This Space Roomba Could Clean the ISS While Astronauts Sleep

GermFalcon, a company specializing in airplane sanitizing tech, developed a kind of space Roomba that can blast sterilising UV rays at the walls of the ISS.

Worst Job Ever

Wiping down the inside of the International Space Station is an arduous task.

But luckily, thanks to a private company specializing in airplane sanitizing tech called GermFalcon, astronauts aboard the ISS might be able to skip that chore in the future: an autonomous, Roomba-style space cleaner called GermRover could one day blast the walls with powerful sterilizing UV rays to kill any harmful microbes.

“UV disinfection has been shown to decrease hospital infection rates, so we expect to replicate those results in space,” Elliot Kreitenberg, developer of the robot, told New Scientist.

Filthy Space Station

Futurism has previously reported on how conditions can get nasty on board the ISS.

Research published earlier this month suggests that the ISS is teeming with bacterial and fungal colonies. Some of these bacteria were even found to be antibiotic-resistant as well, compounding the problem.

NASA is currently looking into trialing the GermRover. GermFalcon is working on a prototype it will reveal at the Aerospace Medicine Association conference in Las Vegas next month, according to the New Scientist.

READ MORE: Zero-gravity robot cleaner could automatically sterilise the ISS [New Scientist]

More on germs on the ISS: The International Space Station is Teeming With Germs

The post This Space Roomba Could Clean the ISS While Astronauts Sleep appeared first on Futurism.

Go here to see the original:

This Space Roomba Could Clean the ISS While Astronauts Sleep

John McAfee Vows to Reveal Bitcoin’s Creator

Infamous tech entrepreneur John McAfee says he's going unmask Bitcoin's creator, but the clues he's shared so far do little to narrow the field.

Maker Unmasked

Infamous tech entrepreneur John McAfee says he’s going to tell the world who created Bitcoin — and if he keeps his word, he’ll be answering perhaps the biggest lingering question in cryptocurrency.

On Wednesday, McAfee took to Twitter to announce his plan to continue sharing clues about the true identity of “Satoshi Nakamoto,” the pseudonymous handle used by the creator of Bitcoin, until either the creator reveals himself or McAfee reveals him.

“I protected the identity of Satoshi,” McAfee tweeted. “It’s time, though, that this be put to bed. Imposters claim to be him, we are spending time and energy in search of him — It’s a waste.”

We’re Waiting

Whether McAfee actually knows the true identity of Bitcoin’s creator is anyone’s guess. But so far, he’s taken to Twitter to claim that Satoshi is male and lives in the United States. He’s also not the CIA, a government agency, computer scientist Nick Szabo, tech entrepreneur Elon Musk, or a brunette.

Oh, and yeah, he’s also alive.

My Name Is

So, to pull some rough numbers, the U.S. is home to about 156.1 million males and about 1 million of those work for the nation’s government. Say about 50 percent are brunettes — that leaves us with ~77.5 million potential Satoshi Nakamotos.

If McAfee wants anyone to believe he actually knows who created Bitcoin — or he wants to pressure the real Satoshi into revealing himself — he’s going to have to narrow the field down a bit more than that.

“Yes, I drink, use drugs, chase women, run from the law — which I have done since I was 19,” he tweeted, in defense of his ability to name the elusive programmer. “But it does not obviate the fact that I created a great company whose focus was stopping hackers. I had to know hacking. I am still John Fucking McAfee.”

READ MORE: John McAfee Triggers Countdown to Unmask Bitcoin Creator Satoshi Nakamoto [CCN]

More on John McAfee: A Real Whodunnit: Tech Eccentric John McAfee Claims Enemies Poisoned Him

The post John McAfee Vows to Reveal Bitcoin’s Creator appeared first on Futurism.

Continued here:

John McAfee Vows to Reveal Bitcoin’s Creator

Denver Is Voting on Whether to Decriminalize Psychedelic Mushrooms

Denver, Colorado, may soon decriminalize the personal use of psilocybin-containing mushrooms, making it the first place in the U.S. to consider doing so.

Trip to the Polls

Denver, Colorado may become the first city in the U.S. to decriminalize shrooms — if a new initiative gets voted through.

It’s only one city, but the vote suggests that Americans are coming around to a more progressive view on recreational — and potentially therapeutic — psychoactive drugs.

Changing Minds

If passed, Initiative 301 would decriminalize personal use and possession of mushrooms containing the psychoactive compound psilocybin. But wouldn’t legalize the growth or distribution of the shrooms, according to Vox — so it’d fall short of the full-throated legalization of marijuana that Colorado embraced in 2014.

Decriminalization of psychedelic shrooms could help Denver save time and money. Per Vox, other decriminalized areas like Portugal saw drops in drug use and drug-related deaths, suggesting that telling police to stop pursuing drug use could benefit society across the board.

