...23456...102030...


Elon Musk Pledges Tesla Superchargers For All of Europe Next Year

According to Elon Musk's tweet, Tesla will provide 100 percent supercharger coverage to Europe by the end of 2019. Then it will move to Africa.

Big Promise

Electric car maker Tesla will expand its network of Superchargers to provide service for all of Europe by the end of 2019, CEO Elon Musk tweeted Wednesday.

If the plans come to fruition, the vast expansion will represent not just a coup for Tesla but also for the growing global infrastructure that supports practical transportation by electric car.

Yes. Supercharger coverage will extend to 100% of Europe next year. From Ireland to Kiev, from Norway to Turkey. https://t.co/7FQZgLCTVJ

— Elon Musk (@elonmusk) December 26, 2018

Hit and Miss

Right now there are 1,386 Supercharger stations worldwide, according to a map on Tesla’s website. But there are still large gaps in planned coverage throughout Eastern Europe as well as in Sweden, Finland, and Norway — all of which Musk pledged to cover next year in the tweet.

Musk has a notable habit of tweeting Tesla updates from his personal account, and a spotty record when it comes to promising expansions to Tesla’s Supercharger network. Electrek reported that Musk had similarly promised 18,000 chargers worldwide by the end of 2018, but according to the map there are currently just 11,583 spread over the 1,386 stations.

But with most of the European Supercharger infrastructure already in place, total coverage by 2020 seems like a feasible goal.

Then What?

In another tweet, Musk said Tesla said it would set its sights on Africa in 2020. At the moment, there is not a single Supercharger on the entire continent, according to The Verge.

2020

— Elon Musk (@elonmusk) December 27, 2018

It’s unclear which African or European countries will receive Superchargers first and how they will be distributed. But if Musk is to be taken at his word, Tesla will be working hard to expand electric vehicle use throughout the world very soon.

READ MORE: Elon Musk promises 100 percent Tesla Supercharger coverage in Europe next year [The Verge]

More on Superchargers: Tesla Just Announced the Site of the Largest Supercharger Station in Europe

The post Elon Musk Pledges Tesla Superchargers For All of Europe Next Year appeared first on Futurism.

View original post here:

Elon Musk Pledges Tesla Superchargers For All of Europe Next Year

China Is Building Its First Huge Battery Storage Facility

The Chinese government just approved plans for a massive energy storage grid that will help the Gansu Province better rely on renewable electricity.

Batteries Not Included

The Chinese government approved the plans for a massive energy storage grid in Gansu Province on Monday, according to a statement by the Gansu Provincial Development & Reform Commission.

The project is scheduled to be completed this coming year according to Bloomberg — a colossal infrastructure investment that underscores China’s growing financial commitment to clean, renewable energy.

Biggest Yet

The proposed energy storage grid, also known as a virtual power plant because it serves as a source of energy even if the batteries store rather than generate it, would be the largest in the country — the first phase of construction is expected to cost 1.2 billion yuan ($174 million.)

As of September, China generated 706 gigawatts of solar and wind electricity, Bloomberg reports. But without infrastructure to support the power being generated, some of it went to waste.

More Flexible

According to the government statement, the virtual power plant would have a capacity of 720 MWh and could store unused electricity for four hours. For comparison, that’s almost two thirds the capacity of Tesla’s proposed “Megapack” energy storage system, which would bring a 1,200 MWh virtual power plant to California.

With a large-scale battery storage facility, people in Gansu will be able to rely on clean energy as needed rather than having to revert to fossil fuels when the sun goes down or the wind stops blowing.

READ MORE: China Approves Its 1st Big Power Storage Pilot in Renewable Push [Bloomberg]

More on virtual power plants: Tesla Gets Green Light To Create The World’s Largest Virtual Solar Plant In South Australia

The post China Is Building Its First Huge Battery Storage Facility appeared first on Futurism.

Originally posted here:

China Is Building Its First Huge Battery Storage Facility

Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear

Startup Organic Basics claims its silver-coated underwear remain odor-free after weeks of wear, but several testers disagree.

Under Where?

Want to wear the same pair of underwear for weeks at a time? Go right ahead.

A Danish startup called Organic Basics claims its underwear remain fresh through weeks of wear, eliminating the need for frequent washing. And this could be a boon for the environment — if it’s actually true.

Silver Skivvies

When your sweat meets your clothing, it creates an ideal environment for bacteria. It’s this bacteria that actually produces a foul-smelling odor. Silver is antimicrobial, meaning it kills bacteria and other microorganisms.

By treating their underwear with Polygiene, a product that uses silver chloride to control smells, Organic Basics says it can prevent the growth of 99.9 percent of this bacteria, which it claims prevents the underwear from smelling bad as quickly.

“It works,” CEO Mads Fibiger told Business Insider Nordic in May. “You can wear our underwear much longer before washing.”

Smell Test

Fibiger might claim the coating “works,” but not everyone agrees.

A reporter for New York magazine claimed she noticed a “less-than-fresh scent” on just the second day wearing Organic Basics’s women’s briefs, noting that she “didn’t feel comfortable pushing [her] luck with a third day of testing.” Her male colleague also tossed his Organic Basics boxer briefs in the laundry hamper after just 48 hours.

Even if the underwear did maintain the desired level of freshness, though, people might not be able get over the mental hurdle of wearing the same undergarments for weeks at a time — just this week, Elle reporter R. Eric Thomas wrote that reading about the undies made him want to “bleach [his] eyes.”

Futuristic Fashion

Organic Basics isn’t just trying to help people avoid laundry day, though. “The traditional way of buying, wearing, washing, and throwing away overpriced underwear is…extremely harmful to the environment,” Fibiger told Business Insider.

And he’s right. Washing and drying clothing requires water and energy, so the more often you clean your underwear, the greater the garment’s impact on the environment.

Still, the environmental benefits of wearing the same pair of underwear for weeks at a time might not be enough to get even the most environmentally conscious among us to wear Organic Basics’s underwear if they don’t actually smell fine on day three and beyond.

READ MORE: A Danish Startup Invented Underwear You Can Wear for Weeks Without Washing [Business Insider Nordic]

More on sustainable fashion: These Clothes Grow With Your Child and Are a Step Towards Sustainable Fashion

The post Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear appeared first on Futurism.

See the article here:

Startup Claims Its Underwear Stay Odor-Free Through Weeks of Wear

Microorganisms That Eat Seaweed Can Create Biodegradable Plastic

bioplastic

Ocean of Opportunity

Earth’s oceans contain tens of millions of tons of plastic pollution. But a new technique that creates biodegradable plastics out of seaweed could finally give the oceans relief.

Bioplastics are plastics manufactured from biomass sources instead of fossil fuels. Many degrade far more quickly than traditional plastics, but creating them typically requires fertile soil and fresh water, which aren’t available everywhere.

Now, researchers have found a way to create a bioplastic using seaweed, a far more accessible resource — a promising new approach that could both reduce strain on the plastic-clogged oceans and reduce the Earth’s dependence on fossil fuels.

Scarfing Seaweed

Researchers from the University of Tel Aviv describe their new bioplastic production process in a study published recently in the journal Bioresource Technology.

Certain microorganisms naturally produce a polymer called polyhydroxyalkanoate (PHA). Some factories already create plastics from PHA, but they do so using microorganisms that feed on plants that grow on land using fresh water.

Through their experiments, the team found it was possible to derive PHA from Haloferax mediterranei, a microorganism that feeds on seaweed.

“We have proved it is possible to produce bioplastic completely based on marine resources in a process that is friendly both to the environment and to its residents,” researcher Alexander Golberg said in a press release.

Plastic Problem

Every year, 8 million metric tons of plastic finds its way into the Earth’s oceans, and researchers estimate that plastic will outweigh fish by 2050. That plastic is killing marine life, destroying coral reefs, and even affecting human health.

Efforts are already underway to remove plastic from the ocean, and several governments are banning certain plastics altogether. But plastic pollution is a huge problem that will require a multi-pronged solution — and a biodegradable plastic could be one of those prongs.

READ MORE: Sustainable “Plastics” Are on the Horizon [Tel Aviv University]

More on plastic pollution: The EU Just Voted to Completely Ban Single-Use Plastics

The post Microorganisms That Eat Seaweed Can Create Biodegradable Plastic appeared first on Futurism.

Go here to see the original:

Microorganisms That Eat Seaweed Can Create Biodegradable Plastic

Space Travel Doesn’t Seem to Shorten Astronauts’ Lives, Says Study

Astronauts and professional athletes have similar mortality rates, according to a new study, which suggests that space travel doesn't cause premature death.

Life Goes On

We’ve long known that traveling in space carries numerous health risks — it exposes astronauts to higher levels of radiation than the rest of us, and they have reported such health problems as partial blindness upon returning to Earth — but we never actually knew if working in space caused astronauts to die prematurely.

“The challenge has always been to understand if astronauts are as healthy as they would be had they been otherwise comparably employed but had never gone to space at all,” mortality researcher Robert Reynolds told Reuters in an interview published on Wednesday. “To do this, we needed to find a group that is comparable on several important factors, but has never been to space.”

Luckily, he found one — but while his comparison of the two groups resulted in good news for today’s astronauts, the same might not hold true for the people we send to space in the future.

Space Ballin’

Astronauts tend to be more physically fit and affluent than the average American, with access to better healthcare. That makes studying astronaut mortality difficult — they’re too different from the average person to draw any sound conclusions. But they aren’t all that different from National Basketball Association (NBA) and Major League Baseball (MLB) players, who also tend to be fit, affluent, and treated by top-of-the-line medical professionals.

In a study published in the journal Occupational & Environmental Medicine, Reynolds and his colleagues at Mortality Research & Consulting, Inc. describe how they compared data on men who played for either the NBA or MLB between 1960 and mid-2018 with data on male U.S. astronauts.

This comparison led them to conclude that both athletes and astronauts had a lower risk of premature death than the general U.S. population. Astronauts also died from heart disease at a lower rate than the athletes and of cancer at about the same rate.

“We cannot be sure from the data we have, but we speculate that cardiovascular fitness in particular is the most important factor in astronaut longevity,” Reynolds told Reuters.

Past ? Future

This study fills an important gap in our understanding of the impact of space travel on astronauts, but we still have much to learn. For example, we know space affects female astronauts differently than their male colleagues, so do they also have lower mortality rates than the general population?

We’ve also only been sending people to space for 57 years and fewer than 600 have made the trip. That’s not a lot of data to work with, and the conclusions on astronaut mortality might change as more becomes available.

As Francis Cucinotta, an expert in radiation biology who wasn’t involved in the study, told Reuters, just because space travel isn’t linked to premature death in today’s astronauts doesn’t mean the same would hold true in the future. Crewed missions to Mars are in the works, for example, and those would expose astronauts to a dose of radiation 50 to 100 times higher than past off-world missions, said Cucinotta.

And radiation is just one factor. There’s also a chance anything from Martian dust to the psychological strain on longterm space travel could impact future astronauts’ mortality, so before we risk taking years off anyone’s life by sending them into space, we’ll need to be sure we conduct as much research as possible here on Earth.

READ MORE: Work in Space Does Not Seem to Shorten Astronauts’ Lives [Reuters]

More on astronaut health: Traveling to Mars Could Cause Life-Threatening Damage to Astronauts’ Guts, Says Study

The post Space Travel Doesn’t Seem to Shorten Astronauts’ Lives, Says Study appeared first on Futurism.

Follow this link:

Space Travel Doesn’t Seem to Shorten Astronauts’ Lives, Says Study

An App That Does Your Homework for You Is Now Worth $3 Billion

Homework Machine

Extracurricular education is big business in China.

One futuristic example: Yuanfudao, an online tutoring platform that includes an app that uses artificial intelligence to give students answers to their homework after they snap a photo of it.

Yuanfudao claims it now has 200 million users, and that interest from parents and students has translated into major interest from investors. If it lives up the hype, it could represent a new path forward for educational technology — not just in China but for students across the globe.

Fully Invested

On Tuesday, Yuanfudao announced another $300 million in funding, bringing its valuation to more than $3 billion. Chinese social networking and gaming giant Tencent led the round, with an international squad of investment firms including Warburg Pincus and IDG Capital also joining in.

Yuanfudao told TechCrunch it plans to use these funds for AI research and development, and to improve the user experience of its homework app.

Practice Makes Perfect

While being able to snap a photo of your homework and instantly get answers to problems sounds like a lazy student’s dream come true, the homework app actually isn’t Yuanfudao’s main moneymaker — the company told TechCrunch most of its revenue comes from selling live courses.

Rather than using the app to get out of doing their homework in the first place, it’s more likely that Chinese students use the app to check that their homework answers are correct. After all, the ultimate goal of paying for Yuanfudao is to improve exam scores, so skipping out on doing the homework that prepares a student for those exams would be counterintuitive.

Chinese parents probably wouldn’t be too happy about that use of the app, either. All told, they spend an average of $17,400 every year on extracurricular tutoring for their children — and based on Yuanfudao’s latest round of funding, investors are as willing to pump money into tutoring companies as Chinese parents are.

READ MORE:  Tencent-Backed Homework App Jumps to $3B Valuation After Raising $300M [TechCrunch]

More on Chinese education: Not Paying Attention in Class? China’s “Smart Eye” Will Snitch on You

The post An App That Does Your Homework for You Is Now Worth $3 Billion appeared first on Futurism.

Original post:

An App That Does Your Homework for You Is Now Worth $3 Billion

Virtual Reality Tumors Could Help Lead to New Cancer Treatments

A new virtual reality simulation built by Cambridge University scientists gives a high-resolution detail view into the cells of a breast cancer tumor.

Oculus Oncologists

Doctors have a new weapon in the fight against cancer: detailed maps of the cells in a tumor that can be explored and analyzed in a virtual reality simulation that its creators say provides researchers with an intuitive new way to examine complex medical data that could lead to unexpected breakthroughs.

Built by doctors at the Cancer Research UK Cambridge Institute (CRUK), the new virtual lab takes detailed scans of breast cancer tissues and turns them into detailed simulations that doctors around the world can explore, the BBC reports.

