodies in our solar system. Scientists think it may be the result of volcanic activity and want to know if it happens quickly or slowly. The Venus Express results suggest a gradual sequence of smaller volcanic eruptions as opposed to a cataclysmic volcanic episode that resurfaces the entire planet with lava.

Smrekar and her team also discovered that several volcanic features in the regions they studied show evidence of minerals found in recent lava flows. These mineral processes correspond to the youngest volcanic flows in each region, giving scientists additional support for the idea they formed during recent volcanic activity. On Earth, lava flows react rapidly with oxygen and other elements in the atmosphere when they erupt to the surface. On Venus, the process is similar, although it is more intense and changes the outer layer more substantially.

Scientists call Venus Earth's sister planet because of similarities in size, mass, density and volume. Scientists deduce that both planets shared a common origin, forming at the same time about 4.5 billion years ago. Venus also is the planet on which the runaway greenhouse effect was discovered. The planet is cloaked in a much less friendly atmosphere than that found on Earth. It is composed chiefly of carbon dioxide, which generates a surface temperature hot enough to melt lead, and a surface pressure 90 times greater than that on Earth.

The small group of worlds in our solar system known to be volcanically active today includes Earth and Jupiter's moon Io. Crater counts on Mars also have suggested recent lava flows. Scientists are studying evidence of another kind of active volcanism that involves ice-spewing volcanoes on other moons in our solar system.

NASA sponsored Smrekar's research. The European Space Agency built and manages Venus Express. JPL is managed for NASA by the California Institute of Technology in Pasadena.

To view the spacecraft data and images, visit: http://www.nasa.gov/topics/solarsystem/features/pia13001.html

View my blog's last three great articles...

View this site auto transport car shipping car transport business VoIP business class flights


San Diego Team Delivers Camera for Next Mars Rover

Two camera's for MSL (left) and principle investigator Michael  Malin (rght)
The Mastcam instrument for NASA's Mars Science Laboratory will use a side-by side pair of cameras for examining terrain around the mission's rover. Right is a sample image from Mastcam 34 of Mastcam Principal Investigator Michael Malin.
Malin Space Science Systems Inc., San Diego, has delivered the two cameras for the Mast Camera instrument that will be the science-imaging workhorse of NASA's Mars Science Laboratory rover, to be launched next year. The instrument, called Mastcam, has been tested and is ready for installation onto the rover, named Curiosity, which is being built at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

The two component cameras have different fixed focal lengths: 34 millimeters and 100 millimeters (telephoto) and can provide high-definition color video. NASA is also providing funds for Malin to build an alternative version with zoom lenses on both cameras, in collaboration with movie producer James Cameron, a member of the Mastcam team. If the zoom pair can be completed in time for rover assembly and testing, the fixed-focal-length pair could be swapped out for them. Malin has also delivered the Mars Hand Lens Imager and the Mars Descent Imager for the Mars Science Laboratory.

For more information, see Malin Space Science Systems news release: http://www.msss.com/press_releases/mast_delivery/.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Arctic 2010 Sea Ice Maximum, Visualized

Sea ice coverage over the Arctic Ocean oscillates over the course of a year, growing through winter and reaching a maximum extent by February or March. This year, Arctic sea ice grew to levels beyond those measured in recent years but slightly below average when compared to the 30-year satellite record.

What does the 2010 sea ice extent look like and how is NASA studying it? To find out, view NASA's updated sea ice animation and watch a video interview with polar scientist Lora Koenig of NASA's Goddard Space Flight center in Greenbelt, Md.

Sea Ice maximum 2010
Arctic sea ice and seasonal land cover change are shown from Sept. 1, 2009, when sea ice in the Arctic was near its minimum extent, through March 30, 2010, the day before sea ice reached its 2010 maximum extent. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio.
> High resolution still (10 Mb)
> Click to view various formats of the video

On April 2, 2010, NASA Goddard cryospheric scientist  Lora Koenig spoke with TV stations across the United States regarding  NASA's Operation IceBridge mission and the 2010 Arctic sea ice maximum.

