People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Snap Decisions

On first glance, a site that collects people’s opinions about whose life an autonomous car should favor doesn’t tell us anything we didn’t already know. But look closer, and you’ll catch a glimpse of humanity’s dark side.

The Moral Machine is an online survey designed by MIT researchers to gauge how the public would want an autonomous car to behave in a scenario in which someone has to die. It asks questions like: “If an autonomous car has to choose between killing a man or a woman, who should it kill? What if the woman is elderly but the man is young?”

Essentially, it’s a 21st century update on the Trolley Problem, an ethical thought experiment no doubt permanently etched into the mind of anyone who’s seen the second season of “The Good Place.”

Ethical Dilemma

The MIT team launched the Moral Machine in 2016, and more than two million people from 233 countries participated in the survey — quite a significant sample size.

On Wednesday, the researchers published the results of the experiment in the journal Nature, and they really aren’t all that surprising: Respondents value the life of a baby over all others, with a female child, male child, and pregnant woman following closely behind. Yawn.

It’s when you look at the other end of the spectrum — the characters survey respondents were least likely to “save” — that you’ll see something startling: Survey respondents would rather the autonomous car kill a human criminal than a dog.

moral machine
Image Credit: MIT

Ugly Reflection

While the team designed the survey to help shape the future of autonomous vehicles, it’s hard not to focus on this troubling valuing of a dog’s life over that of any human, criminal or not. Does this tell us something important about how society views the criminal class? Reveal that we’re all monsters when hidden behind the internet’s cloak of anonymity? Confirm that we really like dogs?

The MIT team doesn’t address any of these questions in their paper, and really, we wouldn’t expect them to — it’s their job to report the survey results, not extrapolate some deeper meaning from them. But whether the Moral Machine informs the future of autonomous vehicles or not, it’s certainly held up a mirror to humanity’s values, and we do not like the reflection we see.

READ MORE: Driverless Cars Should Spare Young People Over Old in Unavoidable Accidents, Massive Survey Finds [Motherboard]

More on the Moral Machine: MIT’s “Moral Machine” Lets You Decide Who Lives & Dies in Self-Driving Car Crashes

Go here to see the original:

People Would Rather a Self-Driving Car Kill a Criminal Than a Dog

Scientists Say New Material Could Hold up an Actual Space Elevator

Space Elevator

It takes a lot of energy to put stuff in space. That’s why one longtime futurist dream is a “space elevator” — a long cable strung between a geostationary satellite and the Earth that astronauts could use like a dumbwaiter to haul stuff up into orbit.

The problem is that such a system would require an extraordinarily light, strong cable. Now, researchers from Beijing’s Tsinghua University say they’ve developed a carbon nanotube fiber so sturdy and lightweight that it could be used to build an actual space elevator.

Going Up

The researchers published their paper in May, but it’s now garnering the attention of their peers. Some believe the Tsinghua team’s material really could lead to the creation of an elevator that would make it cheaper to move astronauts and materials into space.

“This is a breakthrough,” colleague Wang Changqing, who studies space elevators at Northwestern Polytechnical University, told the South China Morning Post.

Huge If True

There are still countless galling technical problems that need to be overcome before a space elevator would start to look plausible. Wang pointed out that it’d require tens of thousands of kilometers of the new material, for instance, as well as a shield to protect it from space debris.

But the research brings us one step closer to what could be a true game changer: a vastly less expensive way to move people and spacecraft out of Earth’s gravity.

READ MORE: China Has Strongest Fibre That Can Haul 160 Elephants – and a Space Elevator? [South China Morning Post]

More on space elevators: Why Space Elevators Could Be the Future of Space Travel

Original post:

Scientists Say New Material Could Hold up an Actual Space Elevator

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Ups and Downs

Can we please get off Mr. Musk’s Wild Ride now? We don’t know how much more of this Tesla rollercoaster we can take.

In 2018 alone, Elon Musk’s clean energy company has endured a faulty flufferbot, furious investors, and an SEC probe and settlement. But there was good news, too. Model 3 deliveries reportedly increased, and just this week, we found out that Tesla had a historic financial quarter, generating $312 million in profit.

And now we’re plummeting again.

Closing In

On Friday, The Wall Street Journal reported that the Federal Bureau of Investigation (FBI) is deepening a criminal probe into whether Tesla “misstated information about production of its Model 3 sedans and misled investors about the company’s business going back to early 2017.”

We’ve known about the FBI’s Tesla criminal probe since September 18, but this is the first report confirming that Model 3 production is at the center of the investigation.

According to the WSJ’s sources, FBI agents have been reaching out to former Tesla employees in recent weeks to ask if they’d be willing to testify in the criminal case, though no word yet on whether any have agreed.

Casual CEO

We might be having trouble keeping up with these twists and turns, but Musk seems to be taking the FBI’s Tesla criminal probe all in stride — he spent much of Friday afternoon joking around with his Twitter followers about dank memes.