READ MORE: Denver may become the first US city to decriminalize psychedelic mushrooms [Vox]

More on Psilocybin: Psychedelic Mushrooms Can Boost Creativity and Empathy For a Week

The post Denver Is Voting on Whether to Decriminalize Psychedelic Mushrooms appeared first on Futurism.

See the original post:

Denver Is Voting on Whether to Decriminalize Psychedelic Mushrooms

Professor: Total Surveillance Is the Only Way to Save Humanity

Nick Bostrom, author of

Big Brother

The Oxford philosopher who posited 15 years ago that we might be living in a computer simulation has another far-out theory, this time about humanity’s future — and it’s not exactly optimistic.

On Wednesday, Nick Bostrom took the stage at a TED conference in Vancouver, Canada, to share some of the insights from his latest work, “The Vulnerable World Hypothesis.”

In the paper, Bostrom argues that mass government surveillance will be necessary to prevent a technology of our own creation from destroying humanity — a radically dystopian idea from one of this generation’s preeminent philosophers.

Black Balls

Bostrom frames his argument in terms of a giant urn filled with balls.  Each ball represents a different idea or possible technology, and they are different colors: white (beneficial), gray (moderately harmful), or black (civilization-destroying).

Humanity is constantly pulling balls from this urn, according to Bostom’s model — and thankfully, no one has pulled out a black ball yet. Big emphasis on “yet.”

“If scientific and technological research continues,” Bostrom writes, “we will eventually reach it and pull it out.”

Dystopian AF

To prevent this from happening, Bostrom says we need a more effective global government — one that could quickly outlaw any potential civilization-destroying technology.

He also suggests we lean into mass government surveillance, outfitting every person with necklace-like “freedom tags” that can hear and see what they’re doing at all times.

These tags would feed into “patriot monitoring stations,” or “freedom centers,” where artificial intelligences monitor the data, bringing human “freedom officers” into the loop if they detect signs of a black ball.

Two Evils

We’ve already seen people abuse mass surveillance systems, and those systems are far less exhaustive than the kind Bostrom is proposing.

Still, if it’s a choice between having someone watching our every move or, you know, the end of civilization, Bostrom seems to think the former is a better option than the latter.

“Obviously there are huge downsides and indeed massive risks to mass surveillance and global governance,” he told the crowd at the TED conference, according to Inverse. “I’m just pointing out that if we are lucky, the world could be such that these would be the only way you could survive a black ball.”

READ MORE: An Oxford philosopher who’s inspired Elon Musk thinks mass surveillance might be the only way to save humanity from doom [Business Insider]

More on Bostrom: Philosopher Hadn’t Seen “The Matrix” Before Publishing Simulation Hypothesis

The post Professor: Total Surveillance Is the Only Way to Save Humanity appeared first on Futurism.

Here is the original post:

Professor: Total Surveillance Is the Only Way to Save Humanity

Amazing New Rocket Engine Sucks up Atmospheric Oxygen for Fuel

The European Space Agency just greenlit a UK aerospace manufacturer's tests of a novel air-breathing rocket engine that sucks up atmospheric oxygen.

Air-Breathing Rocket

U.K. aerospace manufacturer Reaction Engines is preparing a potentially revolutionary rocket engine for a real-world test within the next 18 months.

The Synergistic Air-Breathing Rocket Engine (SABRE) runs partially on oxygen collected from the atmosphere rather than relying on heavy fuel. That means serious weight savings, according to the European Space Agency — such that a payload could be delivered to orbit at “half the vehicle mass of current launchers.”

Big Savings

Futurism has previously reported on Reaction Engine’s ambitious plans. Earlier this year, the company told the BBC its future hypersonic engines could be used to cut the journey from London to Sydney to just four hours.

The European Space Agency first got involved in 2010, testing the viability of the novel design and to see if the engine could withstand hypersonic speed. This week, the space agency gave the project the green light.

“The positive conclusion of our preliminary design review marks a major milestone in SABRE development,” Mark Ford, heading ESA’s Propulsion Engineering section, said in a statement. “It confirms the test version of this revolutionary new class of engine is ready for implementation.”

READ MORE: Air-Breathing Rocket Engine Gets Green Light for Major Tests [Space.com]

More on Reaction Engines: New Rocket Engine Could Whip You From London to Sydney in 4 Hours

The post Amazing New Rocket Engine Sucks up Atmospheric Oxygen for Fuel appeared first on Futurism.

See the original post:

Amazing New Rocket Engine Sucks up Atmospheric Oxygen for Fuel

Climate Change Could Cause Fukushima-Style Meltdowns in the US

Almost every active nuclear reactor in the U.S. is unprepared for flooding and storm surge caused by climate change; industry groups chose not to act.

Unprepared

Most nuclear power plants in the United States are not prepared for the increase in flooding and severe weather that climate change will soon bring.

Of the roughly 60 operational plants in the U.S., 90 percent have at least one design flaw that will render them susceptible to flood damage and storm surge, according to Bloomberg. If preventative measures aren’t taken and upgrades made, then the U.S. may face radiation leaks like the 2011 disaster at the Fukushima Daiichi Nuclear Power Plant in Japan.