On April 2, 2010, NASA Goddard cryospheric scientist Lora Koenig spoke with TV stations across the United States regarding NASA's Operation IceBridge mission and the 2010 Arctic sea ice maximum. Credit: NASA's Goddard Space Flight Center

View this site auto transport car shipping car transport business VoIP business class flights


Asteroid to Fly by Within Moon’s Orbit Thursday

Orbit of asteroid 2010 GA6
Orbit of asteroid 2010 GA6

A newly discovered asteroid, 2010 GA6, will safely fly by Earth this Thursday at 4:06 p.m. Pacific (23:06 U.T.C.). At time of closest approach 2010 GA6 will be about 359,000 kilometers (223,000 miles) away from Earth - about 9/10ths the distance from to the moon. The asteroid, approximately 22 meters (71 feet) wide, was discovered by the Catalina Sky Survey, Tucson, Az.

"Fly bys of near-Earth objects within the moon's orbit occur every few weeks," said Don Yeomans of NASA's Near-Earth Object Office at the Jet Propulsion Laboratory in Pasadena, Calif.

NASA detects and tracks asteroids and comets passing close to Earth using both ground and space-based telescopes. The Near-Earth Object Observations Program, commonly called "Spaceguard," discovers these objects, characterizes a subset of them and plots their orbits to determine if any could be potentially hazardous to our planet.

JPL manages the Near-Earth Object Program Office for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. Cornell University, Ithaca, N.Y., operates the Arecibo Observatory under a cooperative agreement with the National Science Foundation in Arlington, Va.

For more information about asteroids and near-Earth objects, visit: http://www.jpl.nasa.gov/asteroidwatch

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Students Bring Fresh Perspective and New Technology to Webb Telescope

Matthew Bolcar a graduate student from the University of Rochester, N.Y. now works at Goddard full-timeDeep inside Building 5 at NASA's Goddard Space Flight Center in Greenbelt, Md., graduate students are on the front lines of technology development adjusting lasers and mirrors and spending long hours at a computer terminals. University partnerships are playing key roles in developing new and innovative technologies for NASA missions while creating a pathway for future NASA scientists and engineers.

"Investments in students today help us build what comes after the Webb telescope," said Lee Feinberg, Webb telescope Optical Telescope Element Manager at NASA Goddard. "University professors serve on our advisory boards. It allows us to tap the brightest minds in the country."

Past experience bears out Feinberg's observations.

Six years ago, Matthew Bolcar was a graduate student from the University of Rochester, N.Y. when he started working at NASA Goddard. He has been exploring interesting problems and developing risk-reduction techniques related to aligning segmented mirrors on the Webb telescope.

The Webb telescope primary mirror is composed of 18 segments that will unfold to create a single 6.5-meter (21-foot) mirror system once the observatory reaches orbit and begins operations. To work properly, the mirrors must be perfectly aligned. "If there were a problem, the telescope's operators could adjust the mirrors from the ground to correct for any possible misalignments," said Bruce Dean, group leader of the Wavefront Sensing and Control (WFSC) group at NASA Goddard.

Alex Maldonado is University of Arizona graduate student in optical engineering working half-time at Goddard as a co-op studentDean's group was charged with developing the software to compute the optimum position of each of the 18 mirrors, and then adjusting and aligning them, if necessary. The work was funded by the Webb telescope technology development program and was patented by Goddard in 2009. Goddard worked together with Ball Aerospace & Technologies Corp. in 2005, to develop this flight software for the Webb Space Telescope.

In 2006-2007, a team of engineers from both Goddard and Ball Aerospace & Technologies Corp., successfully tested the WFSC algorithms on a laboratory model of the Webb Telescope, proving they are ready to work in space.

Today, Bolcar is a full-time optical engineer for the Goddard WFSC group. Currently, he is working on the Thermal InfraRed Sensor (TIRS) instrument that will fly on the Landsat Data Continuity Mission (LDCM), the next in a series of satellites that have remotely sensed Earth’s continental surfaces for more than 30 years. He's also working on an experimental instrument, called the Visible Nulling Coronagraph (VNC) that would be used for exoplanet detection.

The graduate fellowship and co-op programs give NASA time to train students for optical engineering. "It takes four to five years to really train someone in wavefront-sensing technology," Dean added.

University partnerships are a great way to get young engineers and scientists interested in NASA, Bolcar agreed. "When you're a graduate student, wherever the funding is, you are going to develop partnerships and relationships," he added. "There is a potential to go beyond graduate school. It's good for the university and its good for attracting young talent to NASA."