Clearly he has the stomach for this, but it’d be hard to blame any Tesla investors for deciding they’d had enough.

READ MORE: Tesla Faces Deepening Criminal Probe Over Whether It Misstated Production Figures [The Wall Street Journal]

More on Tesla: Elon Musk Says Your Tesla Will Earn You Money While You Sleep

View original post here:

FBI’s Tesla Criminal Probe Reportedly Centers on Model 3 Production

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

Danger, Will Robinson

As famous Canadian astronaut Chris Hadfield demonstrated with his extraterrestrial sob session, fluids behave strangely in space.

And while microgravity makes for a great viral video, it also has terrifying medical implications that we absolutely need to sort out before we send people into space for the months or years necessary for deep space exploration.

Specifically, research published Thursday In the New England Journal of Medicine demonstrated that our brains undergo lasting changes after we spend enough time in space. According to the study, cerebrospinal fluid — which normally cushions our brain and spinal cord — behaves differently in zero gravity, causing it to pool around and squish our brains.

Mysterious Symptoms

The brains of the Russian cosmonauts who were studied in the experiment mostly bounced back upon returning to Earth.

But even seven months later, some abnormalities remained. According to National Geographic, the researchers suspect that high pressure  inside the cosmonauts’ skulls may have squeezed extra water into brain cells which later drained out en masse.

Now What?

So far, scientists don’t know whether or not this brain shrinkage is related to any sort of cognitive or other neurological symptoms — it might just be a weird quirk of microgravity.

But along with other space hazards like deadly radiation and squished eyeballs, it’s clear that we have a plethora of medical questions to answer before we set out to explore the stars.

READ MORE: Cosmonaut brains show space travel causes lasting changes [National Geographic]

More on space medicine: Traveling to Mars Will Blast Astronauts With Deadly Cosmic Radiation, new Data Shows

See original here:

Zero Gravity Causes Worrisome Changes In Astronauts’ Brains

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth

Check Yourself

The agriculture industry needs to get its priorities straight.

According to a newly published study, the world food system is producing too many unhealthy foods and not enough healthy ones.

“We simply can’t all adopt a healthy diet under the current global agriculture system,” said study co-author Evan Fraser in a press release. “Results show that the global system currently overproduces grains, fats, and sugars, while production of fruits and vegetables and, to a smaller degree, protein is not sufficient to meet the nutritional needs of the current population.”

Serving Downsized

For their study, published Tuesday in the journal PLOS ONE, researchers from the University of Guelph compared global agricultural production with consumption recommendations from Harvard University’s Healthy Eating Plate guide. Their findings were stark: The agriculture industry’s overall output of healthy foods does not match humanity’s needs.

Instead of the recommended eight servings of grains per person, it produces 12. And while nutritionists recommend we each consume 15 servings of fruits and vegetables daily, the industry produces just five. The mismatch continues for oils and fats (three servings instead of one), protein (three servings instead of five), and sugar (four servings when we don’t need any).

Overly Full Plate

The researchers don’t just point out the problem, though — they also calculated what it would take to address the lack of healthy foods while also helping the environment.

“For a growing population, our calculations suggest that the only way to eat a nutritionally balanced diet, save land, and reduce greenhouse gas emission is to consume and produce more fruits and vegetables as well as transition to diets higher in plant-based protein,” said Fraser.

A number of companies dedicated to making plant-based proteins mainstream are already gaining traction. But unfortunately, it’s unlikely that the agriculture industry will decide to prioritize growing fruits and veggies over less healthy options as long as people prefer having the latter on their plates.

READ MORE: Not Enough Fruits, Vegetables Grown to Feed the Planet, U of G Study Reveals [University of Guelph]

More on food scarcity: To Feed a Hungry Planet, We’re All Going to Need to Eat Less Meat

More:

We Aren’t Growing Enough Healthy Foods to Feed Everyone on Earth

Report Identifies China as the Source of Ozone-Destroying Emissions

Emissions Enigma

For years, a mystery puzzled environmental scientists. The world had banned the use of many ozone-depleting compounds in 2010. So why were global emission levels still so high?

The picture started to clear up in June. That’s when The New York Times published an investigation into the issue. China, the paper claimed, was to blame for these mystery emissions. Now it turns out the paper was probably right to point a finger.

Accident or Incident

In a paper published recently in the journal Geophysical Research Letters, an international team of researchers confirms that eastern China is the source of at least half of the 40,000 tonnes of carbon tetrachloride emissions currently entering the atmosphere each year.

They figured this out using a combination of ground-based and airborne atmospheric concentration data from near the Korean peninsula. They also relied on two models that simulated how the gases would move through the atmosphere.

Though they were able to narrow down the source to China, the researchers weren’t able to say exactly who’s breaking the ban and whether they even know about the damage they’re doing.