Meltdown

Speaking to Bloomberg, the Nuclear Energy Institute’s Matthew Wald argued that such a meltdown was incredibly unlikely in the U.S. thanks to emergency equipment installed in some reactors.

“There is a perennial problem in any high-tech industry deciding how safe is safe enough,” Wald said, “The civilian nuclear power industry exceeds the NRC-required safety margin by a substantial amount.”

But often, individual reactors and nuclear industry organizations are allowed to set those standards themselves. Bloomberg reports that these groups were allowed to estimate not only their own reactors’ resilience in the face of climate change, but also just how bad they expected the effects of climate change to get in their area.

Oversight

With that lack of regulation, it’s no surprise that the nuclear energy industry cleared the hurdles — the industry is basically bragging about how it slam-dunked on a children’s basketball hoop.

“Any work that was done following Fukushima is for naught because the commission rejected any binding requirement to use that work,” Gregory Jaczko, who was chairman of the U.S. Nuclear Regulatory Commission in 2011 during the Fukushima meltdown, told Bloomberg. “It’s like studying the safety of seat belts and then not making automakers put them in a car.”

READ MORE: U.S. Nuclear Power Plants Weren’t Built for Climate Change [Bloomberg]

More on nuclear power: See the Centaur-Like Robot Designed to Handle Nuclear Reactors

The post Climate Change Could Cause Fukushima-Style Meltdowns in the US appeared first on Futurism.

Follow this link:

Climate Change Could Cause Fukushima-Style Meltdowns in the US

China’s Military Built an Autonomous Amphibious Landing Vehicle

China has announced what local media is calling the

Marine Lizard

China has announced what local media is calling the “world’s first armed amphibious drone boat.”

The 39-foot-long Marine Lizard is designed to assist land assault operations and can form a web with other drone ships and airborne drones in order to act in tandem with them. It can reach a maximum of 50 knots (roughly 57 mph) in the water thanks to a diesel hydrojet engine — and on land it can reach only 12 mph (20 km/h) thanks to four track units mounted to its underbelly.

Autonomous Drone Ship

The Marine Lizard was built by the state-owned China Shipbuilding Industry Company (CSIC) to be truly autonomous: it can find its own way, maneuver around obstacles, or be remotely controlled via satellites with an impressive operating range of 7,450 miles (1,2000 km). When not in use, the vehicle can go into sleep mode for up to eight months while it’s not in operation, according to the Global Times.

The unusual amphibian drone is touted as a great way to assist recon missions from both aerial drones and other ships — and could do so very efficiently and with a low risk of casualties, according to the company.

READ MORE: China unveils the first autonomous amphibious military landing vehicle [The Verge]

More on unmanned ships: The U.S. Navy Wants to Roll out Autonomous Killer Robot Ships

The post China’s Military Built an Autonomous Amphibious Landing Vehicle appeared first on Futurism.

Read the rest here:

China’s Military Built an Autonomous Amphibious Landing Vehicle

Boston Dynamics Unveils SpotMini You’ll Actually Be Able to Buy

Boston Dynamics has debuted the version of its SpotMini robot dog that it plans to actually sell to consumers — but it has yet to announce a price tag.

New Best Friend

We’ve seen Boston Dynamics’ SpotMini climb stairs, pull heavy loads, and even dance like no one’s watching — and now, we’re finally getting a look at the version of the robo-dog that could one day do all those things on your command.

On Thursday, Boston Dynamics’ CEO Marc Raibert unveiled the production version of SpotMini at a TechCrunch-hosted startup showcase. He claims the company will produce about 100 of the robots this year, with production expected to begin in July or August — meaning it might not be long before we have bio-inspired robots navigating our homes.

A Better Bot

According to TechCrunch, the production version of SpotMini includes “redesigned components to make it more reliable, skins that work better to protect the robot if it falls and two sets of cameras on the front and one on each side and the back, so it can see in all directions.”

Raibert doesn’t think the production version of the robo-dog will be limited to the capabilities it ships with, either.

During the conference he said he hopes SpotMini will become the “Android of robots,” a reference to Google’s mobile operating system. In other words, he envisions software engineers writing their own apps to give the robot new capabilities.

As for the big question that remains — How much for that robo-dog in the video? — Raibert said Boston Dynamics will reveal pricing details this summer.

READ MORE: Boston Dynamics debuts production version of SpotMini [TechCrunch]

More on SpotMini: Watch a Pack of Boston Dynamics’ Creepy Robot Dogs Pull a Truck

The post Boston Dynamics Unveils SpotMini You’ll Actually Be Able to Buy appeared first on Futurism.

Follow this link:

Boston Dynamics Unveils SpotMini You’ll Actually Be Able to Buy

Puerto Rico Will Stop Burning Coal Next Year

The governor of Puerto Rico just signed a bill that will quickly move the island away from non-renewable energy sources within the next few decades.