Alex Maldonado, a University of Arizona graduate student in optical engineering, is following in Bolcar's footsteps. He spends half his time working at Goddard as a co-op student and the other half taking classes at the university in Tucson, Ariz. When at Goddard, he researches new techniques for polishing optical lenses to prevent light scattering.

Astronomers need bigger and smoother mirrors that will collect more light to allow scientists to see faint objects farther into the distant universe. A common and effective technique for shaping optical lenses is called diamond-turning, where a diamond tip cuts away the lens material. However, this technique also introduces flaws that can deflect light. Maldonado spends much of his time designing and executing testing procedures to see if new polishing techniques reduce this effect -- efforts that will be applied to the Near Infrared Camera (NIRCam), a Webb telescope imager.

The University of Arizona is providing the Near Infrared Camera (NIRCam) to the Webb Space Telescope, an imager with a large field of view and high angular resolution. Prof. Marcia Rieke at the University is the lead for that instrument.

Engineers at Ball Aerospace test the Wavefront Sensing and Control testbed to ensure that the 18 primary mirror segments and one secondary mirror on JWST work as oneThe James Webb Space Telescope is the next-generation premier space observatory, exploring deep space phenomena from distant galaxies to nearby planets and stars. The Webb Telescope will give scientists clues about the formation of the universe and the evolution of our own solar system, from the first light after the Big Bang to the formation of star systems capable of supporting life on planets like Earth.

"In addition to the students, we work with the professors," according to Dean. Bolcar's graduate professor, James R. Fienup, is a world-renowned expert in optics. "We asked him to help us cover high-risk areas on the Webb telescope," said Dean.

"This is a win-win for the schools and NASA," said Feinberg. "We fund their graduate students, and in return, we get really bright, fresh minds working on NASA's most challenging missions.

Expected to launch in 2014, the telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the James Webb Space Telescope, visit:

http://www.jwst.nasa.gov

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Discovery Lifts off

An exhaust cloud billowed around Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Discovery lifted off to begin the STS-131 mission. The seven-member crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Small Companion to Brown Dwarf

As our telescopes grow more powerful, astronomers are uncovering objects that defy conventional wisdom. The latest example is the discovery of a planet-like object circling a brown dwarf. It's the right size for a planet, estimated to be 5-10 times the mass of Jupiter. But the object formed in less than 1 million years -- the approximate age of the brown dwarf -- and much faster than the predicted time it takes to build planets according to some theories.

Kamen Todorov of Penn State University and co-investigators used the keen eyesight of the Hubble Space Telescope and the Gemini Observatory to directly image the companion of the brown dwarf, which was uncovered in a survey of 32 young brown dwarfs in the Taurus star-forming region. Brown dwarfs are objects that typically are tens of times the mass of Jupiter and are too small to sustain nuclear fusion to shine as stars do.

The mystery object orbits the nearby brown dwarf at a separation of approximately 2.25 billion miles (3.6 billion kilometers -- which is between the distances of Saturn and Uranus from the Sun). The team's research is being published in an upcoming issue of The Astrophysical Journal.

There has been a lot of discussion in the context of the Pluto debate over how small an object can be and still be called a planet. This new observation addresses the question at the other end of the size spectrum: How small can an object be and still be a brown dwarf rather than a planet? This new companion is within the range of masses observed for planets around stars -- less than 15 Jupiter masses. But should it be called a planet? The answer is strongly connected to the mechanism by which the companion most likely formed.

There are three possible formation scenarios: Dust in a circumstellar disk slowly agglomerates to form a rocky planet 10 times larger than Earth, which then accumulates a large gaseous envelope; a lump of gas in the disk quickly collapses to form an object the size of a gas giant planet; or, rather than forming in a disk, a companion forms directly from the collapse of the vast cloud of gas and dust in the same manner as a star (or brown dwarf).

If the last scenario is correct, then this discovery demonstrates that planetary-mass bodies can be made through the same mechanism that builds stars. This is the likely solution because the companion is too young to have formed by the first scenario, which is very slow. The second mechanism occurs rapidly, but the disk around the central brown dwarf probably did not contain enough material to make an object with a mass of 5-10 Jupiter masses.