Pinpoint

“Our work shows the location of carbon tetrachloride emissions,” said co-author Matt Rigby in a press release. “However, we don’t yet know the processes or industries that are responsible. This is important because we don’t know if it is being produced intentionally or inadvertently.”

If we can pinpoint the source of these emissions, we can start working on stopping them and healing our ozone. And given that we’ve gone nearly a decade with minimal progress on that front, there’s really no time to waste.

READ MORE: Location of Large ‘Mystery’ Source of Banned Ozone Depleting Substance Uncovered [University of Bristol]

More on carbon emissions: China Has (Probably) Been Pumping a Banned Gas Into the Atmosphere

More:

Report Identifies China as the Source of Ozone-Destroying Emissions

An AI Conference Refusing a Name Change Highlights a Tech Industry Problem

Name Game

There’s a prominent artificial intelligence conference that goes by the suggestive acronym NIPS, which stands for “Neural Information Processing Systems.”

After receiving complaints that the acronym was alienating to women, the conference’s leadership collected suggestions for a new name via an online poll, according to WIRED. But the conference announced Monday that it would be sticking with NIPS all the same.

Knock It Off

It’s convenient to imagine that this acronym just sort of emerged by coincidence, but let’s not indulge in that particular fantasy.

It’s more likely that tech geeks cackled maniacally when they came up with the acronym, and the refusal to do better even when people looking up the conference in good faith are bombarded with porn is a particularly telling failure of the AI research community.

Small Things Matter

This problem goes far beyond a silly name — women are severely underrepresented in technology research and even more so when it comes to artificial intelligence. And if human decency — comforting those who are regularly alienated by the powers that be — isn’t enough of a reason to challenge the sexist culture embedded in tech research, just think about what we miss out on.

True progress in artificial intelligence cannot happen without a broad range of diverse voices — voices that are silenced by “locker room talk” among an old boy’s club. Otherwise, our technological development will become just as stuck in place as our cultural development often seems to be.

READ MORE: AI RESEARCHERS FIGHT OVER FOUR LETTERS: NIPS [WIRED]

More on Silicon Valley sexism: The Tech Industry’s Gender Problem Isn’t Just Hurting Women

See the original post here:

An AI Conference Refusing a Name Change Highlights a Tech Industry Problem

Scientists Are Hopeful AI Could Help Predict Earthquakes

Quake Rate

Earlier this year, I interviewed U.S. Geological Survey geologist Annemarie Baltay for a story about why it’s incredibly difficult to predict earthquakes.

“We don’t use that ‘p word’ — ‘predict’ — at all,” she told me. “Earthquakes are chaotic. We don’t know when or where they’ll occur.”

Neural Earthwork

That could finally be starting to change, according to a fascinating feature in The New York Times.

By feeding seismic data into a neural network — a type of artificial intelligence that learns to recognize patterns by scrutinizing examples — researchers say they can now predict moments after a quake strikes how far its aftershocks will travel.

And eventually, some believe, they’ll be able to listen to signals from fault lines and predict when an earthquake will strike in the first place.

Future Vision

But like Baltay, some researchers aren’t convinced we’ll ever be able to predict earthquakes.University of Tokyo seismologist Robert Geller told the Times that until an algorithm actually predicts an upcoming quake, he’ll remain skeptical.

“There are no shortcuts,” he said. “If you cannot predict the future, then your hypothesis is wrong.”

READ MORE: A.I. Is Helping Scientist Predict When and Where the Next Big Earthquake Will Be [The New York Times]

More on earthquake AI: A New AI Detected 17 Times More Earthquakes Than Traditional Methods

Original post:

Scientists Are Hopeful AI Could Help Predict Earthquakes

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

Stand Up Guy

For 10 years, Roy Palmer had no feeling in his lower extremities. Two days after receiving a stem cell transplant, he cried tears of joy because he could feel a cramp in his leg.

The technical term for the procedure the British man underwent is hematopoietic stem cell transplantation (HSCT). And while risky, it’s offering new hope to people like Palmer, who found himself wheelchair-bound after multiple sclerosis (MS) caused his immune system to attack his nerves’ protective coverings.

Biological Reboot

Ever hear the IT troubleshooting go-to of turning a system off and on again to fix it? The HSCT process is similar, but instead of a computer, doctors attempt to reboot a patient’s immune system.

To do this, they first remove stem cells from the patient’s body. Then the patient undergoes chemotherapy, which kills the rest of their immune system. After that, the doctors use the extracted stem cells to reboot the patient’s immune system.

It took just two days for the treatment to restore some of the feeling in Palmer’s legs. Eventually, he was able to walk on his own and even dance. He told the BBC in a recent interview that he now feels like he has a second chance at life.

“We went on holiday, not so long ago, to Turkey. I walked on the beach,” said Palmer. “Little things like that, people do not realize what it means to me.”