The simulation lets doctors analyze every single cell of a tumor, something they’ve never been able to do before. And because that data is stored in a simulation rather than microscope slides, doctors around the world can explore and study the cancer without having to prepare their own samples.

“Understanding how cancer cells interact with each other and with healthy tissue is critical if we are going to develop new therapies,” CRUK Chief Scientist Karen Vousden told the BBC. “Looking at tumors using this new system is so much more dynamic than the static 2D versions we are used to.”

Dive in Headfirst

The Cambridge scientists and peers from around the world who helped develop the virtual lab won two separate 20 million pound grants ($25.3 million each) to build up their project from Cancer Research UK last year.

Now they have a functional simulation built up from highly-detailed scans of a cubic millimeter-sized sample of breast cancer tissue. In that sample, each of the roughly 100,000 cells was marked to highlight its molecular and genetic characteristics.

Enhance! Enhance!

With that information, the resulting VR map highlights which cells are cancerous which have certain genetic variations, and how developed the tumor was at the time of the biopsy. All of this is information that was laborious to obtain from samples that were easily contaminated.

Moving the analysis to VR makes tumor research much more user friendly and lets doctors analyze cells in greater detail than ever before.

Not only does that let scientists literally immerse themselves in their work as they look for new cancer treatments, but it can also open the door to more collaborative diagnosis and patient care among teams that are spread around the world.

These simulations don’t guarantee that doctors will find new ways to treat or prevent breast cancer, but at least it makes the search much easier.

READ MORE: ‘Virtual tumour’ new way to see cancer [BBC]

More on virtual reality: VR TREATMENT, EVEN WITHOUT A THERAPIST, HELPS PEOPLE OVERCOME FEAR OF HEIGHTS

The post Virtual Reality Tumors Could Help Lead to New Cancer Treatments appeared first on Futurism.

See the article here:

Virtual Reality Tumors Could Help Lead to New Cancer Treatments

New Multi-Sensory Mask Lets You Smell and Feel the Virtual World

multi-sensory mask

Talk Sense

More than three years ago, we first caught a whiff of an odor-delivering virtual reality mask. Now, the device is a step closer to hitting the market.

Last week, Brooklyn-based tech company Feelreal announced the pre-release of its Feelreal Multi-Sensory Mask. The company claims the device is the first of its kind — and even as VR struggles to gain mainstream traction, it provides a far-out vision of immersive virtual worlds that no longer end at what you can see and hear.

All the Feels

Feelreal’s Multi-Sensory Mask includes a “scent generator” that holds up to nine replaceable cartridges, each loaded with one of 255 available scents. An ultrasonic ionizing system provides the feeling of water mist on the wearer’s face, while micro-heaters, micro-coolers, and haptic motors provide the sensations of heat, wind, and vibration, respectively. 

The system is compatible with five VR headsets — Samsung Gear VR, Oculus Rift, Oculus Go, HTC Vive, and PlayStation VR — and it’s already capable of enhancing the experience of several existing VR games.

If gaming’s not their thing, users can also watch 360-degrees videos or custom-built VR experiences via the mask’s built-in Feelreal player, or they can use it as a standalone device to facilitate meditation or aromatherapy.

Funding Not Secured

This isn’t the first device designed to add new senses to the VR experience, of course. We’ve already seen gadgets that let you feel like you’re smellingtouching, and even tasting the virtual world.

The number of games and movies currently compatible with the Feelreal Multi-Sensory Mask is also limited, but obviously that could change if the device caught on with users.

Feelreal has yet to reveal a price for its multi-sensory mask or even when the device will be available. According to the press release, the company will be “announcing a Kickstarter [c]rowdfunding campaign to help bring Feelreal products to the next level,” so right now, it appears the future of the device — and potentially the future of VR — is in the public’s hands.

READ MORE: Feelreal Multi-Sensory VR Mask Lets You Smell the Virtual Roses [New Atlas]

More on VR: Add Another Sense to Virtual Reality

The post New Multi-Sensory Mask Lets You Smell and Feel the Virtual World appeared first on Futurism.

More here:

New Multi-Sensory Mask Lets You Smell and Feel the Virtual World

New Fiber Could Be the Foundation for Futuristic Smart Garments

Chinese engineers just figured out how to manufacture a self-assembling silver nanowire that can be woven into high-tech clothing.

Smart Garments

Designers of smart garments have a vision: that we’ll come to use electronics woven into the clothes we wear not just as dazzling new ways to express ourselves, like the light-up prom dress that went viral in 2017, but as extensions of our digital lives that could collect biometric data or even grant wearers superhuman senses.

The problem is that today’s old-fashioned textiles are already the result of thousands of years of innovation, and versions that incorporate wearable computing tech need to be just as hardy. Smart garments will have to be resilient in the face of everything from wash-and-fold to sweaty workouts, not to mention as long-lasting as a trusty t-shirt.

One key challenge has always been creating conductive wires that can carry current between components in a smart garment without breaking down over time as it flexes, twists, and gets wet. Now, Chinese scientists say they’ve invented a new type of self-assembling silver nanowire, inspired by the capillaries in your cardiovascular system, that could be the most practical attempt yet.

Wirehead

The new research, published Thursday in the journal Nano by researchers at the Chinese Nanjing University of Posts and Telecommunications, describes silver-based wiring that’s cheap to make and could lead to more comfortable and durable smart textiles than ever before.

Here’s how it works. The engineers behind this silver fiber found a way to manufacture tiny wires without much of the headache that normally comes with nanotech assembly. Instead of painstakingly crafting the tiny wires that transport electricity throughout their fabric, the scientists concocted a silver-based solution that automatically soaks into tube-like fibers, drawing into the tube like blood into a capillary.

As the solution evaporates, it leaves behind flexible, durable, and highly-conductive silver nanowires, according to the research. Compared to traditional copper wires, they can withstand much more abuse without breaking. That could mean a future with smart clothes that survive everyday wear and tear — or maybe, if we’re lucky, invisibility cloaks or the water-harvesting suit from “Dune.”

Déjà vu

Like so many other smart textile projects that have popped up over the past few years, this research is still at the proof-of-concept stage. For all of the progress scientists have made, very few attempts to integrate that tech into clothing have taken off.

But the consistency with which researchers, makers, and hackers — not to mention sci-fi writers — have imagined smart garments over the decades suggests a genuine demand for the concept that we could see within a lifetime. At least, that is, if it can survive 40 minutes in a clothes dryer.

READ MORE: Silver nanowires promises more comfortable smart textiles [World Scientific]

More on smart textiles: A NEW BATTERY CAN BE STITCHED INTO CLOTHES TO POWER WEARABLES

The post New Fiber Could Be the Foundation for Futuristic Smart Garments appeared first on Futurism.

More here:

New Fiber Could Be the Foundation for Futuristic Smart Garments

Cacti-Inspired Tech Could Keep You Hydrated After the Apocalypse

water collection

Good Nature

If the world ever devolves into a post-apocalyptic desert wasteland, you’ll probably need to watch out for dust storms and violent bikers gangs. But you might not have to worry about finding enough water.

That’s because a team of researchers at the Ohio State University (OSU) has been studying how some of the desert’s most efficient water collectors manage to quite literally pull water from midair — and what they learned could help ensure we all have enough clean drinking water, before or after the breakdown of social order.

Beneath the Surface

In a study published Monday in the journal Philosophical Transactions of the Royal Society, researchers from OSU describe how cacti, desert grass, and desert beetles collect water from the fog that falls over the desert at night. The researchers then used 3D printers to create surfaces that mimicked the natural ones of those three desert dwellers.

They covered some of the surfaces in grooves similar to those that help a desert grass channel water toward its roots. Other surfaces bore cones designed to mimic the water-collecting spines of the cactus.

The researchers also tested out different materials, including ones that were heterogeneous — a mix of water-collecting and water-repelling spots —  like the surface of a beetle’s back, which plays a major role in its water collection.

Then they tested the various surfaces by placing them in a room with a humidifier. The result: they determined that the best surface for water collection would incorporate a heterogeneous material and multiple grooved cones, each inclined at a 45-degree angle.

Water Everywhere

The researchers believe a large-scale structure based on their findings could one day gather water from fog or condensation that people in dry environments could then drink.

“Water supply is a critically important issue, especially for people of the most arid parts of the world,” researcher Bharat Bhushan said in a press release. “By using bio-inspired technologies, we can help address the challenge of providing clean water to people around the globe, in as efficient a way as possible.”

Let’s just hope they manage to scale-up their tech well before any sort of apocalypse.

READ MORE: Collecting Clean Water From Air, Inspired by Desert Life [The Ohio State University]

More on a post-apocalyptic world: How to Survive a World-Ending Scenario, According to Science

The post Cacti-Inspired Tech Could Keep You Hydrated After the Apocalypse appeared first on Futurism.

The rest is here:

Cacti-Inspired Tech Could Keep You Hydrated After the Apocalypse

Your Christmas Tree Could Be Recycled Into Paint or Sweeteners

Pine needles on a green Christmas tree

Prickly Situation

Gifts have been opened, cookies have been eaten, Christmas has come and gone. Still, the last vestige of holiday festivities remains: the slowly decaying Christmas tree husk in your living room.

Even as fake tree sales rise, as many as 30 million real Christmas trees are sold in the United States each year. After serving as Yuletide decorations, many of these trees will head to landfills.

But now, in a flourish of environmental Christmas magic, researchers from the UK’s University of Sheffield have found a way to break down a component in pine needles called lignocellulose and use it to create paints and sweeteners — a heartening seasonal example of how biotech discoveries can reduce waste at unexpected points on the global supply chain. 

Lignocellulose Jam

Lignocellulose is ugly. No, really. Its chemical structure makes it difficult to use for biomass energy, and it serves little industrial purpose. Sheffield PhD student Cynthia Kartey’s work has focused on examining ways to make use of this material, and now she may be on to something.

Using heat and glycerol Kartey was able to break down the pine needles into two components, one of which was made mostly of materials like glucose, acetic acid and phenol. All three have uses in other industries — glucose is used to make food sweeteners, phenol is used in products like mouthwash, and acetic acid for making adhesives, vinegar, and even paint.

“In the future, the tree that decorated your house over the festive period could be turned into paint to decorate your house once again,” Kartey said in a press release.

Green Again

Recycling and repurposing waste products is almost certain to become an increasingly important aspect of the future economy.

We’re already beginning to see the process in action, from recycling space junk to reusable beer bottles and even bricks made from literal human urine. Soon, perhaps even Christmas trees will keep our future green and fresh-pine scented.

READ MORE: Pine needles from old Christmas trees could be turned into paint and food sweeteners in the future [University of Sheffield]

More on the Future of Recycling: New Powder Captures CO2 Before It Can Hit the Atmosphere

The post Your Christmas Tree Could Be Recycled Into Paint or Sweeteners appeared first on Futurism.

See original here:

Your Christmas Tree Could Be Recycled Into Paint or Sweeteners

Australian Autonomous Train Is The “World’s Largest Robot”

A mining corporation says an autonomous rail system it's been developing in Australia is fully operational, making it the

Robot Train

Mining corporation Rio Tinto says that an autonomous rail system called AutoHaul that it’s been developing in the remote Pilbara region of Australia for several years is now entirely operational — an accomplishment the company says makes the system the “world’s largest robot.”

“It’s been a challenging journey to automate a rail network of this size and scale in a remote location like the Pilbara,” Rio Tinto’s managing director Ivan Vella told the Sidney Morning Herald, “but early results indicate significant potential to improve productivity, providing increased system flexibility and reducing bottlenecks.”

One Track Minded

The ore-hauling train is just one part of an ambitious automation project involving robotics and driverless vehicles that Rio Tinto wants to use to automate its mining operations. The company conducted its first test of the train without a human on board earlier this year, and it now claims that the system has completed more than a million kilometers (620,000 miles) of autonomous travel.

In response to concerns from labor unions, Rio Tinto promised that the autonomous rail system will not eliminate any existing jobs in the coming year — though it’s difficult to imagine the project won’t cut into human jobs in the long term.

The post Australian Autonomous Train Is The “World’s Largest Robot” appeared first on Futurism.

See the rest here:

Australian Autonomous Train Is The “World’s Largest Robot”

Chinese Scientists Reportedly Lost Track of Gene-Edited Patients

gene-editing

The Case of the Missing Patients

China is finally looking into its scientists’ human gene-editing trials — but some patients are already out of view.

According a newly published Wall Street Journal story, Chinese scientists using CRISPR technology provided by the startup Anhui Kedgene Biotechnology have lost touch with at least some of the late-stage cancer patients whose DNA they altered.

That means no one knows for sure how the editing may have affected the patients in the longer term — and according to experts, that lack of follow-up could affect CRISPR research far beyond China’s borders.

Keeping Tabs

In the U.S., the Food and Drug Administration recommends that researchers follow up with patients involved in gene therapy trials for 15 years. No such recommendation exists in China, however, and Chinese CRISPR researchers’ lack of extended follow-up could prove disastrous as the nascent technology finds its footing.

Feng Zhang, one of the inventors of CRISPR, told The WSJ that gene-editing trials “hinge upon rigorous trial design and follow-ups.” Jennifer Doudna, another CRISPR inventor, said it’s “vital” that researchers conduct long-term monitoring of gene-edited patients.

“Since we do not fully understand the human genome and are still developing knowledge of CRISPR-Cas technology, we need to monitor the intended and unintended consequences over the lifespan of patients,” Doudna told The WSJ.

Closer Look

The Chinese government has thus far remained fairly hands-off with regards to CRISPR research — it hasn’t even tasked any one federal body with overseeing its gene-editing trials — but that could be changing.

On Thursday, the South China Morning Post reported that China is asking hospitals and universities to submit thorough reports on all human gene-editing trials conducted since 2013.

This closer look at human gene editing is likely due to the international backlash the nation faced in the wake of Chinese researcher He Jiankui announcing he’d modified the genes of human embryos. Those embryos were then implanted into a woman, who gave birth to twin girls.

While it might be too late to find out what sort of long-term effect CRISPR may have had on the missing patients from that cancer trial, China’s newfound interest in what’s happening within the walls of its labs could at least ensure that current and future trials don’t make the same mistakes — and hopefully, it’ll prevent any other researchers from following in He’s reckless footsteps.