"The most interesting implication of this result is that it shows that the process that makes binary stars extends all the way down to planetary masses. So it appears that nature is able to make planetary-mass companions through two very different mechanisms," says team member Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University. If the mystery companion formed through cloud collapse and fragmentation, as stellar binary systems do, then it is not a planet by definition because planets build up inside disks.

The mass of the companion is estimated by comparing its brightness to the luminosities predicted by theoretical evolutionary models for objects at various masses for an age of 1 millon years.

Further supporting evidence comes from the presence of a very nearby binary system that contains a small red star and a brown dwarf. Luhman thinks that all four objects may have formed in the same cloud collapse, making this in actuality a quadruple system. "The configuration closely resembles quadruple star systems, suggesting that all of its components formed like stars," says Luhman.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Ready, Set, RACE! Student Teams Gear Up for NASA’S 17th Annual Moonbuggy Race

2009 Moonbuggy Race
Nearly 100 student teams from around the globe will drive their specially crafted lunar rovers through a challenging course of rugged, moon-like terrain at NASA's 17th annual Great Moonbuggy Race in Huntsville, Ala., April 9-10. More than 1,000 high school, college and university students from 19 states and Puerto Rico, Canada, Germany, Serbia, India and Romania are registered to race at the U.S. Space & Rocket Center.

› News Release
› Moonbuggy Race Fact Sheet (PDF)

› NASA's Great Moonbuggy Race

› Previous Race Results/Photos

Flickr: Moonbuggy 2009 -- The 'Face' of the Race

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


The Setting Sun

The sun sets on the space shuttle Discovery’s almost empty cargo bay at the successful conclusion of the mission, as the seven astronauts inside the crew cabin approach one of the final mission chores--that of closing the cargo bay doors.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


NASA Sensors Providing Rapid Estimates of Iceland Volcano Emissions

Iceland's Eyjafjallajokull volcano False-color short-wavelength infrared image of Iceland's Eyjafjallajokull volcano from data obtained by NASA's EO-1 Hyperion satellite on March 24, 2010.
› Larger view
A NASA research team is using the latest advances in satellite artificial intelligence to speed up estimates of the heat and volume of lava escaping from an erupting volcano in Iceland.

On March 20, 2010, Iceland's Eyjafjallajökull volcano (pronounced "AYA-feeyapla-yurkul,") awakened for the first time in 120 years, spewing still-active lava fountains and flows. That day, a NASA "sensor web" -- a network of sensors on the ground and aboard NASA's Earth Observing-1 satellite, alerted researchers to this new volcanic "hot spot." The eruption was detected by autonomous "sciencecraft" software aboard the satellite, which is known as EO-1.

Sciencecraft software enables the spacecraft to analyze science data onboard to detect scientific events and respond by sending alerts, producing scientific products and/or re-imaging the event.

The software is typically able to notify researchers on the ground within 90 minutes of detecting events, and then rapidly sets up the satellite to observe them. In the case of the Iceland volcanic event, EO-1 was able to take advantage of recently uploaded "smart" software that allows the spacecraft to react quickly to an event and to rapidly downlink the data for processing by ground personnel in less than 24 hours. That process used to take three weeks for researchers working manually.

The artificial intelligence software directed EO-1's Hyperion and Advanced Land Imager instruments to target the volcano on its next passes over Iceland, which occurred on March 24, 29 and 30. After image data were transmitted to a ground station at NASA's Jet Propulsion Laboratory in Pasadena, Calif., computers automatically analyzed them and created maps and estimates of heat loss and eruption flow rate.

"Use of autonomous systems in this way represents a new way of doing science, where spacecraft can think for themselves and react to dynamic and often transient events," explained Ashley Davies, lead scientist for NASA's New Millennium Program-Space Technology 6 Autonomous Sciencecraft Experiment at JPL.

"This autonomy technology enables spacecraft to rapidly inform the ground of significant events, like the volcanic eruption," said Steve Chien, principal investigator for the Autonomous Sciencecraft at JPL. "This same technology has been used to track fires, flooding and other natural hazards."