Risk / Reward

Still, HSCT isn’t some miracle cure for MS. Though it worked for Palmer, that’s not always the case, and HSCT can also cause infections and infertility. The National MS Society still considers HSCT to be an experimental treatment, and the Food and Drug Administration has yet to approve the therapy in the U.S.

However, MS affects more than 2.3 million people, and if a stem cell transplant can help even some of those folks the way it helped Palmer, it’s a therapy worth exploring.

READ MORE: Walking Again After Ten Years With MS [BBC]

More on HCST: New Breakthrough Treatment Could “Reverse Disability” for MS Patients

Continued here:

A Stem Cell Transplant Let a Wheelchair-Bound Man Dance Again

These Bacteria Digest Food Waste Into Biodegradable Plastic

Factory Farm

Plastics have revolutionized manufacturing, but they’re still terrible for the environment.

Manufacturing plastics is an energy-intensive slog that ends in mountains of toxic industrial waste and greenhouse gas emissions. And then the plastic itself that we use ends up sitting in a garbage heap for thousands of years before it biodegrades.

Scientists have spent years investigating ways to manufacture plastics without ruining the planet, and a Toronto biotech startup called Genecis says it’s found a good answer: factories where vats of bacteria digest food waste and use it to form biodegradable plastic in their tiny microbial guts.

One-Two Punch

The plastic-pooping bacteria stand to clean up several kinds of pollution while churning out usable materials, according to Genecis.

That’s because the microbes feed on waste food or other organic materials — waste that CBC reported gives off 20 percent of Canada’s methane emissions as it sits in landfills.

Then What?

The plastic that the little buggers produce isn’t anything new. It’s called PHA and it’s used in anything that needs to biodegrade quickly, like those self-dissolving stitches. What’s new here is that food waste is much cheaper than the raw materials that usually go into plastics, leading Genecis to suspect it can make the same plastics for 40 percent less cost.

There are a lot of buzzworthy new alternative materials out there, but with a clear environmental and financial benefit, it’s possible these little bacteria factories might be here to stay.

READ MORE: Greener coffee pods? Bacteria help turn food waste into compostable plastic [CBC]

More on cleaning up plastics: The EU Just Voted to Completely ban Single-Use Plastics

See more here:

These Bacteria Digest Food Waste Into Biodegradable Plastic

You Can Now Preorder a $150,000 Hoverbike

Please, Santa?

It’s never too early to start writing your Christmas wish list, right? Because we know what’s now at the top of ours: a hoverbike.

We’ve had our eyes on Hoversurf’s Scorpion-3 since early last year — but now, the Russian drone start-up is accepting preorders on an updated version of the vehicle.

Flying Bike

The S3 2019 is part motorcycle and part quadcopter. According to the Hoversurf website, the battery-powered vehicle weighs 253 pounds and has a flight time of 10 to 25 minutes depending on operator weight. Its maximum legal speed is 60 mph — though as for how fast the craft can actually move, that’s unknown. Hoversurf also notes that the vehicle’s “safe flight altitude” is 16 feet, but again, we aren’t sure how high it can actually soar.

What we do know: The four blades that provide S3 with its lift spin at shin level, and while this certainly looks like it would be a safety hazard, the U.S. Department of Transportation’s Federal Aviation Administration approved the craft for legal use as an ultralight vehicle in September.

That means you can only operate an S3 for recreational or sports purposes — but you can’t cruise to work on your morning commute.

Plummeting Bank Account

You don’t need a pilot’s license to operate an S3, but you will need a decent amount of disposable income — the Star Wars-esque craft will set you back $150,000.

If that number doesn’t cause your eyes to cross, go ahead and slap down the $10,000 deposit needed to claim a spot in the reservation queue. You’ll then receive an email when it’s time to to place your order. You can expect to receive your S3 2019 two to six months after that, according to the company website.

That means there’s a pretty good chance you won’t be able to hover around your front yard this Christmas morning, but a 2019 jaunt is a genuine possibility.

READ MORE: For $150,000 You Can Now Order Your Own Hoverbike [New Atlas]

More on Hoversurf: Watch the World’s First Rideable Hoverbike in Flight

Read this article:

You Can Now Preorder a $150,000 Hoverbike

WHO Director: Air Pollution Is the “New Tobacco”

Wrong Direction

Breathing polluted air is as likely to kill you as tobacco use — worldwide, each kills about 7 million people annually. But while the world is making progress in the war against tobacco, air pollution is getting worse.

The Director General of the World Health Organization (WHO) hopes to change that.

“The world has turned the corner on tobacco,” wrote Tedros Adhanom Ghebreyesus in an opinion piece published by The Guardian on Saturday. “Now it must do the same for the ‘new tobacco’ — the toxic air that billions breathe every day.”

Taking Action

According to the WHO, nine out of 10 people in the world breathe polluted air.

This week, the organization is hosting the first Global Conference on Air Pollution and Health, and Ghebreyesus is hopeful world leaders will use the conference as the opportunity to commit to cutting air pollution in their nations.