Spring Cleaning

Puerto Rico has a plan in motion to shut down its coal-burning power plants by next year.

The Puerto Rico Energy Public Policy Act, recently signed by Puerto Rico’s governor Ricardo Roselló, puts the island on track to completely ditch non-renewable energy sources by 2050, according to The Rising — a heartening sign that Puerto Rico plans to rebuild its infrastructure to be as environmentally-friendly as possible in the wake of Hurricane Maria.

Nitty Gritty

According to the bill, coal-burning power plants will get the axe in 2020, and all other coal-burning in Puerto Rico will be eliminated in 2028 . Meanwhile, Puerto Rico, which in 2017 only got two percent of its energy from renewable sources, will reach 40 percent by 2025 and 100 percent by 2050.

“I’m pretty sure that this will be, by leaps and bounds, the quickest transition to renewables that’s ever happened anywhere on the planet” P.J. Wilson, President of the Solar and Energy Storage Association of Puerto Rico, told The Rising. “To go from [2] percent today to 40 percent by five years from now will be the biggest challenge the renewable energy industry has ever faced, on top of a very challenging political situation and a challenging financial situation.”

READ MORE: Puerto Rico to Adopt 100% Renewable Energy [The Rising]

More on Puerto Rico: When It Comes To Natural Disasters, Technology Has An Unavoidable Dark Side

The post Puerto Rico Will Stop Burning Coal Next Year appeared first on Futurism.

Continue reading here:

Puerto Rico Will Stop Burning Coal Next Year

Listen to Brutal Death Metal Made by a Neural Network

A neural network is grinding out the blast beats, super-distorted guitars and bellowing vocals of death metal — and livestreaming it.

Death Metal

In a project called “Relentless Doppelganger,” a neural network is grinding out the blast beats, super-distorted guitars, and bellowing vocals of death metal.

The best part of all: it’s streaming its brutal creations 24 hours a day on YouTube — an intriguing and public example of AI that’s now able to generate convincing imitations of human art.

Dadabots

The neural network is the work of Dadabots, a research duo that experiments with creating music using artificial intelligence tools.

The death metal project, which they trained using tracks by death metal band Archspire, is the first that they’ve livestreamed instead of releasing as an album, and the change in format had everything to do with the quality of the neural network’s output.

In Dadabots’ previous experiments, which dabbled in black metal and Beatles-inspired tracks, only about 5 percent of the AI-generated tracks were usable, co-creator CJ Carr told Futurism, and the programmers had to curate it.

“The remarkable part is the high quality-to-shit ratio,” Carr told Futurism of this new project. “Here, we livestream 100 percent of it,” he said. “Zero curation necessary.”

Black Metal

Part of the success of “Relentless Doppelganger,” Carr suspects, is the relentless speed of Archspire’s songs.

“It seems the faster the blast beats, the more stable the music,” he told Futurism. “Archspire is insanely fast.”

READ MORE: This YouTube Channel Streams AI-Generated Death Metal 24/7 [Motherboard]

More on AI-generated music: Expert: AI-Generated Music Is A “Total Legal Clusterf*ck”

The post Listen to Brutal Death Metal Made by a Neural Network appeared first on Futurism.

More here:

Listen to Brutal Death Metal Made by a Neural Network

Scientists Find Genetic Variants That Prevent Obesity, Diabetes

Researchers from the University of Cambridge have discovered genetic variants that protect people from obesity and its symptoms.

Drug Discovery

Researchers from the University of Cambridge have discovered genetic variants, or mutations, that protect people from obesity and its symptoms — and they think the discovery could lead to new weight-loss medications.

“A powerful emerging concept is that genetic variants that protect against disease can be used as models for the development of medicines that are more effective and safer,” researcher Luca Lotta said in a news release.

The Weight Gene

In a study published on Thursday in the journal Cell, the team details how it analyzed the MC4R gene in half a million volunteers who participated in the U.K. Biobank study.

They already knew the gene played a role in regulating weight, but through their new research they discovered 61 distinct variants of it, some of which help people avoid becoming obese. Others provided protection against obesity symptoms, including type 2 diabetes and heart disease.

Understanding Obesity

The study does more than just illuminate a path toward new weight-loss medications — it also shines a light on the very nature of obesity.

“This study drives home the fact that genetics plays a major role in why some people are obese,” researcher Sadaf Farooqi said in the news release, “and that some people are fortunate enough to have genes that protect them from obesity.”

READ MORE: Discovery of genetic variants that protect against obesity and type 2 diabetes could lead to new weight loss medicines [University of Cambridge]

More on MC4R: Mutated Animals Show Why Gene Editing Isn’t Ready for Human Trials 

The post Scientists Find Genetic Variants That Prevent Obesity, Diabetes appeared first on Futurism.