"This sensorweb technology enables rapid retasking of the EO-1 spacecraft, making it easier to track breaking phenomena such as the Iceland volcano," added Daniel Mandl, EO-1 spacecraft mission manager at NASA's Goddard Space Flight Center, Greenbelt, Md. Goddard manages the EO-1 mission for NASA's Science Mission Directorate, Washington.

Less than 24 hours after the satellite's first observation, the JPL team confirmed the volcano was emitting more than one billion watts of energy -- enough to power 40,000 passenger cars at the same time -- and discharging more than six tons of lava per second.

The fully automated process accelerated NASA's distribution of images to volcanologists studying the eruption. Rapid calculations of lava volume (known as the effusion rate) and location can help determine the likely direction of lava flows, while giving emergency managers advance warning to plan and deploy resources, and carry out informed evacuations.

Davies believes he and other researchers can use the "onboard autonomy" to achieve a greater and faster return rate of new Earth and planetary science data, while offering potentially life-saving benefits through rapid detection of natural events.

"There is concern that this eruption might precede another larger eruption at the Katla volcano nearby," said Davies. "If it does, we will be poised to provide imaging data of activity as the eruption evolves."

View my blog's last three great articles...

View this site auto transport car shipping car transport business VoIP business class flights


Newfound Asteroid Will Fly Close by Earth Thursday

A newly discovered asteroid will zip close by Earth Thursday, but poses no threat of crashing into our planet even though it is passing within the orbit of the moon.

The asteroid, called 2010 GA6, is a relatively small space rock about 71 feet (22 meters) wide and was discovered by astronomers with the Catalina Sky Survey in Tucson, Az. The space rock will fly within the orbit of the moon when it passes Earth Thursday at 7:06 p.m. EDT (2306 GMT), but NASA astronomers said not to worry...the planet is safe.

"Fly bys of near-Earth objects within the moon's orbit occur every few weeks," said Don Yeomans of NASA's Near-Earth Object Office at the Jet Propulsion Laboratory in Pasadena, Calif., in a statement.

At the time of its closest pass, asteroid 2010 GA6 will be about 223,000 miles (359,000 km) from the Earth. That's about nine-tenths the distance between Earth and the moon [more asteroid photos].

The space rock is not the first asteroid to swing close by Earth this year.

In January, the small asteroid 2010 AL30 passed within 80,000 miles (130,000 km) when it zipped by. Other space rocks have flown past Earth at more comfortable distances greater than several hundred thousand miles.

NASA routinely tracks asteroids and comets that may fly near the Earth with a network of telescopes on the ground and in space. The agency's Near-Earth Object Observations program, more commonly known as Spaceguard, is responsible for finding potentially dangerous asteroids and studying their orbits to determine if they pose a risk of hitting the Earth.

NASA's latest space telescope, the Wide-field Infrared Survey Explorer (WISE) launched in December, has been given the task of hunting new asteroids that were previously undetectable because they shine only in the infrared range of the light spectrum.

So far, the WISE telescope has been discovering dozens of previously unknown asteroids every day. Some of those space rocks have been tagged for closer analysis since they may be potentially hazardous to Earth, WISE mission scientists have said.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Shooting for Shooting Stars

2001 Leonid fireball
2001 Leonid fireball recorded from Hawaii
You know them as "shooting stars," or meteors. Space scientists know them as the fiery end of tiny visitors from space. Those momentary streaks of light across the night sky are nothing more than small to almost-microscopic pieces of space debris whose trip through the void has ended in a kamikaze run into Earth's atmosphere. Of course, with 100 tons of space rock and rubble bombarding the planet each and every day, you'd think you could stick your head out the window any night of the week and easily catch a glimpse of a space rock's final moments.

"It doesn't really work that way," said Don Yeomans, manager of NASA's Near-Earth Object Program Office at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Sure, there are a lot of space rocks entering our atmosphere each day, but take into account that only half of the world is in darkness at any one time and two-thirds of that is over water where almost nobody lives. Then, factor in that the weather and city-lighting conditions where most people live are less than conducive for meteor viewing, and few people are even looking up at the appropriate moment. When you put it all together, it's almost notable that anybody notices these meteors at all."

Which begs the question -- if spotting shooting stars is so tough, what is a person with both good visual acuity and a passion for celestial light displays to do?