READ MORE: Chinese Gene-Editing Experiment Loses Track of Patients, Alarming Technology’s Inventors [The Wall Street Journal]

More on human gene editing: Chinese Scientists Claim to Have Gene-Edited Human Babies For the First Time

The post Chinese Scientists Reportedly Lost Track of Gene-Edited Patients appeared first on Futurism.

See more here:

Chinese Scientists Reportedly Lost Track of Gene-Edited Patients

Netflix’s Bandersnatch Teases the Future of Entertainment

Bandersnatch

CYOA Grows Up

The choose-your-own-adventure story format is no longer just for books. It’s also no longer only for kids.

In October, an anonymous source told Bloomberg that Netflix planned to release an interactive episode of its dystopian sci-fi series “Black Mirror.” Rather than pushing play and sitting back to watch a linear story unfold before their eyes, viewers would need to make choices at various points throughout the episode, sending the plot in a new direction with each decision.

At 3:01 a.m. ET on Friday, Netflix confirmed that report with the release of the “Black Mirror” episode Bandersnatch — and the overwhelmingly positive response to the episode looks like a sign that adult viewers are ready to embrace interactive storytelling.

Choose Wisely

The general — and spoiler-free — plot of Bandersnatch is this: Young computer coder Stefan, portrayed by “Dunkirk” actor Fionn Whitehead, is hired to help create a computer game inspired by a choose-your-own-adventure novel.

How that experience plays out, however, depends on the viewer’s decisions, which they input using their TV remote, game controller, smartphone, or tablet. Netflix execs claimed during a November media event, as reported by The New York Times, that Bandersnatch has “five main endings with multiple variants of each.”

The interactive format works on pretty much any device you’d use to watch Netflix, including most TVs, game consoles, web browsers, smartphones, and tablets. The primary platforms that don’t support it are Chromecast and Apple TV, according to Netflix.

Striking Gold

This isn’t Netflix’s first foray into interactivity. In June 2017, the platform released “Puss in Book: Trapped in an Epic Tale,” an interactive short animated film for children.

However, this is Netflix’s first test of the format with adult viewers, and though Bandersnatch hasn’t even been out for 12 hours yet at the time of writing, it’s already receiving an overwhelmingly positive response — it quickly became a trending topic on Twitter, and a reviewer for The Guardian even went so far as to call it a “meta masterpiece.”

According to The Independent, Netflix is already asking producers to submit proposals for other interactive content in a variety of genres. Given the breathless response to Bandersnatch, it’s hard to imagine that Netflix won’t green light at least a few.

Equally hard to imagine is other platforms not attempting to replicate the platform’s success themselves. So with the release of just one creepy episode of “Black Mirror,” Netflix may have ushered in an entirely new era in entertainment.

READ MORE: ‘Black Mirror’ Gives Power to the People [The New York Times]

More on Netflix: Netflix Plans to Try out “Interactive” Shows

The post Netflix’s Bandersnatch Teases the Future of Entertainment appeared first on Futurism.

See the rest here:

Netflix’s Bandersnatch Teases the Future of Entertainment

Musk: Tesla’s Fully Autonomous Capabilities “About to Accelerate”

Tesla CEO Elon Musk pledged this week that the electric car maker is about to kick its fully autonomous self-driving vehicle ambitions up a notch.

“About to Accelerate”

Tesla appears ready to kick its vehicles’ fully autonomous capabilities up a notch.

In an email to employees this week, obtained by Inverse, CEO Elon Musk pledged that Tesla’s fully autonomous driving system was “about to accelerate significantly.”

Musk hasn’t always delivered on his ambitious public promises, but the email signals that he is positioning himself against the autonomous car hype trough — pushing for a future in which self-driving cars are a key aspect of transportation and not a glorified cruise control for luxury models.

Hype Trough

Just a few years ago, a growing number of experimental autonomous cars on public roads gave the impression that the arrival of safe and reliable self-driving vehicles was only a matter of time.

But a growing sense of the remaining engineering challenges — not to mention the March 2018 death of a pedestrian run down by a self-driving Uber vehicle — have chipped away at that confidence.

The evidence that self-driving vehicle manufacturers aren’t always upfront with the public hasn’t helped either. An excoriating October New Yorker investigation into the early years of the Google self-driving research project that eventually became Waymo found that the company had performed reckless road tests early in its work — and hadn’t always reported accidents.

Road Ahead

Musk’s promise to accelerate fully autonomous research, along with a call for more internal Tesla testers for the program, run precisely counter to that narrative. That’s not surprising: the eccentric Musk is known for imagining futures that are still years away — and using his wealth and influence to attempt to steer history toward or away from them.

Maybe the real question is political, rather than technological: Whether the relentless will of one person enough to pull an entire industry onto a different track.

READ MORE: Elon Musk Calls for More Testers Ahead of Tesla Full Self-Driving Launch [Inverse]

More on Tesla: Elon Musk Pledges Tesla Superchargers For All of Europe Next Year

The post Musk: Tesla’s Fully Autonomous Capabilities “About to Accelerate” appeared first on Futurism.

Read more:

Musk: Tesla’s Fully Autonomous Capabilities “About to Accelerate”

NASA – Wikipedia

The National Aeronautics and Space Administration (NASA ) is an independent agency of the United States Federal Government responsible for the civilian space program, as well as aeronautics and aerospace research.[note 1]

NASA was established in 1958, succeeding the National Advisory Committee for Aeronautics (NACA). The new agency was to have a distinctly civilian orientation, encouraging peaceful applications in space science.[8][9][10] Since its establishment, most US space exploration efforts have been led by NASA, including the Apollo Moon landing missions, the Skylab space station, and later the Space Shuttle. NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle, the Space Launch System and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program which provides oversight of launch operations and countdown management for unmanned NASA launches.

NASA science is focused on better understanding Earth through the Earth Observing System;[11] advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program;[12] exploring bodies throughout the Solar System with advanced robotic spacecraft missions such as New Horizons;[13] and researching astrophysics topics, such as the Big Bang, through the Great Observatories and associated programs.[14]

From 1946, the National Advisory Committee for Aeronautics (NACA) had been experimenting with rocket planes such as the supersonic Bell X-1.[15] In the early 1950s, there was challenge to launch an artificial satellite for the International Geophysical Year (195758). An effort for this was the American Project Vanguard. After the Soviet launch of the world’s first artificial satellite (Sputnik 1) on October 4, 1957, the attention of the United States turned toward its own fledgling space efforts. The US Congress, alarmed by the perceived threat to national security and technological leadership (known as the “Sputnik crisis”), urged immediate and swift action; President Dwight D. Eisenhower and his advisers counseled more deliberate measures. On January 12, 1958, NACA organized a “Special Committee on Space Technology”, headed by Guyford Stever.[10] On January 14, 1958, NACA Director Hugh Dryden published “A National Research Program for Space Technology” stating:[16]

It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge [Sputnik] be met by an energetic program of research and development for the conquest of space … It is accordingly proposed that the scientific research be the responsibility of a national civilian agency … NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology.[16]

While this new federal agency would conduct all non-military space activity, the Advanced Research Projects Agency (ARPA) was created in February 1958 to develop space technology for military application.[17]

On July 29, 1958, Eisenhower signed the National Aeronautics and Space Act, establishing NASA. When it began operations on October 1, 1958, NASA absorbed the 43-year-old NACA intact; its 8,000 employees, an annual budget of US$100million, three major research laboratories (Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, and Lewis Flight Propulsion Laboratory) and two small test facilities.[18] A NASA seal was approved by President Eisenhower in 1959.[19] Elements of the Army Ballistic Missile Agency and the United States Naval Research Laboratory were incorporated into NASA. A significant contributor to NASA’s entry into the Space Race with the Soviet Union was the technology from the German rocket program led by Wernher von Braun, who was now working for the Army Ballistic Missile Agency (ABMA), which in turn incorporated the technology of American scientist Robert Goddard’s earlier works.[20] Earlier research efforts within the US Air Force[18] and many of ARPA’s early space programs were also transferred to NASA.[21] In December 1958, NASA gained control of the Jet Propulsion Laboratory, a contractor facility operated by the California Institute of Technology.[18]

The agency’s leader, NASA’s administrator, is nominated by the President of the United States subject to approval of the US Senate, and reports to him or her and serves as senior space science advisor. Though space exploration is ostensibly non-partisan, the appointee usually is associated with the President’s political party (Democratic or Republican), and a new administrator is usually chosen when the Presidency changes parties. The only exceptions to this have been:

The first administrator was Dr. T. Keith Glennan appointed by Republican President Dwight D. Eisenhower. During his term he brought together the disparate projects in American space development research.[25]

The second administrator, James E. Webb (19611968), appointed by President John F. Kennedy, was a Democrat who first publicly served under President Harry S. Truman. In order to implement the Apollo program to achieve Kennedy’s Moon landing goal by the end of the 1960s, Webb directed major management restructuring and facility expansion, establishing the Houston Manned Spacecraft (Johnson) Center and the Florida Launch Operations (Kennedy) Center. Capitalizing on Kennedy’s legacy, President Lyndon Johnson kept continuity with the Apollo program by keeping Webb on when he succeeded Kennedy in November 1963. But Webb resigned in October 1968 before Apollo achieved its goal, and Republican President Richard M. Nixon replaced Webb with Republican Thomas O. Paine.

James Fletcher was responsible for early planning of the Space Shuttle program during his first term as administrator under President Nixon. He was appointed for a second term as administrator from May 1986 through April 1989 by President Ronald Reagan to help the agency recover from the Space Shuttle Challenger disaster.

Former astronaut Charles Bolden served as NASA’s twelfth administrator from July 2009 to January 20, 2017.[26] Bolden is one of three former astronauts who became NASA administrators, along with Richard H. Truly (served 19891992) and Frederick D. Gregory (acting, 2005).

The agency’s administration is located at NASA Headquarters in Washington, DC and provides overall guidance and direction.[27] Except under exceptional circumstances, NASA civil service employees are required to be citizens of the United States.[28]

NASA has conducted many manned and unmanned spaceflight programs throughout its history. Unmanned programs launched the first American artificial satellites into Earth orbit for scientific and communications purposes, and sent scientific probes to explore the planets of the solar system, starting with Venus and Mars, and including “grand tours” of the outer planets. Manned programs sent the first Americans into low Earth orbit (LEO), won the Space Race with the Soviet Union by landing twelve men on the Moon from 1969 to 1972 in the Apollo program, developed a semi-reusable LEO Space Shuttle, and developed LEO space station capability by itself and with the cooperation of several other nations including post-Soviet Russia. Some missions include both manned and unmanned aspects, such as the Galileo probe, which was deployed by astronauts in Earth orbit before being sent unmanned to Jupiter.

The experimental rocket-powered aircraft programs started by NACA were extended by NASA as support for manned spaceflight. This was followed by a one-man space capsule program, and in turn by a two-man capsule program. Reacting to loss of national prestige and security fears caused by early leads in space exploration by the Soviet Union, in 1961 President John F. Kennedy proposed the ambitious goal “of landing a man on the Moon by the end of [the 1960s], and returning him safely to the Earth.” This goal was met in 1969 by the Apollo program, and NASA planned even more ambitious activities leading to a manned mission to Mars. However, reduction of the perceived threat and changing political priorities almost immediately caused the termination of most of these plans. NASA turned its attention to an Apollo-derived temporary space laboratory, and a semi-reusable Earth orbital shuttle. In the 1990s, funding was approved for NASA to develop a permanent Earth orbital space station in cooperation with the international community, which now included the former rival, post-Soviet Russia. To date, NASA has launched a total of 166 manned space missions on rockets, and thirteen X-15 rocket flights above the USAF definition of spaceflight altitude, 260,000 feet (80km).[29]

The X-15 was an NACA experimental rocket-powered hypersonic research aircraft, developed in conjunction with the US Air Force and Navy. The design featured a slender fuselage with fairings along the side containing fuel and early computerized control systems.[30] Requests for proposal were issued on December 30, 1954, for the airframe, and February 4, 1955, for the rocket engine. The airframe contract was awarded to North American Aviation in November 1955, and the XLR30 engine contract was awarded to Reaction Motors in 1956, and three planes were built. The X-15 was drop-launched from the wing of one of two NASA Boeing B-52 Stratofortresses, NB52A tail number 52-003, and NB52B, tail number 52-008 (known as the Balls 8). Release took place at an altitude of about 45,000 feet (14km) and a speed of about 500 miles per hour (805km/h).

Twelve pilots were selected for the program from the Air Force, Navy, and NACA (later NASA). A total of 199 flights were made between 1959 and 1968, resulting in the official world record for the highest speed ever reached by a manned powered aircraft (current as of 2014[update]), and a maximum speed of Mach 6.72, 4,519 miles per hour (7,273km/h).[31] The altitude record for X-15 was 354,200 feet (107.96km).[32] Eight of the pilots were awarded Air Force astronaut wings for flying above 260,000 feet (80km), and two flights by Joseph A. Walker exceeded 100 kilometers (330,000ft), qualifying as spaceflight according to the International Aeronautical Federation. The X-15 program employed mechanical techniques used in the later manned spaceflight programs, including reaction control system jets for controlling the orientation of a spacecraft, space suits, and horizon definition for navigation.[32] The reentry and landing data collected were valuable to NASA for designing the Space Shuttle.[30]

Shortly after the Space Race began, an early objective was to get a person into Earth orbit as soon as possible, therefore the simplest spacecraft that could be launched by existing rockets was favored. The US Air Force’s Man in Space Soonest program considered many manned spacecraft designs, ranging from rocket planes like the X-15, to small ballistic space capsules.[33] By 1958, the space plane concepts were eliminated in favor of the ballistic capsule.[34]

When NASA was created that same year, the Air Force program was transferred to it and renamed Project Mercury. The first seven astronauts were selected among candidates from the Navy, Air Force and Marine test pilot programs. On May 5, 1961, astronaut Alan Shepard became the first American in space aboard Freedom7, launched by a Redstone booster on a 15-minute ballistic (suborbital) flight.[35] John Glenn became the first American to be launched into orbit, by an Atlas launch vehicle on February 20, 1962, aboard Friendship7.[36] Glenn completed three orbits, after which three more orbital flights were made, culminating in L. Gordon Cooper’s 22-orbit flight Faith 7, May 1516, 1963.[37]

The Soviet Union (USSR) competed with its own single-pilot spacecraft, Vostok. They sent the first man in space, by launching cosmonaut Yuri Gagarin into a single Earth orbit aboard Vostok 1 in April 1961, one month before Shepard’s flight.[38] In August 1962, they achieved an almost four-day record flight with Andriyan Nikolayev aboard Vostok 3, and also conducted a concurrent Vostok 4 mission carrying Pavel Popovich.