“Despite the overwhelming evidence, political action is still urgently needed to boost investments and speed up action to reduce air pollution,” he wrote, noting that this action could take the form of more stringent air quality standards, improved access to clean energy, or increased investment in green technologies.

Reduced Risk

The impact sustained action against air pollution could have on public health is hard to overstate.

“No one, rich or poor, can escape air pollution. A clean and healthy environment is the single most important precondition for ensuring good health,” wrote Ghebreyesus in his Guardian piece. “By cleaning up the air we breathe, we can prevent or at least reduce some of the greatest health risks.”

The conference ends on Thursday, so we won’t have to wait long to see which nations do — or don’t — heed the WHO’s call to action.

READ MORE: Air Pollution Is the New Tobacco. Time to Tackle This Epidemic [The Guardian]

More on air pollution: Dumber Humans — That’s Just One Effect of a More Polluted Future

Read more here:

WHO Director: Air Pollution Is the “New Tobacco”

Scientists May Have Put Microbes in a State of Quantum Entanglement

Hall of Mirrors

A few years ago, the journal Small published a study showing how photosynthetic bacteria could absorb and release photons as the light bounced across a minuscule gap between two mirrors.

Now, a retroactive look at the study’s data published in The Journal of Physics Communications suggests something more may have been going on. The bacteria may have been the first living organisms to operate in the realm of quantum physics, becoming entangled with the bouncing light at the quantum scale.

Cat’s Cradle

The experiment in question, as described by Scientific American, involved individual photons — the smallest quantifiable unit of light that can behave like a tiny particle but also a wave of energy within quantum physics — bouncing between two mirrors separated by a microscopic distance.

But a look at the energy levels in the experimental setup suggests that the bacteria may have become entangled, as some individual photons seem to have simultaneously interacted with and missed the bacterium at the same time.

Super Position

There’s reason to be skeptical of these results until someone actually recreates the experiment while looking for signs of quantum interactions. As with any look back at an existing study, scientists are restricted to the amount and quality of data that was already published. And, as Scientific American noted, the energy levels of the bacteria and the mirror setup should have been recorded individually — which they were not — in order to verify quantum entanglement.

But if this research holds up, it would be the first time a life form operated on the realm of quantum physics, something usually limited to subatomic particles. And even though the microbes are small, that’s a big deal.

READ MORE“Schrödinger’s Bacterium” Could Be a Quantum Biology Milestone [Scientific American]

More on quantum physics: The World’s First Practical Quantum Computer May Be Just Five Years Away

See the original post:

Scientists May Have Put Microbes in a State of Quantum Entanglement

There’s No Way China’s Artificial Moon Will Work, Says Expert

Good Luck

On October 10, a Chinese organization called the Tian Fu New Area Science Society revealed plans to replace the streetlights in the city of Chengdu with a satellite designed to reflect sunlight toward the Earth’s surface at night.

But in a new interview with Astronomy, an associate professor of aerospace engineering at the University of Texas at Austin named Ryan Russel argued that based on what he’s read, the artificial moon plan would be impossible to implement.

Promised the Moon

Wu Chunfeng, the head of the Tian Fu New Area Science Society, told China Daily the artificial moon would orbit about 310 miles above Earth, delivering an expected brightness humans would perceive to be about one-fifth that of a typical streetlight.

The plan is to launch one artificial moon in 2020 and then three more in 2022 if the first works as hoped. Together, these satellites could illuminate an area of up to 4,000 square miles, Chunfeng claims.

But Russell is far from convinced.

“Their claim for 1 [low-earth orbit satellite] at [300 miles] must be a typo or misinformed spokesperson,” he told Astronomy. “The article I read implied you could hover a satellite over a particular city, which of course is not possible.”

Overkill Overhead

To keep the satellite in place over Chengdu, it would need to be about 22,000 miles above the Earth’s surface, said Russel, and its reflective surface would need to be massive to reflect sunlight from that distance. At an altitude of just 300 miles, the satellite would quickly zip around the Earth, constantly illuminating new locations.

Even if the city could put the artificial moon plan into action, though, Russell isn’t convinced it should.

“It’s a very complicated solution that affects everyone to a simple problem that affects a few,” he told Astronomy. “It’s light pollution on steroids.”

Maybe Chengdu shouldn’t give up on its streetlights just yet.

READ MORE: Why China’s Artificial Moon Probably Won’t Work [Astronomy]

More on the artificial moon: A Chinese City Plans to Replace Its Streetlights With an Artificial Moon

More:

There’s No Way China’s Artificial Moon Will Work, Says Expert

Clean Coal Startup Turns Human Waste Into Earth-Friendly Fuel

Gold Nuggets

A company called Ingelia says it’s figured out a way to turn human waste — the solid kind — into a combustible material it’s calling biochar. And if Ingelia’s claims are accurate, biochar can be burned for fuel just like coalexcept with nearzero greenhouse gas emissions, according to Business Insider.