"Meteor showers are definitely the way to go," said Yeomans. "We know pretty much when they are going to occur and where to look in the night sky." (For a guide click on 2010 Major Meteor Showers)

A meteor shower is the entertaining end game of a comet's passage into the inner solar system. Each time one of these big blobs of ice and dust ventures into the relatively toasty confines of the inner solar system (called a perihelion passage), the sun's rays cook off part of its frozen surface, releasing particles of dust. Each swing through the inner solar system by a comet can leave trillions of small particles in its wake. If Earth's orbit intersects with this trail of debris, the result is a meteor shower.

"The comet trails that result in meteor showers can be from comet flybys that occurred hundreds of years ago," said Yeomans. "Remarkably, we can pin down the cosmic perpetrators. For example, we know from the similarity of their orbits that the Geminid showers that occur each December result from the debris of a dead comet called 3200 Phaethon. "

Along with the source of the Geminids, astronomers know that comet C/1861 G1 Thatcher supplied the particles for April's Lyrids; famous comet Halley is responsible for both May's Eta Aquarids and October's Orionids; 55P/Tempel-Tuttle funded November's Leonids; and 109P/Swift-Tuttle is the origin of the most celebrated shower of them all – August's Perseids.

By now, you may have noticed that the names of all the showers listed are associated with that of a constellation. Meteor shower particles travel through space at the same relative velocity and in parallel paths. When they are sucked in by Earth's gravity and light up in our atmosphere, a viewer on the ground would note they appear to radiate from a single point in the sky. A shower's name is usually associated with the nearest constellation in the sky to that single point at the time of shower maximum.

"Usually, the first couple of nights of a meteor shower have light activity," said Yeomans. "Then, the number of meteors can increase dramatically as Earth approaches the densest portion of the stream. After peaking for anywhere from a few hours to a few nights, it decreases back down to a level where you couldn't distinguish it from a normal night's meteor activity.

"The end of the line for a particle from space can be a great opportunity for scientists to study the nature of comets," said Yeomans. "But it is more than that. It is a great reminder that what we live on is essentially a big spacecraft traveling through the solar system and interacting with many of its parts. And as free entertainment, you can't beat it."

View my blog's last three great articles...

View this site auto transport car shipping car transport business VoIP business class flights


Flying Across the Moon

 Flying Across the Moon
The International Space Station flew across the face of the moon over NASA's Kennedy Space Center in Florida approximately 15 minutes before the launch of space shuttle Discovery on the STS-131 mission. Discovery successfully launched on April 5 and is now docked with the station. STS-131 will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Cassini Doubleheader: Flying By Titan and Dione

Composite of Saturn's moons Titan and Dione Composite of two images from NASA's Cassini spacecraft of Saturn's moons Titan (left) and Dione (right). › Full image and caption (Titan) | › Full image and caption (Dione)
In a special double flyby early next week, NASA's Cassini spacecraft will visit Saturn's moons Titan and Dione within a period of about a day and a half, with no maneuvers in between. A fortuitous cosmic alignment allows Cassini to attempt this doubleheader, and the interest in swinging by Dione influenced the design of its extended mission.

The Titan flyby, planned for Monday, April 5, will take Cassini to within about 7,500 kilometers (4,700 miles) of the moon's surface. The distance is relatively long as far as encounters go, but it works to the advantage of Cassini's imaging science subsystem. Cassini's cameras will be able to stare at Titan's haze-shrouded surface for a longer time and capture high-resolution pictures of the Belet and Senkyo areas, dark regions around the equator that ripple with sand dunes.

In the early morning of Wednesday, April 7 in UTC time zones, which is around 9 p.m. on Tuesday, April 6 in California, Cassini will make its closest approach to the medium-sized icy moon Dione. Cassini will plunge to within about 500 kilometers (300 miles) of Dione's surface.

This is only Cassini's second close encounter with Dione. The first flyby in October 2005, and findings from the Voyager spacecraft in the 1990s, hinted that the moon could be sending out a wisp of charged particles into the magnetic field around Saturn and potentially exhaling a diffuse plume that contributes material to one of the planet's rings. Like Enceladus, Saturn's more famous moon with a plume, Dione features bright, fresh fractures. But if there were a plume on Dione, it would certainly be subtler and produce less material.