See original here:

Scientists Find Genetic Variants That Prevent Obesity, Diabetes

IBM Pulls the Plug on Drug-Discovering Watson AI

IBM is halting development and sales of its Watson AI designed to find promising new medications, according to a new STAT story.

Bye, Watson

On Thursday, STAT published a story claiming that IBM is halting sales of Watson for Drug Discovery — a service that uses the company’s Watson AI to analyze connections between genes, drugs, and diseases on the hunt for useful new medications — citing as its source a person familiar with IBM’s internal decision-making.

“We are focusing our resources within Watson Health to double down on the adjacent field of clinical development where we see an even greater market need for our data and AI capabilities,” an IBM spokesperson told STAT — a sign that eight years after launching Watson Health, IBM still isn’t quite sure how AI should factor into the future of healthcare.

Overpromised, Underdelivered

The STAT source cited a “lackluster financial performance” as IBM’s reason for no longer developing and selling Watson for Drug Discovery. That mirrors the “lack of demand” reasoning IBM gave for scaling back the part of Watson Health dedicated to helping hospitals manage certain contracts in June 2018.

It’s hard to imagine why the systems would be in high demand, though — several healthcare experts told IEEE Spectrum earlier in April that IBM had “overpromised and underdelivered” with Watson Health.

“Merely proving that you have powerful technology is not sufficient,” healthcare data strategist Martin Kohn told the publication. “Prove to me that it will actually do something useful — that it will make my life better, and my patients’ lives better.”

READ MORE: IBM halting sales of Watson AI tool for drug discovery amid sluggish growth [STAT]

More on Watson Health: Doctors Are Losing Faith in IBM Watson’s AI Doctor

The post IBM Pulls the Plug on Drug-Discovering Watson AI appeared first on Futurism.

See the rest here:

IBM Pulls the Plug on Drug-Discovering Watson AI

The Government Wants to Make an Example out of Mark Zuckerberg

The Federal Trade Commission is reportedly considering holding Mark Zuckerberg directly responsible for Facebook's privacy scandals.

Target Acquired

After seemingly countless privacy scandals rocked Facebook in recent years, federal regulators are considering taking a more aggressive approach — including potentially holding CEO Mark Zuckerberg responsible for the social media giant’s misconduct.

The news comes from anonymous sources close to the Federal Trade Commission (FTC)’s ongoing, confidential probe into Facebook’s business practices who spoke to The Washington Post. New governmental oversight for Zuckerberg would send a strong message to Facebook and other Silicon Valley data brokers — though probably not the one Zuckerberg hoped for when he requested new regulations for his industry earlier this month.

Big Stick

In the past, the FTC has considered fining Zuckerberg directly when his company mishandled user data, but never pulled the trigger. That regulators are returning to that option suggests that they’re fed up with Zuckerberg getting off scot-free when his company plays fast and loose with users’ privacy.

“The days of pretending this is an innocent platform are over, and citing Mark in a large scale enforcement action would drive that home in spades,” Facebook investor-turned-critic Roger McNamee told WaPo.

READ MORE: Facebook CEO Mark Zuckerberg under close scrutiny in federal privacy probe, sources say [The Washington Post]

More on Facebook: Facebook “Unintentionally” Uploaded 1.5 Million Email Contacts

The post The Government Wants to Make an Example out of Mark Zuckerberg appeared first on Futurism.

Read the original post:

The Government Wants to Make an Example out of Mark Zuckerberg

Scientists Create Material With “Artificial Metabolism”

A new biomaterial exhibits metabolism-like behaviors. It appears in some ways to act like a living thing, blurring the line between biology and machinery.

Slime Mold

Scientists just got one step closer to creating living machines — or at least machines that mimic biological life as we know it.

A new biomaterial built in a Cornell University bioengineering lab uses synthetic DNA to continuously and autonomously organize, assemble, and restructure itself in a process so similar to how biological cells and tissues grow that the researchers are calling “artificial metabolism,” according to research published in Science Robotics last week.

 We Can Regrow It

It’s clear that the scientists are dancing around the idea of creating lifelike machinery. They stop short of straight-up claiming that their metabolizing biomaterial is alive, but the research begins by coyly listing the characteristics of life that the material exhibits — self-assembly, organization, and metabolism.

“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism,” Cornell engineer Dan Lui said in a university-published press release. “We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before.”

Worming Along

The biomaterial mimics a biological organism’s endless metabolic cycle of taking in energy and replacing old cells. When placed in a nutrient-rich environment, the material grew in the direction of the raw materials and food it needed to thrive — not unlike how a developing brain’s neurons grow out in the direction of specific molecules.

Meanwhile, the material also let its tail end die off and decay, giving the appearance of a constantly-regrowing slime mold traveling around toward food.

While the little bio-blob isn’t alive, it does appear to move and grow like a living thing, suggesting that scientists are blurring the line between life and machine more and more.

READ MORE: FORGET ARTIFICIAL INTELLIGENCE; THINK ARTIFICIAL LIFE [Hackaday]

More on biomaterials: Scientists Manipulated a Material for Robots That Grows Like Human Skin

The post Scientists Create Material With “Artificial Metabolism” appeared first on Futurism.