Based on studies to grow the Mercury spacecraft capabilities to long-duration flights, developing space rendezvous techniques, and precision Earth landing, Project Gemini was started as a two-man program in 1962 to overcome the Soviets’ lead and to support the Apollo manned lunar landing program, adding extravehicular activity (EVA) and rendezvous and docking to its objectives. The first manned Gemini flight, Gemini 3, was flown by Gus Grissom and John Young on March 23, 1965.[39] Nine missions followed in 1965 and 1966, demonstrating an endurance mission of nearly fourteen days, rendezvous, docking, and practical EVA, and gathering medical data on the effects of weightlessness on humans.[40][41]

Under the direction of Soviet Premier Nikita Khrushchev, the USSR competed with Gemini by converting their Vostok spacecraft into a two- or three-man Voskhod. They succeeded in launching two manned flights before Gemini’s first flight, achieving a three-cosmonaut flight in 1963 and the first EVA in 1964. After this, the program was canceled, and Gemini caught up while spacecraft designer Sergei Korolev developed the Soyuz spacecraft, their answer to Apollo.

The U.S public’s perception of the Soviet lead in the space race (by putting the first man into space) motivated President John F. Kennedy to ask the Congress on May 25, 1961, to commit the federal government to a program to land a man on the Moon by the end of the 1960s, which effectively launched the Apollo program.[42]

Apollo was one of the most expensive American scientific programs ever. It cost more than $20 billion in 1960s dollars[43] or an estimated $213billion in present-day US dollars.[44] (In comparison, the Manhattan Project cost roughly $27.2billion, accounting for inflation.)[44][45] It used the Saturn rockets as launch vehicles, which were far bigger than the rockets built for previous projects.[46] The spacecraft was also bigger; it had two main parts, the combined command and service module (CSM) and the lunar landing module (LM). The LM was to be left on the Moon and only the command module (CM) containing the three astronauts would eventually return to Earth.[note 2]

The second manned mission, Apollo 8, brought astronauts for the first time in a flight around the Moon in December 1968.[47] Shortly before, the Soviets had sent an unmanned spacecraft around the Moon.[48] On the next two missions docking maneuvers that were needed for the Moon landing were practiced[49][50] and then finally the Moon landing was made on the Apollo 11 mission in July 1969.[51]

The first person to stand on the Moon was Neil Armstrong, who was followed by Buzz Aldrin, while Michael Collins orbited above. Five subsequent Apollo missions also landed astronauts on the Moon, the last in December 1972. Throughout these six Apollo spaceflights, twelve men walked on the Moon. These missions returned a wealth of scientific data and 381.7 kilograms (842lb) of lunar samples. Topics covered by experiments performed included soil mechanics, meteoroids, seismology, heat flow, lunar ranging, magnetic fields, and solar wind.[52] The Moon landing marked the end of the space race; and as a gesture, Armstrong mentioned mankind when he stepped down on the Moon.[53]

Apollo set major milestones in human spaceflight. It stands alone in sending manned missions beyond low Earth orbit, and landing humans on another celestial body.[54] Apollo 8 was the first manned spacecraft to orbit another celestial body, while Apollo 17 marked the last moonwalk and the last manned mission beyond low Earth orbit to date. The program spurred advances in many areas of technology peripheral to rocketry and manned spaceflight, including avionics, telecommunications, and computers. Apollo sparked interest in many fields of engineering and left many physical facilities and machines developed for the program as landmarks. Many objects and artifacts from the program are on display at various locations throughout the world, notably at the Smithsonian’s Air and Space Museums.

Skylab was the United States’ first and only independently built space station.[55] Conceived in 1965 as a workshop to be constructed in space from a spent Saturn IB upper stage, the 169,950lb (77,088kg) station was constructed on Earth and launched on May 14, 1973, atop the first two stages of a Saturn V, into a 235-nautical-mile (435km) orbit inclined at 50 to the equator. Damaged during launch by the loss of its thermal protection and one electricity-generating solar panel, it was repaired to functionality by its first crew. It was occupied for a total of 171 days by 3 successive crews in 1973 and 1974.[55] It included a laboratory for studying the effects of microgravity, and a solar observatory.[55] NASA planned to have a Space Shuttle dock with it, and elevate Skylab to a higher safe altitude, but the Shuttle was not ready for flight before Skylab’s re-entry on July 11, 1979.[56]

To save cost, NASA used one of the Saturn V rockets originally earmarked for a canceled Apollo mission to launch the Skylab. Apollo spacecraft were used for transporting astronauts to and from the station. Three three-man crews stayed aboard the station for periods of 28, 59, and 84 days. Skylab’s habitable volume was 11,290 cubic feet (320m3), which was 30.7 times bigger than that of the Apollo Command Module.[56]

On May 24, 1972, US President Richard M. Nixon and Soviet Premier Alexei Kosygin signed an agreement calling for a joint manned space mission, and declaring intent for all future international manned spacecraft to be capable of docking with each other.[57] This authorized the Apollo-Soyuz Test Project (ASTP), involving the rendezvous and docking in Earth orbit of a surplus Apollo Command/Service Module with a Soyuz spacecraft. The mission took place in July 1975. This was the last US manned space flight until the first orbital flight of the Space Shuttle in April 1981.[58]

The mission included both joint and separate scientific experiments, and provided useful engineering experience for future joint USRussian space flights, such as the ShuttleMir Program[59] and the International Space Station.

The Space Shuttle became the major focus of NASA in the late 1970s and the 1980s. Planned as a frequently launchable and mostly reusable vehicle, four space shuttle orbiters were built by 1985. The first to launch, Columbia, did so on April 12, 1981,[60] the 20th anniversary of the first known human space flight.[61]

Its major components were a spaceplane orbiter with an external fuel tank and two solid-fuel launch rockets at its side. The external tank, which was bigger than the spacecraft itself, was the only major component that was not reused. The shuttle could orbit in altitudes of 185643km (115400 miles)[62] and carry a maximum payload (to low orbit) of 24,400kg (54,000lb).[63] Missions could last from 5 to 17 days and crews could be from 2 to 8 astronauts.[62]

On 20 missions (198398) the Space Shuttle carried Spacelab, designed in cooperation with the European Space Agency (ESA). Spacelab was not designed for independent orbital flight, but remained in the Shuttle’s cargo bay as the astronauts entered and left it through an airlock.[64] Another famous series of missions were the launch and later successful repair of the Hubble Space Telescope in 1990 and 1993, respectively.[65]

In 1995, Russian-American interaction resumed with the ShuttleMir missions (19951998). Once more an American vehicle docked with a Russian craft, this time a full-fledged space station. This cooperation has continued with Russia and the United States as two of the biggest partners in the largest space station built: the International Space Station (ISS). The strength of their cooperation on this project was even more evident when NASA began relying on Russian launch vehicles to service the ISS during the two-year grounding of the shuttle fleet following the 2003 Space Shuttle Columbia disaster.

The Shuttle fleet lost two orbiters and 14 astronauts in two disasters: Challenger in 1986, and Columbia in 2003.[66] While the 1986 loss was mitigated by building the Space Shuttle Endeavour from replacement parts, NASA did not build another orbiter to replace the second loss.[66] NASA’s Space Shuttle program had 135 missions when the program ended with the successful landing of the Space Shuttle Atlantis at the Kennedy Space Center on July 21, 2011. The program spanned 30 years with over 300 astronauts sent into space.[67]

The International Space Station (ISS) combines NASA’s Space Station Freedom project with the Soviet/Russian Mir-2 station, the European Columbus station, and the Japanese Kib laboratory module.[68] NASA originally planned in the 1980s to develop Freedom alone, but US budget constraints led to the merger of these projects into a single multi-national program in 1993, managed by NASA, the Russian Federal Space Agency (RKA), the Japan Aerospace Exploration Agency (JAXA), the European Space Agency (ESA), and the Canadian Space Agency (CSA).[69][70] The station consists of pressurized modules, external trusses, solar arrays and other components, which have been launched by Russian Proton and Soyuz rockets, and the US Space Shuttles.[68] It is currently being assembled in Low Earth Orbit. The on-orbit assembly began in 1998, the completion of the US Orbital Segment occurred in 2011 and the completion of the Russian Orbital Segment is expected by 2016.[71][72][needs update] The ownership and use of the space station is established in intergovernmental treaties and agreements[73] which divide the station into two areas and allow Russia to retain full ownership of the Russian Orbital Segment (with the exception of Zarya),[74][75] with the US Orbital Segment allocated between the other international partners.[73]

Long duration missions to the ISS are referred to as ISS Expeditions. Expedition crew members typically spend approximately six months on the ISS.[76] The initial expedition crew size was three, temporarily decreased to two following the Columbia disaster. Since May 2009, expedition crew size has been six crew members.[77] Crew size is expected to be increased to seven, the number the ISS was designed for, once the Commercial Crew Program becomes operational.[78] The ISS has been continuously occupied for the past 18years and 55days, having exceeded the previous record held by Mir; and has been visited by astronauts and cosmonauts from 15 different nations.[79][80]

The station can be seen from the Earth with the naked eye and, as of 2018, is the largest artificial satellite in Earth orbit with a mass and volume greater than that of any previous space station.[81] The Soyuz spacecraft delivers crew members, stays docked for their half-year-long missions and then returns them home. Several uncrewed cargo spacecraft service the ISS, they are the Russian Progress spacecraft which has done so since 2000, the European Automated Transfer Vehicle (ATV) since 2008, the Japanese H-II Transfer Vehicle (HTV) since 2009, the American Dragon spacecraft since 2012, and the American Cygnus spacecraft since 2013. The Space Shuttle, before its retirement, was also used for cargo transfer and would often switch out expedition crew members, although it did not have the capability to remain docked for the duration of their stay. Until another US manned spacecraft is ready, crew members will travel to and from the International Space Station exclusively aboard the Soyuz.[82] The highest number of people occupying the ISS has been thirteen; this occurred three times during the late Shuttle ISS assembly missions.[83]

The ISS program is expected to continue until at least 2020, and may be extended beyond 2028.[84]

Dragon being berthed to the ISS in May 2012

Cygnus berthed to the ISS in September 2013

The development of the Commercial Resupply Services (CRS) vehicles began in 2006 with the purpose of creating American commercially operated uncrewed cargo vehicles to service the ISS.[85] The development of these vehicles was under a fixed price milestone-based program, meaning that each company that received a funded award had a list of milestones with a dollar value attached to them that they didn’t receive until after they had successfully completed the milestone.[86] Companies were also required to raise an unspecified amount of private investment for their proposal.[87]

On December 23, 2008, NASA awarded Commercial Resupply Services contracts to SpaceX and Orbital Sciences Corporation.[88] SpaceX uses its Falcon 9 rocket and Dragon spacecraft.[89] Orbital Sciences uses its Antares rocket and Cygnus spacecraft. The first Dragon resupply mission occurred in May 2012.[90] The first Cygnus resupply mission occurred in September 2013.[91] The CRS program now provides for all America’s ISS cargo needs; with the exception of a few vehicle-specific payloads that are delivered on the European ATV and the Japanese HTV.[92]

Rendering of CST-100 in orbit

The Commercial Crew Development (CCDev) program was started in 2010 with the purpose of creating American commercially operated crewed spacecraft capable of delivering at least four crew members to the ISS, staying docked for 180 days and then returning them back to Earth.[93] It is hoped that these vehicles could also transport non-NASA customers to private space stations such those planned by Bigelow Aerospace.[94] Like COTS, CCDev is also a fixed price milestone-based developmental program that requires some private investment.[86]

In 2010, NASA announced the winners of the first phase of the program, a total of $50million was divided among five American companies to foster research and development into human spaceflight concepts and technologies in the private sector. In 2011, the winners of the second phase of the program were announced, $270million was divided among four companies.[95] In 2012, the winners of the third phase of the program were announced, NASA provided $1.1 billion divided among three companies to further develop their crew transportation systems.[96] In 2014, the winners of the final round were announced.[97] SpaceX’s Dragon V2 (planned to be launched on a Falcon 9 v1.1) received a contract valued up to $2.6 billion and Boeing’s CST-100 (to be launched on an Atlas V) received a contract valued up to $4.2 billion.[98] NASA expects these vehicles to begin transporting humans to the ISS in 2019.[99]

For missions beyond low Earth orbit (BLEO), NASA has been directed to develop the Space Launch System (SLS), a Saturn-V class rocket, and the two to six person, beyond low Earth orbit spacecraft, Orion. In February 2010, President Barack Obama’s administration proposed eliminating public funds for the Constellation program and shifting greater responsibility of servicing the ISS to private companies.[100] During a speech at the Kennedy Space Center on April 15, 2010, Obama proposed a new heavy-lift vehicle (HLV) to replace the formerly planned Ares V.[101] In his speech, Obama called for a manned mission to an asteroid as soon as 2025, and a manned mission to Mars orbit by the mid-2030s.[101] The NASA Authorization Act of 2010 was passed by Congress and signed into law on October 11, 2010.[102] The act officially canceled the Constellation program.[102]

The Authorization Act required a newly designed HLV be chosen within 90 days of its passing; the launch vehicle was given the name “Space Launch System”. The new law also required the construction of a beyond low earth orbit spacecraft.[103] The Orion spacecraft, which was being developed as part of the Constellation program, was chosen to fulfill this role.[104] The Space Launch System is planned to launch both Orion and other necessary hardware for missions beyond low Earth orbit.[105] The SLS is to be upgraded over time with more powerful versions. The initial capability of SLS is required to be able to lift 70 mt into LEO. It is then planned to be upgraded to 105 mt and then eventually to 130 mt.[104][106] Exploration Flight Test 1 (EFT-1), an unmanned test flight of Orion’s crew module, was launched on December 5, 2014, atop a Delta IV Heavy rocket.[106] Exploration Mission-1 (EM-1) is the unmanned initial launch of SLS that would also send Orion on a circumlunar trajectory, which is planned for 2019.[106]

NASA’s next major space initiative is to be the construction of the Lunar Orbital Platform-Gateway (LOP-G, formerly known as the “Deep Space Gateway”). This initiative is to involve the construction of a new “Space-Station” type of habitation, which will have many features in common with the current International Space Station, except that it will be in orbit about the Moon, instead of the Earth.[107] This space station will be designed primarily for non-continuous human habitation. The first tentative steps of returning to manned lunar missions will be Exploration Mission-2 (EM-2), which is to include the Orion crew module, propelled by the SLS, and is to launch in 2022. This mission is to be a 10- to 14-day mission planned to briefly place a crew of four into Lunar orbit.[106] The construction of the “Lunar Orbital Platform” is to begin with the following Exploration Mission-3 (EM-3), which is planned to deliver a crew of 4 to Lunar orbit along with the first module(s) of the new space-station. This mission will last for up to 26 days.