Cassini plans to use its magnetometer and fields and particles instruments to see if it can find evidence of activity at Dione. Thermal mapping by the composite infrared spectrometer will also help in that search. In addition, the visual and infrared mapping spectrometer will examine dark material found on Dione. Scientists would like to understand the source of this dark material.

Cassini has made three previous double flybys and another two are planned in the years ahead. The mission is nearing the end of its first extension, known as the Equinox mission. It will begin its second mission extension, known as the Solstice Mission, in October 2010.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate in Washington. The Cassini orbiter was designed, developed and assembled at JPL.

More information about the Titan flyby, dubbed "T67," is available at:
http://saturn.jpl.nasa.gov/mission/flybys/titan20100405/ .

More information about the Dione flyby, dubbed "D2," is available at:
http://saturn.jpl.nasa.gov/mission/flybys/dione20100407/

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Topography Reflects Baja Quake Site’s Complex Geology

Topography surrounding the Laguna Salada Fault
The site of an April 4, 2010, magnitude 7.2 earthquake, the Laguna Salada fault in Baja, California, is clearly shown in this image from NASA's Shuttle Radar Topography Mission.
› Full image and caption

The topography surrounding the Laguna Salada fault in the Mexican state of Baja, California, is clearly shown in this combined radar image and topographic view (above) generated with data from NASA's Shuttle Radar Topography Mission (SRTM). On April 4, 2010, a magnitude 7.2 earthquake struck along this fault about 64 kilometers (40 miles) south of the Mexico-United States border.

According to the U.S. Geological Survey, the earthquake was the largest to strike this area since 1892. This fault is a probable southern continuation of the Elsinore fault zone in Southern California, and is related to the San Andreas fault zone complex. Aftershocks since the major event have appeared to extend in both directions along this fault system from the epicenter, marked by the red star.

This view combines a radar image acquired in February 2000 during SRTM, and color-coding by topographic height using data from the mission's data. Dark green colors indicate low elevations, rising through lime green, yellow and tan, to white at the highest elevations. The image shows a simulated view toward the southwest, with the topography exaggerated by a factor of two for clarity.

For more information, also see: http://photojournal.jpl.nasa.gov/catalog/PIA13016

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


3-2-1 Lift Off

3-2-1 Lift Off

Space shuttle Discovery's engines ignited at 6:21 a.m. EDT Monday, April 5, for liftoff of the STS-131 mission from Launch Pad 39A at NASA's Kennedy Space Center. The seven-member crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior. STS-131 is the 33rd shuttle mission to the station and the 131st shuttle mission.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


NASA Demonstrates Ocean-Powered Underwater Vehicle

NASA, U.S. Navy and university researchers have successfully demonstrated the first robotic underwater vehicle to be powered entirely by natural, renewable, ocean thermal energy.

The Sounding Oceanographic Lagrangrian Observer Thermal RECharging (SOLO-TREC) autonomous underwater vehicle uses a novel thermal recharging engine powered by the natural temperature differences found at different ocean depths. Scalable for use on most robotic oceanographic vehicles, this technology breakthrough could usher in a new generation of autonomous underwater vehicles capable of virtually indefinite ocean monitoring for climate and marine animal studies, exploration and surveillance.

Researchers at NASA's Jet Propulsion Laboratory, Pasadena, Calif.; and the Scripps Institution of Oceanography, University of California, San Diego, completed the first three months of an ocean endurance test of the prototype vehicle off the coast of Hawaii in March.

"People have long dreamed of a machine that produces more energy than it consumes and runs indefinitely," said Jack Jones, a JPL principal engineer and SOLO-TREC co-principal investigator. "While not a true perpetual motion machine, since we actually consume some environmental energy, the prototype system demonstrated by JPL and its partners can continuously monitor the ocean without a limit on its lifetime imposed by energy supply."

"Most of Earth is covered by ocean, yet we know less about the ocean than we do about the surface of some planets," said Yi Chao, a JPL principal scientist and SOLO-TREC principal investigator. "This technology to harvest energy from the ocean will have huge implications for how we can measure and monitor the ocean and its influence on climate."