Read more from the original source:

Scientists Create Material With “Artificial Metabolism”

From Coffee to Popcorn, Celebrate 420 With These Futuristic CBD Edibles

By now, you’re probably familiar with CBD, a cannabinoid found in cannabis plants that has exploded in popularity. The compound is thought to provide many of the benefits of marijuana, but because it lacks THC, it does not cause a mind-altering high. As such, the pot-alternative (or perhaps “pot companion” is a better description) can now be found in a variety of products, and is being used to treat everything from anxiety to chronic pain – although the scientific community is still divided on the accuracy of these claims.

Still, CBD is wildly popular. But rather than focus on the common CBD products such as oils and vapes, we’ve decided to celebrate 420 with a list of some futuristic novel CBD edibles. From popcorn, to coffee, to honey, these CBD edibles provide a unique way to experience the uber-popular cannabinoid. So take a look for yourself, and add a dose of fun to this year’s 420 celebration.

CBD Popcorn

CBD Edibles - Popcorn
DiamondCBD.com

BlackDiamondCBD offers delicious CBD infused popcorn in a variety flavors. From plain to caramel corn to ranch, there’s something for everyone. It makes a great snack, and it’s a perfect way to spice up your next movie night.

Chill CBD Coffee (4 pack)

CBD Edibles - Coffee
DiamondCBD.com

If you’re looking to add CBD to your morning routine, look no further than Chill CBD Coffee pods. It’s a convenient and delicious way to benefit from 25mg of high-quality CBD. And it’s also available for tea drinkers. You know who you are.

CBD Edibles – Infused Honey Pot – 250mg

CBD Edibles - Honey
DiamondCBD.com

This CBD-infused honey has 250mg CBD derived from industrial hemp oil (cannabidiol), so it’s free of THC. And as the name implies, it also features Grade A all-natural honey. It can be put in tea, added as a topping on food, or even used as an ingredient in your favorite dish. Or you can just pretend you’re a cartoon bear and guzzle this sweet treat all by itself. We won’t judge you… much.

Editor’s note: A non-editorial team at Futurism created this article, and we may receive a percentage of sales from this post. This supplement has not been evaluated by the FDA, and is not intended to cure or treat any ailments. Do not take CBD products if you are allergic to any of the ingredients in the product you are consuming. Tell your doctor about all medicines you may be on before consuming CBD to avoid negative reactions. Tell your doctor about all medical conditions. Tell your doctor about all the medicines you take, including prescription and nonprescription medicines, vitamins and herbal products. Other side effects of CBD include: dry mouth, cloudy thoughts, and wakefulness. You are encouraged to report negative side effects of any drugs to the FDA. Visit http://www.fda.gov/medwatch, or call 1-800-FDA-1088.

The post From Coffee to Popcorn, Celebrate 420 With These Futuristic CBD Edibles appeared first on Futurism.

Continue reading here:

From Coffee to Popcorn, Celebrate 420 With These Futuristic CBD Edibles

Nanotechnology – Wikipedia

Nanotechnology (“nanotech”) is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form “nanotechnologies” as well as “nanoscale technologies” to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through 2012, the USA has invested $3.7 billion using its National Nanotechnology Initiative, the European Union has invested $1.2 billion, and Japan has invested $750 million.[3]

Nanotechnology as defined by size is naturally very broad, including fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage,[4][5] microfabrication,[6] molecular engineering, etc.[7] The associated research and applications are equally diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly,[8] from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale.

Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in nanomedicine, nanoelectronics, biomaterials energy production, and consumer products. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials,[9] and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.

The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There’s Plenty of Room at the Bottom, in which he described the possibility of synthesis via direct manipulation of atoms. The term “nano-technology” was first used by Norio Taniguchi in 1974, though it was not widely known.

Inspired by Feynman’s concepts, K. Eric Drexler used the term “nanotechnology” in his 1986 book Engines of Creation: The Coming Era of Nanotechnology, which proposed the idea of a nanoscale “assembler” which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control. Also in 1986, Drexler co-founded The Foresight Institute (with which he is no longer affiliated) to help increase public awareness and understanding of nanotechnology concepts and implications.

Thus, emergence of nanotechnology as a field in the 1980s occurred through convergence of Drexler’s theoretical and public work, which developed and popularized a conceptual framework for nanotechnology, and high-visibility experimental advances that drew additional wide-scale attention to the prospects of atomic control of matter. Since the popularity spike in the 1980s, most of nanotechnology has involved investigation of several approaches to making mechanical devices out of a small number of atoms.[10]

In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era. First, the invention of the scanning tunneling microscope in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope’s developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986.[11][12] Binnig, Quate and Gerber also invented the analogous atomic force microscope that year.