On June 5, 2016, NASA and DARPA announced plans to also build a series of new X-planes over the next 10 years.[108] One of the planes will be the Quiet Supersonic Technology project, burning low-carbon biofuels and generating quiet sonic booms.[108]

NASA plans to build full scale deep space habitats such as the Lunar Orbital Platform and the Nautilus-X as part of its Next Space Technologies for Exploration Partnerships (NextSTEP) program.[109]

In 2017, NASA was directed by the congressional NASA Transition Authorization Act of 2017 to get humans to Mars-orbit (or to the Martian surface) by 2033.[110][111]

More than 1,000 unmanned missions have been designed to explore the Earth and the solar system.[112] Besides exploration, communication satellites have also been launched by NASA.[113] The missions have been launched directly from Earth or from orbiting space shuttles, which could either deploy the satellite itself, or with a rocket stage to take it farther.

The first US unmanned satellite was Explorer 1, which started as an ABMA/JPL project during the early part of the Space Race. It was launched in January 1958, two months after Sputnik. At the creation of NASA, the Explorer project was transferred to the agency and still continues to this day. Its missions have been focusing on the Earth and the Sun, measuring magnetic fields and the solar wind, among other aspects.[114] A more recent Earth mission, not related to the Explorer program, was the Hubble Space Telescope, which as mentioned above was brought into orbit in 1990.[115]

The inner Solar System has been made the goal of at least four unmanned programs. The first was Mariner in the 1960s and ’70s, which made multiple visits to Venus and Mars and one to Mercury. Probes launched under the Mariner program were also the first to make a planetary flyby (Mariner 2), to take the first pictures from another planet (Mariner 4), the first planetary orbiter (Mariner 9), and the first to make a gravity assist maneuver (Mariner 10). This is a technique where the satellite takes advantage of the gravity and velocity of planets to reach its destination.[116]

The first successful landing on Mars was made by Viking 1 in 1976. Twenty years later a rover was landed on Mars by Mars Pathfinder.[117]

Outside Mars, Jupiter was first visited by Pioneer 10 in 1973. More than 20 years later Galileo sent a probe into the planet’s atmosphere, and became the first spacecraft to orbit the planet.[118] Pioneer 11 became the first spacecraft to visit Saturn in 1979, with Voyager 2 making the first (and so far only) visits to Uranus and Neptune in 1986 and 1989, respectively. The first spacecraft to leave the solar system was Pioneer 10 in 1983. For a time it was the most distant spacecraft, but it has since been surpassed by both Voyager 1 and Voyager 2.[119]

Pioneers 10 and 11 and both Voyager probes carry messages from the Earth to extraterrestrial life.[120][121] Communication can be difficult with deep space travel. For instance, it took about three hours for a radio signal to reach the New Horizons spacecraft when it was more than halfway to Pluto.[122] Contact with Pioneer 10 was lost in 2003. Both Voyager probes continue to operate as they explore the outer boundary between the Solar System and interstellar space.[123]

On November 26, 2011, NASA’s Mars Science Laboratory mission was successfully launched for Mars. Curiosity successfully landed on Mars on August 6, 2012, and subsequently began its search for evidence of past or present life on Mars.[124][125][126]

NASA’s ongoing investigations include in-depth surveys of Mars (Mars 2020 and InSight) and Saturn and studies of the Earth and the Sun. Other active spacecraft missions are Juno for Jupiter, New Horizons (for Jupiter, Pluto, and beyond), and Dawn for the asteroid belt. NASA continued to support in situ exploration beyond the asteroid belt, including Pioneer and Voyager traverses into the unexplored trans-Pluto region, and Gas Giant orbiters Galileo (19892003), Cassini(19972017), and Juno (2011). In the early 2000s, NASA was put on course for the Moon, however in 2010 this program was cancelled (see Constellation program). As part of that plan the Shuttle was going to be replaced, however, although it was retired its replacement was also cancelled, leaving the US with no human spaceflight launcher for the first time in over three decades.

The New Horizons mission to Pluto was launched in 2006 and successfully performed a flyby of Pluto on July 14, 2015. The probe received a gravity assist from Jupiter in February 2007, examining some of Jupiter’s inner moons and testing on-board instruments during the flyby. On the horizon of NASA’s plans is the MAVEN spacecraft as part of the Mars Scout Program to study the atmosphere of Mars.[127]

On December 4, 2006, NASA announced it was planning a permanent Moon base.[128] The goal was to start building the Moon base by 2020, and by 2024, have a fully functional base that would allow for crew rotations and in-situ resource utilization. However, in 2009, the Augustine Committee found the program to be on an “unsustainable trajectory.”[129] In 2010, President Barack Obama halted existing plans, including the Moon base, and directed a generic focus on manned missions to asteroids and Mars, as well as extending support for the International Space Station.[130]

Since 2011, NASA’s strategic goals have been[131]

In August 2011, NASA accepted the donation of two space telescopes from the National Reconnaissance Office. Despite being stored unused, the instruments are superior to the Hubble Space Telescope.[132]

In September 2011, NASA announced the start of the Space Launch System program to develop a human-rated heavy lift vehicle. The Space Launch System is intended to launch the Orion Multi-Purpose Crew Vehicle and other elements towards the Moon, near-Earth asteroids, and one day Mars.[133] The Orion MPCV conducted an unmanned test launch on a Delta IV Heavy rocket in December 2014.[134]

The James Webb Space Telescope (JWST) is currently scheduled to launch in May 2020.[135]

On August 6, 2012, NASA landed the rover Curiosity on Mars. On August 27, 2012, Curiosity transmitted the first pre-recorded message from the surface of Mars back to Earth, made by Administrator Charlie Bolden:

Hello. This is Charlie Bolden, NASA Administrator, speaking to you via the broadcast capabilities of the Curiosity Rover, which is now on the surface of Mars.

Since the beginning of time, humankind’s curiosity has led us to constantly seek new life … new possibilities just beyond the horizon. I want to congratulate the men and women of our NASA family as well as our commercial and government partners around the world, for taking us a step beyond to Mars.

This is an extraordinary achievement. Landing a rover on Mars is not easy others have tried only America has fully succeeded. The investment we are making … the knowledge we hope to gain from our observation and analysis of Gale Crater, will tell us much about the possibility of life on Mars as well as the past and future possibilities for our own planet. Curiosity will bring benefits to Earth and inspire a new generation of scientists and explorers, as it prepares the way for a human mission in the not too distant future. Thank you.[136]

NASA’s ongoing investigations include in-depth surveys of Mars (Mars 2020 and InSight) and Saturn and studies of the Earth and the Sun. Other active spacecraft missions are Juno for Jupiter, New Horizons (for Jupiter, Pluto, and beyond), and Dawn for the asteroid belt. NASA continued to support in situ exploration beyond the asteroid belt, including Pioneer and Voyager traverses into the unexplored trans-Pluto region, and Gas Giant orbiters Galileo (19892003), Cassini (19972017), and Juno (2011).

The New Horizons mission to Pluto was launched in 2006 and successfully performed a flyby of Pluto on July 14, 2015. The probe received a gravity assist from Jupiter in February 2007, examining some of Jupiter’s inner moons and testing on-board instruments during the flyby. On the horizon of NASA’s plans is the MAVEN spacecraft as part of the Mars Scout Program to study the atmosphere of Mars.[127]

There was a new executive administration in the United States, which directed NASA to send Humans to Mars by the year 2033.[110][137] Foci in general for NASA were noted as human space exploration, space science, and technology.[137] The Europa Clipper and Mars 2020 continue to be supported for their planned schedules.[138]

In 2018, NASA alongside with other companies including Sensor Coating Systems, Pratt & Whitney, Monitor Coating and UTRC have launched the project CAUTION (CoAtings for Ultra High Temperature detectION). This project aims to enhance the temperature range of the Thermal History Coating up to 1,500C and beyond. The final goal of this project is improving the safety of jet engines as well as increasing efficiency and reducing CO2 emissions.[139]

In response to the Apollo 1 accident which killed three astronauts in 1967, Congress directed NASA to form an Aerospace Safety Advisory Panel (ASAP) to advise the NASA Administrator on safety issues and hazards in NASA’s aerospace programs. In the aftermath of the Shuttle Columbia accident, Congress required that the ASAP submit an annual report to the NASA Administrator and to Congress.[143] By 1971, NASA had also established the Space Program Advisory Council and the Research and Technology Advisory Council to provide the administrator with advisory committee support. In 1977, the latter two were combined to form the NASA Advisory Council (NAC).[144]

The National Aeronautics and Space Administration Authorization Act of 2014 reaffirmed the importance of ASAP.

Some of the major NASA directives were to land people on the Moon, build the space shuttle, and build a large space station. Typically, the major directives had the intervention of the science advisory, political, funding, and public interest that synergized into various waves of effort often heavily swayed by technical, funding, and worldwide events. For example, there was a major push to build Space Station Freedom in the 1980s, but when the Cold War ended, the Russians, the Americans and other international partners came together to build the International Space Station.

In the 2010s, the major shift was the retirement of the Space Shuttle and the development of a new manned heavy lift rocket, the Space Launch System. Missions for the new System have varied but overall, they were similar as it primarily involved the desire to send a human into the space. The Space Exploration Initiative of the 1980s opened newer avenues of galaxy exploration.

In the coming decades, the focus is gradually shifting towards exploration of planet Mars; however, some differences exist over the technologies to develop and focus on for the exploration.[145] One of the options considered was the Asteroid Redirect Mission (ARM).[145] ARM had largely been defunded in 2017, but the key technologies developed for ARM would be utilized for future exploration, especially on a solar electric propulsion system.[146][145]

Longer project execution timelines means its up to the future officials to execute on a directive, which often leads to directional mismanagement. For example, a Shuttle replacement has numerous components involved, each making some headway before being called off for various reasons including the National Aerospace Plane, Venture Star, Orbital Space Plane, Ares I, and others. The asteroid mission was not a major directive in the 2010s. Instead, the general support rested with the long term goal of getting humans to Mars. The space shuttle was retired and much of the existing road map was shelved including the then planned Lunar Return and Ares I human launch vehicle.

Previously, in the early 2000s, there was a plan called the Constellation Program but this was defunded in the early 2010s.[147][148][149][150] In the 1990s, there was a plan called “Faster, Better, Cheaper”[151] In the 1980s, there was a directive to build a manned space station.[152]

The NASA Authorization Act of 2017, which included $19.5 billion in funding for that fiscal year, directed NASA to get humans near or on the surface of Mars by the early 2030s.[153]

In December 2017, on the 45th anniversary of the last manned mission to the Lunar surface, President Donald Trump approved a directive that includes a lunar mission on the pathway to Mars and beyond.[145]

We’ll learn. The directive I’m signing today will refocus America’s space program on human exploration and discovery. It marks an important step in returning American astronauts to the Moon for the first time since 1972 for long-term exploration and use. This time, we will not only plant our flag and leave our footprint, we will establish a foundation for an eventual mission to Mars. And perhaps, someday, to many worlds beyond.

New NASA administrator Jim Bridenstine addressed this directive in an August 2018 speech where he focused on the sustainability aspectsgoing to the Moon to staythat are explicit in the directive, including taking advantage of US commercial space capability that did not exist even five years ago, which have driven down costs and increased access to space.[155]

NASA’s Aeronautics Research Mission Directorate conducts aeronautics research.

NASA has made use of technologies such as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), which is a type of Radioisotope thermoelectric generator used on space missions.[156] Shortages of this material have curtailed deep space missions since the turn of the millennia.[157] An example of a spacecraft that was not developed because of a shortage of this material was New Horizons 2.[157]

The earth science research program was created and first funded in the 1980s under the administrations of Ronald Reagan and George H.W. Bush.[158][159]

NASA started an annual competition in 2014 named Cubes in Space.[160] It is jointly organized by NASA and the global education company I Doodle Learning, with the objective of teaching school students aged 1118 to design and build scientific experiments to be launched into space on a NASA rocket or balloon. On June 21, 2017 the world’s smallest satellite, Kalam SAT, built by an Indian team, was launched.[citation needed]

NASA also researches and publishes on climate change.[161] Its statements concur with the global scientific consensus that the global climate is warming.[162] Bob Walker, who has advised the 45th President of the United States Donald Trump on space issues, has advocated that NASA should focus on space exploration and that its climate study operations should be transferred to other agencies such as NOAA. Former NASA atmospheric scientist J. Marshall Shepherd countered that Earth science study was built into NASA’s mission at its creation in the 1958 National Aeronautics and Space Act.[163]

NASA’s facilities are research, construction and communication centers to help its missions. Some facilities serve more than one application for historic or administrative reasons. NASA also operates a short-line railroad at the Kennedy Space Center and uses special aircraft.

John F. Kennedy Space Center (KSC), is one of the best-known NASA facilities. It has been the launch site for every United States human space flight since 1968. Although such flights are currently on pause, KSC continues to manage and operate unmanned rocket launch facilities for America’s civilian space program from three pads at the adjoining Cape Canaveral Air Force Station.