That’s because almost all of the pollutants and more harmful chemicals that would normally be given off while burning solid fuels is siphoned away into treatable liquid waste, leaving a dry, combustible rod of poop fuel.

“Clean Coal

Ingelia, which is currently working to strike a deal with Spanish waste management facilities, hopes to make enough biochar to replace 220 thousand tons of coal per year, corresponding to 500 thousand tons of carbon dioxide emissions.

But that’s by 2022, at which point we’ll have even less time to reach the urgent clean energy goals of that doomsday United Nations report. In an ideal world, we would have moved away from coal years ago. At least this gives us a viable alternative as we transition to other, renewable forms of electricity.

So while we can, in part, poop our way to a better world, biochar — and other new sewage-based energy sources — will only be one of many new world-saving sources of clean energy.

READ MORE: This Spanish company found a way to produce a fuel that emits no CO2 — and it’s made of sewage [Business Insider]

More on poop: Edible Tech is Finally Useful, is Here to Help you Poop

Here is the original post:

Clean Coal Startup Turns Human Waste Into Earth-Friendly Fuel

Ford’s Self-Driving Cars Are About to Chauffeur Your Senator

Green-Light District

It doesn’t matter how advanced our self-driving cars get — if they aren’t allowed on roads, they aren’t going to save any lives.

The future of autonomous vehicles (AVs) in the U.S. depends on how lawmakers in Washington D.C. choose to regulate the vehicles. But until now, AV testing has largely taken place far from the nation’s capital, mostly in California and Arizona.

Ford is about to change that. The company just announced plans to be the first automaker to test its self-driving cars in the Distinct of Columbia — and how lawmakers feel about those vehicles could influence future AV legislation.

Career Day

Sherif Marakby, CEO of Ford Autonomous Vehicles, announced the decision to begin testing in D.C. via a blog post last week. According to Marakby, Ford’s politician-friendly focus will be on figuring out how its AVs could promote job creation in the District.

To that end, Ford plans to assess how AVs could increase mobility in D.C., thereby helping residents get to jobs that might otherwise be outside their reach, as well as train residents for future positions as AV technicians or operators.

Up Close and Personal

Marakby notes that D.C. is a particularly suitable location for this testing because the District is usually bustling with activity. The population increases significantly during the day as commuters arrive from the suburbs for work, while millions of people flock to D.C. each year for conferences or tourism.

D.C. is also home to the people responsible for crafting and passing AV legislation. “[I]t’s important that lawmakers see self-driving vehicles with their own eyes as we keep pushing for legislation that governs their safe use across the country,” Marakby wrote.

Ford’s ultimate goal is to launch a commercial AV service in D.C. in 2021. With this testing, the company has the opportunity to directly influence the people who could help it reach that goal — or oppose it.

READ MORE: A Monumental Moment: Our Self-Driving Business Development Expands to Washington, D.C. [Medium]

More on AV legislation: U.S. Senators Reveal the Six Principles They’ll Use to Regulate Self-Driving Vehicles

Visit link:

Ford’s Self-Driving Cars Are About to Chauffeur Your Senator

This AI Lie Detector Flags Falsified Police Reports

Minority Report

Imagine this: You file a police report, but back at the station, they feed it into an algorithm — and it accuses you of lying, as though it had somehow looked inside your brain.

That might sound like science fiction, but Spain is currently rolling out a very similar program, called VeriPol, in many of its police stations. VeriPol’s creators say that when it flags a report as false, it turns out to be correct more than four-fifths of the time.

Lie Detector

VeriPol is the work of researchers at Cardiff University and Charles III University of Madrid.

In a paper published earlier this year in the journal Knowledge-Based Systems, they describe how they trained the lie detector with a data set of more than 1,000 robbery reports — including a number that police identified as false — to identify subtle signs that a report wasn’t true.

Thought Crime

In pilot studies in Murcia and Malaga, Quartz reported, further investigation showed that the algorithm was correct about 83 percent of the time that it suspected a report was false.

Still, the project raises uncomfortable questions about allowing algorithms to act as lie detectors. Fast Company reported earlier this year that authorities in the United States, Canada, and the European Union are testing a separate system called AVATAR that they want to use to collect biometric data about subjects at border crossings — and analyze it for signs that they’re not being truthful.

Maybe the real question isn’t whether the tech works, but whether we want to permit authorities to act upon what’s essentially a good — but not perfect — assumption that someone is lying.

READ MORE: Police Are Using Artificial Intelligence to Spot Written Lies [Quartz]

More on lie detectors: Stormy Daniels Took a Polygraph. What Do We Do With the Results?

Read more:

This AI Lie Detector Flags Falsified Police Reports

palus – Wiktionary

English[edit]Etymology 1[edit]

From Latin plus (stake, post). Doublet of pole.

palus (plural pali)

From Latin pals (marsh, swamp).

palus (plural paludes)

palus?