Second, Fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert Curl, who together won the 1996 Nobel Prize in Chemistry.[13][14] C60 was not initially described as nanotechnology; the term was used regarding subsequent work with related graphene tubes (called carbon nanotubes and sometimes called Bucky tubes) which suggested potential applications for nanoscale electronics and devices.

In the early 2000s, the field garnered increased scientific, political, and commercial attention that led to both controversy and progress. Controversies emerged regarding the definitions and potential implications of nanotechnologies, exemplified by the Royal Society’s report on nanotechnology.[15] Challenges were raised regarding the feasibility of applications envisioned by advocates of molecular nanotechnology, which culminated in a public debate between Drexler and Smalley in 2001 and 2003.[16]

Meanwhile, commercialization of products based on advancements in nanoscale technologies began emerging. These products are limited to bulk applications of nanomaterials and do not involve atomic control of matter. Some examples include the Silver Nano platform for using silver nanoparticles as an antibacterial agent, nanoparticle-based transparent sunscreens, carbon fiber strengthening using silica nanoparticles, and carbon nanotubes for stain-resistant textiles.[17][18]

Governments moved to promote and fund research into nanotechnology, such as in the U.S. with the National Nanotechnology Initiative, which formalized a size-based definition of nanotechnology and established funding for research on the nanoscale, and in Europe via the European Framework Programmes for Research and Technological Development.

By the mid-2000s new and serious scientific attention began to flourish. Projects emerged to produce nanotechnology roadmaps[19][20] which center on atomically precise manipulation of matter and discuss existing and projected capabilities, goals, and applications.

Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, nanotechnology refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products.

One nanometer (nm) is one billionth, or 109, of a meter. By comparison, typical carbon-carbon bond lengths, or the spacing between these atoms in a molecule, are in the range 0.120.15 nm, and a DNA double-helix has a diameter around 2nm. On the other hand, the smallest cellular life-forms, the bacteria of the genus Mycoplasma, are around 200nm in length. By convention, nanotechnology is taken as the scale range 1 to 100 nm following the definition used by the National Nanotechnology Initiative in the US. The lower limit is set by the size of atoms (hydrogen has the smallest atoms, which are approximately a quarter of a nm kinetic diameter) since nanotechnology must build its devices from atoms and molecules. The upper limit is more or less arbitrary but is around the size below which phenomena not observed in larger structures start to become apparent and can be made use of in the nano device.[21] These new phenomena make nanotechnology distinct from devices which are merely miniaturised versions of an equivalent macroscopic device; such devices are on a larger scale and come under the description of microtechnology.[22]

To put that scale in another context, the comparative size of a nanometer to a meter is the same as that of a marble to the size of the earth.[23] Or another way of putting it: a nanometer is the amount an average man’s beard grows in the time it takes him to raise the razor to his face.[23]

Two main approaches are used in nanotechnology. In the “bottom-up” approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition.[24] In the “top-down” approach, nano-objects are constructed from larger entities without atomic-level control.[25]

Areas of physics such as nanoelectronics, nanomechanics, nanophotonics and nanoionics have evolved during the last few decades to provide a basic scientific foundation of nanotechnology.

Several phenomena become pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, quantum effects can become significant when the nanometer size range is reached, typically at distances of 100 nanometers or less, the so-called quantum realm. Additionally, a number of physical (mechanical, electrical, optical, etc.) properties change when compared to macroscopic systems. One example is the increase in surface area to volume ratio altering mechanical, thermal and catalytic properties of materials. Diffusion and reactions at nanoscale, nanostructures materials and nanodevices with fast ion transport are generally referred to nanoionics. Mechanical properties of nanosystems are of interest in the nanomechanics research. The catalytic activity of nanomaterials also opens potential risks in their interaction with biomaterials.

Materials reduced to the nanoscale can show different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances can become transparent (copper); stable materials can turn combustible (aluminium); insoluble materials may become soluble (gold). A material such as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these quantum and surface phenomena that matter exhibits at the nanoscale.[26]

Modern synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to manufacture a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a well defined manner.

These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific configuration or arrangement is favored due to non-covalent intermolecular forces. The WatsonCrick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.

Such bottom-up approaches should be capable of producing devices in parallel and be much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases. Most useful structures require complex and thermodynamically unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on molecular recognition in biology, most notably WatsonCrick basepairing and enzyme-substrate interactions. The challenge for nanotechnology is whether these principles can be used to engineer new constructs in addition to natural ones.

Molecular nanotechnology, sometimes called molecular manufacturing, describes engineered nanosystems (nanoscale machines) operating on the molecular scale. Molecular nanotechnology is especially associated with the molecular assembler, a machine that can produce a desired structure or device atom-by-atom using the principles of mechanosynthesis. Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.

When the term “nanotechnology” was independently coined and popularized by Eric Drexler (who at the time was unaware of an earlier usage by Norio Taniguchi) it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular scale biological analogies of traditional machine components demonstrated molecular machines were possible: by the countless examples found in biology, it is known that sophisticated, stochastically optimised biological machines can be produced.