Lyndon B. Johnson Space Center (JSC) in Houston is home to the Christopher C. Kraft Jr. Mission Control Center, where all flight control is managed for manned space missions. JSC is the lead NASA center for activities regarding the International Space Station and also houses the NASA Astronaut Corps that selects, trains, and provides astronauts as crew members for US and international space missions.

Another major facility is Marshall Space Flight Center in Huntsville, Alabama at which the Saturn 5 rocket and Skylab were developed.[164] The JPL worked together with ABMA, one of the agencies behind Explorer 1, the first American space mission.

The ten NASA field centers are:

Numerous other facilities are operated by NASA, including the Wallops Flight Facility in Wallops Island, Virginia; the Michoud Assembly Facility in New Orleans, Louisiana; the White Sands Test Facility in Las Cruces, New Mexico; and Deep Space Network stations in Barstow, California; Madrid, Spain; and Canberra, Australia.

NASA’s share of the total federal budget peaked at approximately 4.41% in 1966 during the Apollo program, then rapidly declined to approximately 1% in 1975, and stayed around that level through 1998.[24][165] The percentage then gradually dropped, until leveling off again at around half a percent in 2006 (estimated in 2012 at 0.48% of the federal budget).[166] In a March 2012 hearing of the United States Senate Science Committee, science communicator Neil deGrasse Tyson testified that “Right now, NASA’s annual budget is half a penny on your tax dollar. For twice thata penny on a dollarwe can transform the country from a sullen, dispirited nation, weary of economic struggle, to one where it has reclaimed its 20th century birthright to dream of tomorrow.”[167][168]

Despite this, public perception of NASA’s budget differs significantly: a 1997 poll indicated that most Americans believed that 20% of the federal budget went to NASA.[169]

For Fiscal Year 2015, NASA received an appropriation of US$18.01 billion from Congress$549 million more than requested and approximately $350 million more than the 2014 NASA budget passed by Congress.[170]

Read the original here:

NASA – Wikipedia

NASA – Science Mission Directorate | Science

What is SMDs Science Activation program? Science is best understood by doing, and NASA Science has a new team to help learners of all ages do science! 25 competitively-selected teams from across the Nation connect NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote understanding.

See the article here:

NASA – Science Mission Directorate | Science

NASA – YouTube

Weve taken giant leaps and left our mark in the heavens. Now were building the next chapter, returning to the Moon to stay, and preparing to go beyond. We are NASA and after 60 years, were just getting started. Special thanks to Mike Rowe for the voiceover work.

This video is available for download from NASA’s Image and Video Library: https://go.nasa.gov/2DIyYtq Show less

Read more:

NASA – YouTube

NASA Jet Propulsion Laboratory (JPL) – Space Mission and …

The largest international array of giant radio antennas supporting interplanetary spacecraft missions.

What is the Deep Space Network?

The DSN consists of three facilities spaced equidistant from each other approximately 120 degrees apart in longitude around the world. These sites are at Goldstone, near Barstow, California; near Madrid, Spain; and near Canberra, Australia. Click to learn more.

See original here:

NASA Jet Propulsion Laboratory (JPL) – Space Mission and …

NASA – Wikipedia

The National Aeronautics and Space Administration (NASA ) is an independent agency of the United States Federal Government responsible for the civilian space program, as well as aeronautics and aerospace research.[note 1]

NASA was established in 1958, succeeding the National Advisory Committee for Aeronautics (NACA). The new agency was to have a distinctly civilian orientation, encouraging peaceful applications in space science.[8][9][10] Since its establishment, most US space exploration efforts have been led by NASA, including the Apollo Moon landing missions, the Skylab space station, and later the Space Shuttle. NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle, the Space Launch System and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program which provides oversight of launch operations and countdown management for unmanned NASA launches.

NASA science is focused on better understanding Earth through the Earth Observing System;[11] advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program;[12] exploring bodies throughout the Solar System with advanced robotic spacecraft missions such as New Horizons;[13] and researching astrophysics topics, such as the Big Bang, through the Great Observatories and associated programs.[14]

From 1946, the National Advisory Committee for Aeronautics (NACA) had been experimenting with rocket planes such as the supersonic Bell X-1.[15] In the early 1950s, there was challenge to launch an artificial satellite for the International Geophysical Year (195758). An effort for this was the American Project Vanguard. After the Soviet launch of the world’s first artificial satellite (Sputnik 1) on October 4, 1957, the attention of the United States turned toward its own fledgling space efforts. The US Congress, alarmed by the perceived threat to national security and technological leadership (known as the “Sputnik crisis”), urged immediate and swift action; President Dwight D. Eisenhower and his advisers counseled more deliberate measures. On January 12, 1958, NACA organized a “Special Committee on Space Technology”, headed by Guyford Stever.[10] On January 14, 1958, NACA Director Hugh Dryden published “A National Research Program for Space Technology” stating:[16]

It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge [Sputnik] be met by an energetic program of research and development for the conquest of space … It is accordingly proposed that the scientific research be the responsibility of a national civilian agency … NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology.[16]

While this new federal agency would conduct all non-military space activity, the Advanced Research Projects Agency (ARPA) was created in February 1958 to develop space technology for military application.[17]

On July 29, 1958, Eisenhower signed the National Aeronautics and Space Act, establishing NASA. When it began operations on October 1, 1958, NASA absorbed the 43-year-old NACA intact; its 8,000 employees, an annual budget of US$100million, three major research laboratories (Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, and Lewis Flight Propulsion Laboratory) and two small test facilities.[18] A NASA seal was approved by President Eisenhower in 1959.[19] Elements of the Army Ballistic Missile Agency and the United States Naval Research Laboratory were incorporated into NASA. A significant contributor to NASA’s entry into the Space Race with the Soviet Union was the technology from the German rocket program led by Wernher von Braun, who was now working for the Army Ballistic Missile Agency (ABMA), which in turn incorporated the technology of American scientist Robert Goddard’s earlier works.[20] Earlier research efforts within the US Air Force[18] and many of ARPA’s early space programs were also transferred to NASA.[21] In December 1958, NASA gained control of the Jet Propulsion Laboratory, a contractor facility operated by the California Institute of Technology.[18]

The agency’s leader, NASA’s administrator, is nominated by the President of the United States subject to approval of the US Senate, and reports to him or her and serves as senior space science advisor. Though space exploration is ostensibly non-partisan, the appointee usually is associated with the President’s political party (Democratic or Republican), and a new administrator is usually chosen when the Presidency changes parties. The only exceptions to this have been:

The first administrator was Dr. T. Keith Glennan appointed by Republican President Dwight D. Eisenhower. During his term he brought together the disparate projects in American space development research.[25]

The second administrator, James E. Webb (19611968), appointed by President John F. Kennedy, was a Democrat who first publicly served under President Harry S. Truman. In order to implement the Apollo program to achieve Kennedy’s Moon landing goal by the end of the 1960s, Webb directed major management restructuring and facility expansion, establishing the Houston Manned Spacecraft (Johnson) Center and the Florida Launch Operations (Kennedy) Center. Capitalizing on Kennedy’s legacy, President Lyndon Johnson kept continuity with the Apollo program by keeping Webb on when he succeeded Kennedy in November 1963. But Webb resigned in October 1968 before Apollo achieved its goal, and Republican President Richard M. Nixon replaced Webb with Republican Thomas O. Paine.

James Fletcher was responsible for early planning of the Space Shuttle program during his first term as administrator under President Nixon. He was appointed for a second term as administrator from May 1986 through April 1989 by President Ronald Reagan to help the agency recover from the Space Shuttle Challenger disaster.

Former astronaut Charles Bolden served as NASA’s twelfth administrator from July 2009 to January 20, 2017.[26] Bolden is one of three former astronauts who became NASA administrators, along with Richard H. Truly (served 19891992) and Frederick D. Gregory (acting, 2005).

The agency’s administration is located at NASA Headquarters in Washington, DC and provides overall guidance and direction.[27] Except under exceptional circumstances, NASA civil service employees are required to be citizens of the United States.[28]

NASA has conducted many manned and unmanned spaceflight programs throughout its history. Unmanned programs launched the first American artificial satellites into Earth orbit for scientific and communications purposes, and sent scientific probes to explore the planets of the solar system, starting with Venus and Mars, and including “grand tours” of the outer planets. Manned programs sent the first Americans into low Earth orbit (LEO), won the Space Race with the Soviet Union by landing twelve men on the Moon from 1969 to 1972 in the Apollo program, developed a semi-reusable LEO Space Shuttle, and developed LEO space station capability by itself and with the cooperation of several other nations including post-Soviet Russia. Some missions include both manned and unmanned aspects, such as the Galileo probe, which was deployed by astronauts in Earth orbit before being sent unmanned to Jupiter.

The experimental rocket-powered aircraft programs started by NACA were extended by NASA as support for manned spaceflight. This was followed by a one-man space capsule program, and in turn by a two-man capsule program. Reacting to loss of national prestige and security fears caused by early leads in space exploration by the Soviet Union, in 1961 President John F. Kennedy proposed the ambitious goal “of landing a man on the Moon by the end of [the 1960s], and returning him safely to the Earth.” This goal was met in 1969 by the Apollo program, and NASA planned even more ambitious activities leading to a manned mission to Mars. However, reduction of the perceived threat and changing political priorities almost immediately caused the termination of most of these plans. NASA turned its attention to an Apollo-derived temporary space laboratory, and a semi-reusable Earth orbital shuttle. In the 1990s, funding was approved for NASA to develop a permanent Earth orbital space station in cooperation with the international community, which now included the former rival, post-Soviet Russia. To date, NASA has launched a total of 166 manned space missions on rockets, and thirteen X-15 rocket flights above the USAF definition of spaceflight altitude, 260,000 feet (80km).[29]

The X-15 was an NACA experimental rocket-powered hypersonic research aircraft, developed in conjunction with the US Air Force and Navy. The design featured a slender fuselage with fairings along the side containing fuel and early computerized control systems.[30] Requests for proposal were issued on December 30, 1954, for the airframe, and February 4, 1955, for the rocket engine. The airframe contract was awarded to North American Aviation in November 1955, and the XLR30 engine contract was awarded to Reaction Motors in 1956, and three planes were built. The X-15 was drop-launched from the wing of one of two NASA Boeing B-52 Stratofortresses, NB52A tail number 52-003, and NB52B, tail number 52-008 (known as the Balls 8). Release took place at an altitude of about 45,000 feet (14km) and a speed of about 500 miles per hour (805km/h).

Twelve pilots were selected for the program from the Air Force, Navy, and NACA (later NASA). A total of 199 flights were made between 1959 and 1968, resulting in the official world record for the highest speed ever reached by a manned powered aircraft (current as of 2014[update]), and a maximum speed of Mach 6.72, 4,519 miles per hour (7,273km/h).[31] The altitude record for X-15 was 354,200 feet (107.96km).[32] Eight of the pilots were awarded Air Force astronaut wings for flying above 260,000 feet (80km), and two flights by Joseph A. Walker exceeded 100 kilometers (330,000ft), qualifying as spaceflight according to the International Aeronautical Federation. The X-15 program employed mechanical techniques used in the later manned spaceflight programs, including reaction control system jets for controlling the orientation of a spacecraft, space suits, and horizon definition for navigation.[32] The reentry and landing data collected were valuable to NASA for designing the Space Shuttle.[30]

Shortly after the Space Race began, an early objective was to get a person into Earth orbit as soon as possible, therefore the simplest spacecraft that could be launched by existing rockets was favored. The US Air Force’s Man in Space Soonest program considered many manned spacecraft designs, ranging from rocket planes like the X-15, to small ballistic space capsules.[33] By 1958, the space plane concepts were eliminated in favor of the ballistic capsule.[34]

When NASA was created that same year, the Air Force program was transferred to it and renamed Project Mercury. The first seven astronauts were selected among candidates from the Navy, Air Force and Marine test pilot programs. On May 5, 1961, astronaut Alan Shepard became the first American in space aboard Freedom7, launched by a Redstone booster on a 15-minute ballistic (suborbital) flight.[35] John Glenn became the first American to be launched into orbit, by an Atlas launch vehicle on February 20, 1962, aboard Friendship7.[36] Glenn completed three orbits, after which three more orbital flights were made, culminating in L. Gordon Cooper’s 22-orbit flight Faith 7, May 1516, 1963.[37]

The Soviet Union (USSR) competed with its own single-pilot spacecraft, Vostok. They sent the first man in space, by launching cosmonaut Yuri Gagarin into a single Earth orbit aboard Vostok 1 in April 1961, one month before Shepard’s flight.[38] In August 1962, they achieved an almost four-day record flight with Andriyan Nikolayev aboard Vostok 3, and also conducted a concurrent Vostok 4 mission carrying Pavel Popovich.

Based on studies to grow the Mercury spacecraft capabilities to long-duration flights, developing space rendezvous techniques, and precision Earth landing, Project Gemini was started as a two-man program in 1962 to overcome the Soviets’ lead and to support the Apollo manned lunar landing program, adding extravehicular activity (EVA) and rendezvous and docking to its objectives. The first manned Gemini flight, Gemini 3, was flown by Gus Grissom and John Young on March 23, 1965.[39] Nine missions followed in 1965 and 1966, demonstrating an endurance mission of nearly fourteen days, rendezvous, docking, and practical EVA, and gathering medical data on the effects of weightlessness on humans.[40][41]

Under the direction of Soviet Premier Nikita Khrushchev, the USSR competed with Gemini by converting their Vostok spacecraft into a two- or three-man Voskhod. They succeeded in launching two manned flights before Gemini’s first flight, achieving a three-cosmonaut flight in 1963 and the first EVA in 1964. After this, the program was canceled, and Gemini caught up while spacecraft designer Sergei Korolev developed the Soyuz spacecraft, their answer to Apollo.