From Proto-Italic *palts, *pald-, from Proto-Indo-European *pelHk-iH-h, related to Latvian pelce (puddle), Lithuanian pelk (marsh), Sanskrit (palvala, pool, pond), and possibly Ancient Greek (pls, mud, earth, clay).

palsf (genitive paldis); third declension

Third declension.

Inherited from a metathesised Vulgar Latin form *padule

From Proto-Italic *pkslos, from Proto-Indo-European *peh-slos, from *peh-. See related terms.

plusm (genitive pli); second declension

Second declension.

Original post:

palus – Wiktionary

Planetary science – Wikipedia

Planetary science or, more rarely, planetology, is the scientific study of planets (including Earth), moons, and planetary systems (in particular those of the Solar System) and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science,[1] but which now incorporates many disciplines, including planetary geology (together with geochemistry and geophysics), cosmochemistry, atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology.[1] Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve a combination of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

Planetary scientists are generally located in the astronomy and physics or Earth sciences departments of universities or research centres, though there are several purely planetary science institutes worldwide. There are several major conferences each year, and a wide range of peer-reviewed journals. In the case of some exclusive planetary scientists, many of whom are in relation to the study of dark matter, they will seek a private research centre and often initiate partnership research tasks.

The history of planetary science may be said to have begun with the Ancient Greek philosopher Democritus, who is reported by Hippolytus as saying

The ordered worlds are boundless and differ in size, and that in some there is neither sun nor moon, but that in others, both are greater than with us, and yet with others more in number. And that the intervals between the ordered worlds are unequal, here more and there less, and that some increase, others flourish and others decay, and here they come into being and there they are eclipsed. But that they are destroyed by colliding with one another. And that some ordered worlds are bare of animals and plants and all water.[2]

In more modern times, planetary science began in astronomy, from studies of the unresolved planets. In this sense, the original planetary astronomer would be Galileo, who discovered the four largest moons of Jupiter, the mountains on the Moon, and first observed the rings of Saturn, all objects of intense later study. Galileo’s study of the lunar mountains in 1609 also began the study of extraterrestrial landscapes: his observation “that the Moon certainly does not possess a smooth and polished surface” suggested that it and other worlds might appear “just like the face of the Earth itself”.[3]

Advances in telescope construction and instrumental resolution gradually allowed increased identification of the atmospheric and surface details of the planets. The Moon was initially the most heavily studied, as it always exhibited details on its surface, due to its proximity to the Earth, and the technological improvements gradually produced more detailed lunar geological knowledge. In this scientific process, the main instruments were astronomical optical telescopes (and later radio telescopes) and finally robotic exploratory spacecraft.

The Solar System has now been relatively well-studied, and a good overall understanding of the formation and evolution of this planetary system exists. However, there are large numbers of unsolved questions,[4] and the rate of new discoveries is very high, partly due to the large number of interplanetary spacecraft currently exploring the Solar System.

This is both an observational and a theoretical science. Observational researchers are predominantly concerned with the study of the small bodies of the Solar System: those that are observed by telescopes, both optical and radio, so that characteristics of these bodies such as shape, spin, surface materials and weathering are determined, and the history of their formation and evolution can be understood.

Theoretical planetary astronomy is concerned with dynamics: the application of the principles of celestial mechanics to the Solar System and extrasolar planetary systems.

The best known research topics of planetary geology deal with the planetary bodies in the near vicinity of the Earth: the Moon, and the two neighbouring planets: Venus and Mars. Of these, the Moon was studied first, using methods developed earlier on the Earth.

Geomorphology studies the features on planetary surfaces and reconstructs the history of their formation, inferring the physical processes that acted on the surface. Planetary geomorphology includes the study of several classes of surface features:

The history of a planetary surface can be deciphered by mapping features from top to bottom according to their deposition sequence, as first determined on terrestrial strata by Nicolas Steno. For example, stratigraphic mapping prepared the Apollo astronauts for the field geology they would encounter on their lunar missions. Overlapping sequences were identified on images taken by the Lunar Orbiter program, and these were used to prepare a lunar stratigraphic column and geological map of the Moon.

One of the main problems when generating hypotheses on the formation and evolution of objects in the Solar System is the lack of samples that can be analysed in the laboratory, where a large suite of tools are available and the full body of knowledge derived from terrestrial geology can be brought to bear. Direct samples from the Moon, asteroids and Mars are present on Earth, removed from their parent bodies and delivered as meteorites. Some of these have suffered contamination from the oxidising effect of Earth’s atmosphere and the infiltration of the biosphere, but those meteorites collected in the last few decades from Antarctica are almost entirely pristine.

The different types of meteorites that originate from the asteroid belt cover almost all parts of the structure of differentiated bodies: meteorites even exist that come from the core-mantle boundary (pallasites). The combination of geochemistry and observational astronomy has also made it possible to trace the HED meteorites back to a specific asteroid in the main belt, 4 Vesta.