SOLO-TREC draws upon the ocean's thermal energy as it alternately encounters warm surface water and colder conditions at depth. Key to its operation are the carefully selected waxy substances known as phase-change materials that are contained in 10 external tubes, which house enough material to allow net power generation. As the float surfaces and encounters warm temperatures, the material melts and expands; when it dives and enters cooler waters, the material solidifies and contracts. The expansion of the wax pressurizes oil stored inside the float. This oil periodically drives a hydraulic motor that generates electricity and recharges the vehicle's batteries. Energy from the rechargeable batteries powers the float's hydraulic system, which changes the float's volume (and hence buoyancy), allowing it to move vertically.

So far, SOLO-TREC has completed more than 300 dives from the ocean surface to a depth of 500 meters (1,640 feet). Its thermal recharging engine produced about 1.7 watt-hours, or 6,100 joules, of energy per dive, enough electricity to operate the vehicle's science instruments, GPS receiver, communications device and buoyancy-control pump.

The SOLO-TREC demonstration culminates five years of research and technology development by JPL and Scripps and is funded by the Office of Naval Research. JPL developed the thermal recharging engine, building on the buoyancy engine developed for the Slocum glider by Teledyne Webb Research, Falmouth, Mass. Scripps redesigned the SOLO profiling float and performed the integration. The 84-kilogram (183-pound) SOLO-TREC prototype was tested and deployed by the JPL/Scripps team on Nov. 30, 2009, about 161 kilometers (100 miles) southwest of Honolulu.

The performance of underwater robotic vehicles has traditionally been limited by power considerations. "Energy harvesting from the natural environment opens the door for a tremendous expansion in the use of autonomous systems for naval and civilian applications," said Thomas Swean, the Office of Naval Research program manager for SOLO-TREC. "This is particularly true for systems that spend most of their time submerged below the sea surface, where mechanisms for converting energy are not as readily available. The JPL/Scripps concept is unique in that its stored energy gets renewed naturally as the platform traverses ocean thermal gradients, so, in theory, the system has unlimited range and endurance. This is a very significant advance."

SOLO-TREC is now in an extended mission. The JPL/Scripps team plans to operate SOLO-TREC for many more months, if not years. "The present thermal engine shows the great promise in harvesting ocean thermal energy," said Russ Davis, a Scripps oceanographer. "With further engineering refinement, SOLO-TREC has the potential to augment ocean monitoring currently done by the 3,200 battery-powered Argo floats." The international Argo array, supported in part by the National Oceanic and Atmospheric Administration, measures temperature, salinity and velocity across the world's ocean. NASA and the U.S. Navy also plan to apply this thermal recharging technology to the next generation of submersible vehicles.

To learn more about SOLO-TREC, visit http://solo-trec.jpl.nasa.gov .

For more information about NASA and agency programs, visit: http://www.nasa.gov .

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights


Juno Taking Shape in Denver

Juno during assembly
Workers move into place the vault that will protect Juno's sensitive electronics from Jupiter's intense radiation belts.
Assembly has begun on NASA's Juno spacecraft, which will help scientists understand the origin and evolution of Jupiter. The mission, whose principal investigator is Scott Bolton of Southwest Research Institute in San Antonio, Tex., is expected to launch in August 2011 and reach Jupiter in 2016.

The assembly, testing and launch operations phase began April 1 in a high-bay clean room at Lockheed Martin Space Systems in Denver. Engineers and technicians will spend the next few months fitting instruments and navigation equipment onto the spacecraft.

"We're excited the puzzle pieces are coming together," Bolton said. "We're one important step closer to getting to Jupiter."

Jupiter is the largest planet in our solar system. Underneath its dense cloud cover, the planet safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars.

Juno will have nine science instruments on board to investigate the existence of a solid planetary core, map Jupiter's intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet's auroras.

"We plan to be doing a lot of testing in the next few months," said Jan Chodas, the project manager based at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We want to make sure the spacecraft is ready for the long journey to Jupiter and the harsh environment it will encounter there."

JPL manages the Juno mission for the principal investigator, Scott Bolton. Lockheed Martin Space Systems is building the spacecraft. The Italian Space Agency, Rome, is contributing an infrared spectrometer instrument and a portion of the radio science experiment.

For more information about Juno, visit http://www.nasa.gov/juno.

View my blog's last three great articles...


View this site auto transport car shipping car transport business VoIP business class flights