The U.S public’s perception of the Soviet lead in the space race (by putting the first man into space) motivated President John F. Kennedy to ask the Congress on May 25, 1961, to commit the federal government to a program to land a man on the Moon by the end of the 1960s, which effectively launched the Apollo program.[42]

Apollo was one of the most expensive American scientific programs ever. It cost more than $20 billion in 1960s dollars[43] or an estimated $213billion in present-day US dollars.[44] (In comparison, the Manhattan Project cost roughly $27.2billion, accounting for inflation.)[44][45] It used the Saturn rockets as launch vehicles, which were far bigger than the rockets built for previous projects.[46] The spacecraft was also bigger; it had two main parts, the combined command and service module (CSM) and the lunar landing module (LM). The LM was to be left on the Moon and only the command module (CM) containing the three astronauts would eventually return to Earth.[note 2]

The second manned mission, Apollo 8, brought astronauts for the first time in a flight around the Moon in December 1968.[47] Shortly before, the Soviets had sent an unmanned spacecraft around the Moon.[48] On the next two missions docking maneuvers that were needed for the Moon landing were practiced[49][50] and then finally the Moon landing was made on the Apollo 11 mission in July 1969.[51]

The first person to stand on the Moon was Neil Armstrong, who was followed by Buzz Aldrin, while Michael Collins orbited above. Five subsequent Apollo missions also landed astronauts on the Moon, the last in December 1972. Throughout these six Apollo spaceflights, twelve men walked on the Moon. These missions returned a wealth of scientific data and 381.7 kilograms (842lb) of lunar samples. Topics covered by experiments performed included soil mechanics, meteoroids, seismology, heat flow, lunar ranging, magnetic fields, and solar wind.[52] The Moon landing marked the end of the space race; and as a gesture, Armstrong mentioned mankind when he stepped down on the Moon.[53]

Apollo set major milestones in human spaceflight. It stands alone in sending manned missions beyond low Earth orbit, and landing humans on another celestial body.[54] Apollo 8 was the first manned spacecraft to orbit another celestial body, while Apollo 17 marked the last moonwalk and the last manned mission beyond low Earth orbit to date. The program spurred advances in many areas of technology peripheral to rocketry and manned spaceflight, including avionics, telecommunications, and computers. Apollo sparked interest in many fields of engineering and left many physical facilities and machines developed for the program as landmarks. Many objects and artifacts from the program are on display at various locations throughout the world, notably at the Smithsonian’s Air and Space Museums.

Skylab was the United States’ first and only independently built space station.[55] Conceived in 1965 as a workshop to be constructed in space from a spent Saturn IB upper stage, the 169,950lb (77,088kg) station was constructed on Earth and launched on May 14, 1973, atop the first two stages of a Saturn V, into a 235-nautical-mile (435km) orbit inclined at 50 to the equator. Damaged during launch by the loss of its thermal protection and one electricity-generating solar panel, it was repaired to functionality by its first crew. It was occupied for a total of 171 days by 3 successive crews in 1973 and 1974.[55] It included a laboratory for studying the effects of microgravity, and a solar observatory.[55] NASA planned to have a Space Shuttle dock with it, and elevate Skylab to a higher safe altitude, but the Shuttle was not ready for flight before Skylab’s re-entry on July 11, 1979.[56]

To save cost, NASA used one of the Saturn V rockets originally earmarked for a canceled Apollo mission to launch the Skylab. Apollo spacecraft were used for transporting astronauts to and from the station. Three three-man crews stayed aboard the station for periods of 28, 59, and 84 days. Skylab’s habitable volume was 11,290 cubic feet (320m3), which was 30.7 times bigger than that of the Apollo Command Module.[56]

On May 24, 1972, US President Richard M. Nixon and Soviet Premier Alexei Kosygin signed an agreement calling for a joint manned space mission, and declaring intent for all future international manned spacecraft to be capable of docking with each other.[57] This authorized the Apollo-Soyuz Test Project (ASTP), involving the rendezvous and docking in Earth orbit of a surplus Apollo Command/Service Module with a Soyuz spacecraft. The mission took place in July 1975. This was the last US manned space flight until the first orbital flight of the Space Shuttle in April 1981.[58]

The mission included both joint and separate scientific experiments, and provided useful engineering experience for future joint USRussian space flights, such as the ShuttleMir Program[59] and the International Space Station.

The Space Shuttle became the major focus of NASA in the late 1970s and the 1980s. Planned as a frequently launchable and mostly reusable vehicle, four space shuttle orbiters were built by 1985. The first to launch, Columbia, did so on April 12, 1981,[60] the 20th anniversary of the first known human space flight.[61]

Its major components were a spaceplane orbiter with an external fuel tank and two solid-fuel launch rockets at its side. The external tank, which was bigger than the spacecraft itself, was the only major component that was not reused. The shuttle could orbit in altitudes of 185643km (115400 miles)[62] and carry a maximum payload (to low orbit) of 24,400kg (54,000lb).[63] Missions could last from 5 to 17 days and crews could be from 2 to 8 astronauts.[62]

On 20 missions (198398) the Space Shuttle carried Spacelab, designed in cooperation with the European Space Agency (ESA). Spacelab was not designed for independent orbital flight, but remained in the Shuttle’s cargo bay as the astronauts entered and left it through an airlock.[64] Another famous series of missions were the launch and later successful repair of the Hubble Space Telescope in 1990 and 1993, respectively.[65]

In 1995, Russian-American interaction resumed with the ShuttleMir missions (19951998). Once more an American vehicle docked with a Russian craft, this time a full-fledged space station. This cooperation has continued with Russia and the United States as two of the biggest partners in the largest space station built: the International Space Station (ISS). The strength of their cooperation on this project was even more evident when NASA began relying on Russian launch vehicles to service the ISS during the two-year grounding of the shuttle fleet following the 2003 Space Shuttle Columbia disaster.

The Shuttle fleet lost two orbiters and 14 astronauts in two disasters: Challenger in 1986, and Columbia in 2003.[66] While the 1986 loss was mitigated by building the Space Shuttle Endeavour from replacement parts, NASA did not build another orbiter to replace the second loss.[66] NASA’s Space Shuttle program had 135 missions when the program ended with the successful landing of the Space Shuttle Atlantis at the Kennedy Space Center on July 21, 2011. The program spanned 30 years with over 300 astronauts sent into space.[67]

The International Space Station (ISS) combines NASA’s Space Station Freedom project with the Soviet/Russian Mir-2 station, the European Columbus station, and the Japanese Kib laboratory module.[68] NASA originally planned in the 1980s to develop Freedom alone, but US budget constraints led to the merger of these projects into a single multi-national program in 1993, managed by NASA, the Russian Federal Space Agency (RKA), the Japan Aerospace Exploration Agency (JAXA), the European Space Agency (ESA), and the Canadian Space Agency (CSA).[69][70] The station consists of pressurized modules, external trusses, solar arrays and other components, which have been launched by Russian Proton and Soyuz rockets, and the US Space Shuttles.[68] It is currently being assembled in Low Earth Orbit. The on-orbit assembly began in 1998, the completion of the US Orbital Segment occurred in 2011 and the completion of the Russian Orbital Segment is expected by 2016.[71][72][needs update] The ownership and use of the space station is established in intergovernmental treaties and agreements[73] which divide the station into two areas and allow Russia to retain full ownership of the Russian Orbital Segment (with the exception of Zarya),[74][75] with the US Orbital Segment allocated between the other international partners.[73]

Long duration missions to the ISS are referred to as ISS Expeditions. Expedition crew members typically spend approximately six months on the ISS.[76] The initial expedition crew size was three, temporarily decreased to two following the Columbia disaster. Since May 2009, expedition crew size has been six crew members.[77] Crew size is expected to be increased to seven, the number the ISS was designed for, once the Commercial Crew Program becomes operational.[78] The ISS has been continuously occupied for the past 18years and 53days, having exceeded the previous record held by Mir; and has been visited by astronauts and cosmonauts from 15 different nations.[79][80]

The station can be seen from the Earth with the naked eye and, as of 2018, is the largest artificial satellite in Earth orbit with a mass and volume greater than that of any previous space station.[81] The Soyuz spacecraft delivers crew members, stays docked for their half-year-long missions and then returns them home. Several uncrewed cargo spacecraft service the ISS, they are the Russian Progress spacecraft which has done so since 2000, the European Automated Transfer Vehicle (ATV) since 2008, the Japanese H-II Transfer Vehicle (HTV) since 2009, the American Dragon spacecraft since 2012, and the American Cygnus spacecraft since 2013. The Space Shuttle, before its retirement, was also used for cargo transfer and would often switch out expedition crew members, although it did not have the capability to remain docked for the duration of their stay. Until another US manned spacecraft is ready, crew members will travel to and from the International Space Station exclusively aboard the Soyuz.[82] The highest number of people occupying the ISS has been thirteen; this occurred three times during the late Shuttle ISS assembly missions.[83]

The ISS program is expected to continue until at least 2020, and may be extended beyond 2028.[84]

Dragon being berthed to the ISS in May 2012

Cygnus berthed to the ISS in September 2013

The development of the Commercial Resupply Services (CRS) vehicles began in 2006 with the purpose of creating American commercially operated uncrewed cargo vehicles to service the ISS.[85] The development of these vehicles was under a fixed price milestone-based program, meaning that each company that received a funded award had a list of milestones with a dollar value attached to them that they didn’t receive until after they had successfully completed the milestone.[86] Companies were also required to raise an unspecified amount of private investment for their proposal.[87]

On December 23, 2008, NASA awarded Commercial Resupply Services contracts to SpaceX and Orbital Sciences Corporation.[88] SpaceX uses its Falcon 9 rocket and Dragon spacecraft.[89] Orbital Sciences uses its Antares rocket and Cygnus spacecraft. The first Dragon resupply mission occurred in May 2012.[90] The first Cygnus resupply mission occurred in September 2013.[91] The CRS program now provides for all America’s ISS cargo needs; with the exception of a few vehicle-specific payloads that are delivered on the European ATV and the Japanese HTV.[92]

Rendering of CST-100 in orbit

The Commercial Crew Development (CCDev) program was started in 2010 with the purpose of creating American commercially operated crewed spacecraft capable of delivering at least four crew members to the ISS, staying docked for 180 days and then returning them back to Earth.[93] It is hoped that these vehicles could also transport non-NASA customers to private space stations such those planned by Bigelow Aerospace.[94] Like COTS, CCDev is also a fixed price milestone-based developmental program that requires some private investment.[86]

In 2010, NASA announced the winners of the first phase of the program, a total of $50million was divided among five American companies to foster research and development into human spaceflight concepts and technologies in the private sector. In 2011, the winners of the second phase of the program were announced, $270million was divided among four companies.[95] In 2012, the winners of the third phase of the program were announced, NASA provided $1.1 billion divided among three companies to further develop their crew transportation systems.[96] In 2014, the winners of the final round were announced.[97] SpaceX’s Dragon V2 (planned to be launched on a Falcon 9 v1.1) received a contract valued up to $2.6 billion and Boeing’s CST-100 (to be launched on an Atlas V) received a contract valued up to $4.2 billion.[98] NASA expects these vehicles to begin transporting humans to the ISS in 2019.[99]

For missions beyond low Earth orbit (BLEO), NASA has been directed to develop the Space Launch System (SLS), a Saturn-V class rocket, and the two to six person, beyond low Earth orbit spacecraft, Orion. In February 2010, President Barack Obama’s administration proposed eliminating public funds for the Constellation program and shifting greater responsibility of servicing the ISS to private companies.[100] During a speech at the Kennedy Space Center on April 15, 2010, Obama proposed a new heavy-lift vehicle (HLV) to replace the formerly planned Ares V.[101] In his speech, Obama called for a manned mission to an asteroid as soon as 2025, and a manned mission to Mars orbit by the mid-2030s.[101] The NASA Authorization Act of 2010 was passed by Congress and signed into law on October 11, 2010.[102] The act officially canceled the Constellation program.[102]

The Authorization Act required a newly designed HLV be chosen within 90 days of its passing; the launch vehicle was given the name “Space Launch System”. The new law also required the construction of a beyond low earth orbit spacecraft.[103] The Orion spacecraft, which was being developed as part of the Constellation program, was chosen to fulfill this role.[104] The Space Launch System is planned to launch both Orion and other necessary hardware for missions beyond low Earth orbit.[105] The SLS is to be upgraded over time with more powerful versions. The initial capability of SLS is required to be able to lift 70 mt into LEO. It is then planned to be upgraded to 105 mt and then eventually to 130 mt.[104][106] Exploration Flight Test 1 (EFT-1), an unmanned test flight of Orion’s crew module, was launched on December 5, 2014, atop a Delta IV Heavy rocket.[106] Exploration Mission-1 (EM-1) is the unmanned initial launch of SLS that would also send Orion on a circumlunar trajectory, which is planned for 2019.[106]

NASA’s next major space initiative is to be the construction of the Lunar Orbital Platform-Gateway (LOP-G, formerly known as the “Deep Space Gateway”). This initiative is to involve the construction of a new “Space-Station” type of habitation, which will have many features in common with the current International Space Station, except that it will be in orbit about the Moon, instead of the Earth.[107] This space station will be designed primarily for non-continuous human habitation. The first tentative steps of returning to manned lunar missions will be Exploration Mission-2 (EM-2), which is to include the Orion crew module, propelled by the SLS, and is to launch in 2022. This mission is to be a 10- to 14-day mission planned to briefly place a crew of four into Lunar orbit.[106] The construction of the “Lunar Orbital Platform” is to begin with the following Exploration Mission-3 (EM-3), which is planned to deliver a crew of 4 to Lunar orbit along with the first module(s) of the new space-station. This mission will last for up to 26 days.

On June 5, 2016, NASA and DARPA announced plans to also build a series of new X-planes over the next 10 years.[108] One of the planes will be the Quiet Supersonic Technology project, burning low-carbon biofuels and generating quiet sonic booms.[108]

NASA plans to build full scale deep space habitats such as the Lunar Orbital Platform and the Nautilus-X as part of its Next Space Technologies for Exploration Partnerships (NextSTEP) program.[109]

In 2017, NASA was directed by the congressional NASA Transition Authorization Act of 2017 to get humans to Mars-orbit (or to the Martian surface) by 2033.[110][111]

More than 1,000 unmanned missions have been designed to explore the Earth and the solar system.[112] Besides exploration, communication satellites have also been launched by NASA.[113] The missions have been launched directly from Earth or from orbiting space shuttles, which could either deploy the satellite itself, or with a rocket stage to take it farther.