The comparatively few known Martian meteorites have provided insight into the geochemical composition of the Martian crust, although the unavoidable lack of information about their points of origin on the diverse Martian surface has meant that they do not provide more detailed constraints on theories of the evolution of the Martian lithosphere.[5] As of July 24, 2013 65 samples of Martian meteorites have been discovered on Earth. Many were found in either Antarctica or the Sahara Desert.

During the Apollo era, in the Apollo program, 384 kilograms of lunar samples were collected and transported to the Earth, and 3 Soviet Luna robots also delivered regolith samples from the Moon. These samples provide the most comprehensive record of the composition of any Solar System body beside the Earth. The numbers of lunar meteorites are growing quickly in the last few years [6] as ofApril 2008 there are 54 meteorites that have been officially classified as lunar.Eleven of these are from the US Antarctic meteorite collection, 6 are from the JapaneseAntarctic meteorite collection, and the other 37 are from hot desert localities in Africa,Australia, and the Middle East. The total mass of recognized lunar meteorites is close to50kg.

Space probes made it possible to collect data in not only the visible light region, but in other areas of the electromagnetic spectrum. The planets can be characterized by their force fields: gravity and their magnetic fields, which are studied through geophysics and space physics.

Measuring the changes in acceleration experienced by spacecraft as they orbit has allowed fine details of the gravity fields of the planets to be mapped. For example, in the 1970s, the gravity field disturbances above lunar maria were measured through lunar orbiters, which led to the discovery of concentrations of mass, mascons, beneath the Imbrium, Serenitatis, Crisium, Nectaris and Humorum basins.

If a planet’s magnetic field is sufficiently strong, its interaction with the solar wind forms a magnetosphere around a planet. Early space probes discovered the gross dimensions of the terrestrial magnetic field, which extends about 10 Earth radii towards the Sun. The solar wind, a stream of charged particles, streams out and around the terrestrial magnetic field, and continues behind the magnetic tail, hundreds of Earth radii downstream. Inside the magnetosphere, there are relatively dense regions of solar wind particles, the Van Allen radiation belts.

Geophysics includes seismology and tectonophysics, geophysical fluid dynamics, mineral physics, geodynamics, mathematical geophysics, and geophysical surveying.

Planetary geodesy, (also known as planetary geodetics) deals with the measurement and representation of the planets of the Solar System, their gravitational fields and geodynamic phenomena (polar motion in three-dimensional, time-varying space. The science of geodesy has elements of both astrophysics and planetary sciences. The shape of the Earth is to a large extent the result of its rotation, which causes its equatorial bulge, and the competition of geologic processes such as the collision of plates and of vulcanism, resisted by the Earth’s gravity field. These principles can be applied to the solid surface of Earth (orogeny; Few mountains are higher than 10km (6mi), few deep sea trenches deeper than that because quite simply, a mountain as tall as, for example, 15km (9mi), would develop so much pressure at its base, due to gravity, that the rock there would become plastic, and the mountain would slump back to a height of roughly 10km (6mi) in a geologically insignificant time. Some or all of these geologic principles can be applied to other planets besides Earth. For instance on Mars, whose surface gravity is much less, the largest volcano, Olympus Mons, is 27km (17mi) high at its peak, a height that could not be maintained on Earth. The Earth geoid is essentially the figure of the Earth abstracted from its topographic features. Therefore, the Mars geoid is essentially the figure of Mars abstracted from its topographic features. Surveying and mapping are two important fields of application of geodesy.

The atmosphere is an important transitional zone between the solid planetary surface and the higher rarefied ionizing and radiation belts. Not all planets have atmospheres: their existence depends on the mass of the planet, and the planet’s distance from the Sun too distant and frozen atmospheres occur. Besides the four gas giant planets, almost all of the terrestrial planets (Earth, Venus, and Mars) have significant atmospheres. Two moons have significant atmospheres: Saturn’s moon Titan and Neptune’s moon Triton. A tenuous atmosphere exists around Mercury.

The effects of the rotation rate of a planet about its axis can be seen in atmospheric streams and currents. Seen from space, these features show as bands and eddies in the cloud system, and are particularly visible on Jupiter and Saturn.

Planetary science frequently makes use of the method of comparison to give a greater understanding of the object of study. This can involve comparing the dense atmospheres of Earth and Saturn’s moon Titan, the evolution of outer Solar System objects at different distances from the Sun, or the geomorphology of the surfaces of the terrestrial planets, to give only a few examples.

The main comparison that can be made is to features on the Earth, as it is much more accessible and allows a much greater range of measurements to be made. Earth analogue studies are particularly common in planetary geology, geomorphology, and also in atmospheric science.

Smaller workshops and conferences on particular fields occur worldwide throughout the year.

This non-exhaustive list includes those institutions and universities with major groups of people working in planetary science. Alphabetical order is used.

Link:

Planetary science – Wikipedia