The first US unmanned satellite was Explorer 1, which started as an ABMA/JPL project during the early part of the Space Race. It was launched in January 1958, two months after Sputnik. At the creation of NASA, the Explorer project was transferred to the agency and still continues to this day. Its missions have been focusing on the Earth and the Sun, measuring magnetic fields and the solar wind, among other aspects.[114] A more recent Earth mission, not related to the Explorer program, was the Hubble Space Telescope, which as mentioned above was brought into orbit in 1990.[115]

The inner Solar System has been made the goal of at least four unmanned programs. The first was Mariner in the 1960s and ’70s, which made multiple visits to Venus and Mars and one to Mercury. Probes launched under the Mariner program were also the first to make a planetary flyby (Mariner 2), to take the first pictures from another planet (Mariner 4), the first planetary orbiter (Mariner 9), and the first to make a gravity assist maneuver (Mariner 10). This is a technique where the satellite takes advantage of the gravity and velocity of planets to reach its destination.[116]

The first successful landing on Mars was made by Viking 1 in 1976. Twenty years later a rover was landed on Mars by Mars Pathfinder.[117]

Outside Mars, Jupiter was first visited by Pioneer 10 in 1973. More than 20 years later Galileo sent a probe into the planet’s atmosphere, and became the first spacecraft to orbit the planet.[118] Pioneer 11 became the first spacecraft to visit Saturn in 1979, with Voyager 2 making the first (and so far only) visits to Uranus and Neptune in 1986 and 1989, respectively. The first spacecraft to leave the solar system was Pioneer 10 in 1983. For a time it was the most distant spacecraft, but it has since been surpassed by both Voyager 1 and Voyager 2.[119]

Pioneers 10 and 11 and both Voyager probes carry messages from the Earth to extraterrestrial life.[120][121] Communication can be difficult with deep space travel. For instance, it took about three hours for a radio signal to reach the New Horizons spacecraft when it was more than halfway to Pluto.[122] Contact with Pioneer 10 was lost in 2003. Both Voyager probes continue to operate as they explore the outer boundary between the Solar System and interstellar space.[123]

On November 26, 2011, NASA’s Mars Science Laboratory mission was successfully launched for Mars. Curiosity successfully landed on Mars on August 6, 2012, and subsequently began its search for evidence of past or present life on Mars.[124][125][126]

NASA’s ongoing investigations include in-depth surveys of Mars (Mars 2020 and InSight) and Saturn and studies of the Earth and the Sun. Other active spacecraft missions are Juno for Jupiter, New Horizons (for Jupiter, Pluto, and beyond), and Dawn for the asteroid belt. NASA continued to support in situ exploration beyond the asteroid belt, including Pioneer and Voyager traverses into the unexplored trans-Pluto region, and Gas Giant orbiters Galileo (19892003), Cassini(19972017), and Juno (2011). In the early 2000s, NASA was put on course for the Moon, however in 2010 this program was cancelled (see Constellation program). As part of that plan the Shuttle was going to be replaced, however, although it was retired its replacement was also cancelled, leaving the US with no human spaceflight launcher for the first time in over three decades.

The New Horizons mission to Pluto was launched in 2006 and successfully performed a flyby of Pluto on July 14, 2015. The probe received a gravity assist from Jupiter in February 2007, examining some of Jupiter’s inner moons and testing on-board instruments during the flyby. On the horizon of NASA’s plans is the MAVEN spacecraft as part of the Mars Scout Program to study the atmosphere of Mars.[127]

On December 4, 2006, NASA announced it was planning a permanent Moon base.[128] The goal was to start building the Moon base by 2020, and by 2024, have a fully functional base that would allow for crew rotations and in-situ resource utilization. However, in 2009, the Augustine Committee found the program to be on an “unsustainable trajectory.”[129] In 2010, President Barack Obama halted existing plans, including the Moon base, and directed a generic focus on manned missions to asteroids and Mars, as well as extending support for the International Space Station.[130]

Since 2011, NASA’s strategic goals have been[131]

In August 2011, NASA accepted the donation of two space telescopes from the National Reconnaissance Office. Despite being stored unused, the instruments are superior to the Hubble Space Telescope.[132]

In September 2011, NASA announced the start of the Space Launch System program to develop a human-rated heavy lift vehicle. The Space Launch System is intended to launch the Orion Multi-Purpose Crew Vehicle and other elements towards the Moon, near-Earth asteroids, and one day Mars.[133] The Orion MPCV conducted an unmanned test launch on a Delta IV Heavy rocket in December 2014.[134]

The James Webb Space Telescope (JWST) is currently scheduled to launch in May 2020.[135]

On August 6, 2012, NASA landed the rover Curiosity on Mars. On August 27, 2012, Curiosity transmitted the first pre-recorded message from the surface of Mars back to Earth, made by Administrator Charlie Bolden:

Hello. This is Charlie Bolden, NASA Administrator, speaking to you via the broadcast capabilities of the Curiosity Rover, which is now on the surface of Mars.

Since the beginning of time, humankind’s curiosity has led us to constantly seek new life … new possibilities just beyond the horizon. I want to congratulate the men and women of our NASA family as well as our commercial and government partners around the world, for taking us a step beyond to Mars.

This is an extraordinary achievement. Landing a rover on Mars is not easy others have tried only America has fully succeeded. The investment we are making … the knowledge we hope to gain from our observation and analysis of Gale Crater, will tell us much about the possibility of life on Mars as well as the past and future possibilities for our own planet. Curiosity will bring benefits to Earth and inspire a new generation of scientists and explorers, as it prepares the way for a human mission in the not too distant future. Thank you.[136]

NASA’s ongoing investigations include in-depth surveys of Mars (Mars 2020 and InSight) and Saturn and studies of the Earth and the Sun. Other active spacecraft missions are Juno for Jupiter, New Horizons (for Jupiter, Pluto, and beyond), and Dawn for the asteroid belt. NASA continued to support in situ exploration beyond the asteroid belt, including Pioneer and Voyager traverses into the unexplored trans-Pluto region, and Gas Giant orbiters Galileo (19892003), Cassini (19972017), and Juno (2011).

The New Horizons mission to Pluto was launched in 2006 and successfully performed a flyby of Pluto on July 14, 2015. The probe received a gravity assist from Jupiter in February 2007, examining some of Jupiter’s inner moons and testing on-board instruments during the flyby. On the horizon of NASA’s plans is the MAVEN spacecraft as part of the Mars Scout Program to study the atmosphere of Mars.[127]

There was a new executive administration in the United States, which directed NASA to send Humans to Mars by the year 2033.[110][137] Foci in general for NASA were noted as human space exploration, space science, and technology.[137] The Europa Clipper and Mars 2020 continue to be supported for their planned schedules.[138]

In 2018, NASA alongside with other companies including Sensor Coating Systems, Pratt & Whitney, Monitor Coating and UTRC have launched the project CAUTION (CoAtings for Ultra High Temperature detectION). This project aims to enhance the temperature range of the Thermal History Coating up to 1,500C and beyond. The final goal of this project is improving the safety of jet engines as well as increasing efficiency and reducing CO2 emissions.[139]

In response to the Apollo 1 accident which killed three astronauts in 1967, Congress directed NASA to form an Aerospace Safety Advisory Panel (ASAP) to advise the NASA Administrator on safety issues and hazards in NASA’s aerospace programs. In the aftermath of the Shuttle Columbia accident, Congress required that the ASAP submit an annual report to the NASA Administrator and to Congress.[143] By 1971, NASA had also established the Space Program Advisory Council and the Research and Technology Advisory Council to provide the administrator with advisory committee support. In 1977, the latter two were combined to form the NASA Advisory Council (NAC).[144]

The National Aeronautics and Space Administration Authorization Act of 2014 reaffirmed the importance of ASAP.

Some of the major NASA directives were to land people on the Moon, build the space shuttle, and build a large space station. Typically, the major directives had the intervention of the science advisory, political, funding, and public interest that synergized into various waves of effort often heavily swayed by technical, funding, and worldwide events. For example, there was a major push to build Space Station Freedom in the 1980s, but when the Cold War ended, the Russians, the Americans and other international partners came together to build the International Space Station.

In the 2010s, the major shift was the retirement of the Space Shuttle and the development of a new manned heavy lift rocket, the Space Launch System. Missions for the new System have varied but overall, they were similar as it primarily involved the desire to send a human into the space. The Space Exploration Initiative of the 1980s opened newer avenues of galaxy exploration.

In the coming decades, the focus is gradually shifting towards exploration of planet Mars; however, some differences exist over the technologies to develop and focus on for the exploration.[145] One of the options considered was the Asteroid Redirect Mission (ARM).[145] ARM had largely been defunded in 2017, but the key technologies developed for ARM would be utilized for future exploration, especially on a solar electric propulsion system.[146][145]

Longer project execution timelines means its up to the future officials to execute on a directive, which often leads to directional mismanagement. For example, a Shuttle replacement has numerous components involved, each making some headway before being called off for various reasons including the National Aerospace Plane, Venture Star, Orbital Space Plane, Ares I, and others. The asteroid mission was not a major directive in the 2010s. Instead, the general support rested with the long term goal of getting humans to Mars. The space shuttle was retired and much of the existing road map was shelved including the then planned Lunar Return and Ares I human launch vehicle.

Previously, in the early 2000s, there was a plan called the Constellation Program but this was defunded in the early 2010s.[147][148][149][150] In the 1990s, there was a plan called “Faster, Better, Cheaper”[151] In the 1980s, there was a directive to build a manned space station.[152]

The NASA Authorization Act of 2017, which included $19.5 billion in funding for that fiscal year, directed NASA to get humans near or on the surface of Mars by the early 2030s.[153]

In December 2017, on the 45th anniversary of the last manned mission to the Lunar surface, President Donald Trump approved a directive that includes a lunar mission on the pathway to Mars and beyond.[145]

We’ll learn. The directive I’m signing today will refocus America’s space program on human exploration and discovery. It marks an important step in returning American astronauts to the Moon for the first time since 1972 for long-term exploration and use. This time, we will not only plant our flag and leave our footprint, we will establish a foundation for an eventual mission to Mars. And perhaps, someday, to many worlds beyond.

New NASA administrator Jim Bridenstine addressed this directive in an August 2018 speech where he focused on the sustainability aspectsgoing to the Moon to staythat are explicit in the directive, including taking advantage of US commercial space capability that did not exist even five years ago, which have driven down costs and increased access to space.[155]

NASA’s Aeronautics Research Mission Directorate conducts aeronautics research.

NASA has made use of technologies such as the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), which is a type of Radioisotope thermoelectric generator used on space missions.[156] Shortages of this material have curtailed deep space missions since the turn of the millennia.[157] An example of a spacecraft that was not developed because of a shortage of this material was New Horizons 2.[157]

The earth science research program was created and first funded in the 1980s under the administrations of Ronald Reagan and George H.W. Bush.[158][159]

NASA started an annual competition in 2014 named Cubes in Space.[160] It is jointly organized by NASA and the global education company I Doodle Learning, with the objective of teaching school students aged 1118 to design and build scientific experiments to be launched into space on a NASA rocket or balloon. On June 21, 2017 the world’s smallest satellite, Kalam SAT, built by an Indian team, was launched.[citation needed]

NASA also researches and publishes on climate change.[161] Its statements concur with the global scientific consensus that the global climate is warming.[162] Bob Walker, who has advised the 45th President of the United States Donald Trump on space issues, has advocated that NASA should focus on space exploration and that its climate study operations should be transferred to other agencies such as NOAA. Former NASA atmospheric scientist J. Marshall Shepherd countered that Earth science study was built into NASA’s mission at its creation in the 1958 National Aeronautics and Space Act.[163]

NASA’s facilities are research, construction and communication centers to help its missions. Some facilities serve more than one application for historic or administrative reasons. NASA also operates a short-line railroad at the Kennedy Space Center and uses special aircraft.

John F. Kennedy Space Center (KSC), is one of the best-known NASA facilities. It has been the launch site for every United States human space flight since 1968. Although such flights are currently on pause, KSC continues to manage and operate unmanned rocket launch facilities for America’s civilian space program from three pads at the adjoining Cape Canaveral Air Force Station.

Lyndon B. Johnson Space Center (JSC) in Houston is home to the Christopher C. Kraft Jr. Mission Control Center, where all flight control is managed for manned space missions. JSC is the lead NASA center for activities regarding the International Space Station and also houses the NASA Astronaut Corps that selects, trains, and provides astronauts as crew members for US and international space missions.

Another major facility is Marshall Space Flight Center in Huntsville, Alabama at which the Saturn 5 rocket and Skylab were developed.[164] The JPL worked together with ABMA, one of the agencies behind Explorer 1, the first American space mission.

The ten NASA field centers are:

Numerous other facilities are operated by NASA, including the Wallops Flight Facility in Wallops Island, Virginia; the Michoud Assembly Facility in New Orleans, Louisiana; the White Sands Test Facility in Las Cruces, New Mexico; and Deep Space Network stations in Barstow, California; Madrid, Spain; and Canberra, Australia.

NASA’s share of the total federal budget peaked at approximately 4.41% in 1966 during the Apollo program, then rapidly declined to approximately 1% in 1975, and stayed around that level through 1998.[24][165] The percentage then gradually dropped, until leveling off again at around half a percent in 2006 (estimated in 2012 at 0.48% of the federal budget).[166] In a March 2012 hearing of the United States Senate Science Committee, science communicator Neil deGrasse Tyson testified that “Right now, NASA’s annual budget is half a penny on your tax dollar. For twice thata penny on a dollarwe can transform the country from a sullen, dispirited nation, weary of economic struggle, to one where it has reclaimed its 20th century birthright to dream of tomorrow.”[167][168]

Despite this, public perception of NASA’s budget differs significantly: a 1997 poll indicated that most Americans believed that 20% of the federal budget went to NASA.[169]

For Fiscal Year 2015, NASA received an appropriation of US$18.01 billion from Congress$549 million more than requested and approximately $350 million more than the 2014 NASA budget passed by Congress.[170]

Continued here:

NASA – Wikipedia


...23456...102030...