It is hoped that developments in nanotechnology will make possible their construction by some other means, perhaps using biomimetic principles. However, Drexler and other researchers[27] have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles, namely, a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) that would enable programmable, positional assembly to atomic specification.[28] The physics and engineering performance of exemplar designs were analyzed in Drexler’s book Nanosystems.

In general it is very difficult to assemble devices on the atomic scale, as one has to position atoms on other atoms of comparable size and stickiness. Another view, put forth by Carlo Montemagno,[29] is that future nanosystems will be hybrids of silicon technology and biological molecular machines. Richard Smalley argued that mechanosynthesis are impossible due to the difficulties in mechanically manipulating individual molecules.

This led to an exchange of letters in the ACS publication Chemical & Engineering News in 2003.[30] Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley.[1] They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a nanotube nanomotor, a molecular actuator,[31] and a nanoelectromechanical relaxation oscillator.[32] See nanotube nanomotor for more examples.

An experiment indicating that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bound the CO to the Fe by applying a voltage.

The nanomaterials field includes subfields which develop or study materials having unique properties arising from their nanoscale dimensions.[35]

These seek to arrange smaller components into more complex assemblies.

These seek to create smaller devices by using larger ones to direct their assembly.

These seek to develop components of a desired functionality without regard to how they might be assembled.

These subfields seek to anticipate what inventions nanotechnology might yield, or attempt to propose an agenda along which inquiry might progress. These often take a big-picture view of nanotechnology, with more emphasis on its societal implications than the details of how such inventions could actually be created.

Nanomaterials can be classified in 0D, 1D, 2D and 3D nanomaterials. The dimensionality play a major role in determining the characteristic of nanomaterials including physical, chemical and biological characteristics. With the decrease in dimensionality, an increase in surface-to-volume ratio is observed. This indicate that smaller dimensional nanomaterials have higher surface area compared to 3D nanomaterials. Recently, two dimensional (2D) nanomaterials are extensively investigated for electronic, biomedical, drug delivery and biosensor applications.

There are several important modern developments. The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy. Although conceptually similar to the scanning confocal microscope developed by Marvin Minsky in 1961 and the scanning acoustic microscope (SAM) developed by Calvin Quate and coworkers in the 1970s, newer scanning probe microscopes have much higher resolution, since they are not limited by the wavelength of sound or light.

The tip of a scanning probe can also be used to manipulate nanostructures (a process called positional assembly). Feature-oriented scanning methodology may be a promising way to implement these nanomanipulations in automatic mode.[53][54] However, this is still a slow process because of low scanning velocity of the microscope.

Various techniques of nanolithography such as optical lithography, X-ray lithography, dip pen nanolithography, electron beam lithography or nanoimprint lithography were also developed. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.

Another group of nanotechnological techniques include those used for fabrication of nanotubes and nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. The precursors of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology and which were results of nanotechnology research.[55]

The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. By using, for example, feature-oriented scanning approach, atoms or molecules can be moved around on a surface with scanning probe microscopy techniques.[53][54] At present, it is expensive and time-consuming for mass production but very suitable for laboratory experimentation.

In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly. Dual polarisation interferometry is one tool suitable for characterisation of self assembled thin films. Another variation of the bottom-up approach is molecular beam epitaxy or MBE. Researchers at Bell Telephone Laboratories like John R. Arthur. Alfred Y. Cho, and Art C. Gossard developed and implemented MBE as a research tool in the late 1960s and 1970s. Samples made by MBE were key to the discovery of the fractional quantum Hall effect for which the 1998 Nobel Prize in Physics was awarded. MBE allows scientists to lay down atomically precise layers of atoms and, in the process, build up complex structures. Important for research on semiconductors, MBE is also widely used to make samples and devices for the newly emerging field of spintronics.

However, new therapeutic products, based on responsive nanomaterials, such as the ultradeformable, stress-sensitive Transfersome vesicles, are under development and already approved for human use in some countries.[56]

As of August 21, 2008, the Project on Emerging Nanotechnologies estimates that over 800 manufacturer-identified nanotech products are publicly available, with new ones hitting the market at a pace of 34 per week.[18] The project lists all of the products in a publicly accessible online database. Most applications are limited to the use of “first generation” passive nanomaterials which includes titanium dioxide in sunscreen, cosmetics, surface coatings,[57] and some food products; Carbon allotropes used to produce gecko tape; silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.[17]

Further applications allow tennis balls to last longer, golf balls to fly straighter, and even bowling balls to become more durable and have a harder surface. Trousers and socks have been infused with nanotechnology so that they will last longer and keep people cool in the summer. Bandages are being infused with silver nanoparticles to heal cuts faster.[58] Video game consoles and personal computers may become cheaper, faster, and contain more memory thanks to nanotechnology.[59] Also, to build structures for on chip computing with light, for example on chip optical quantum information processing, and picosecond transmission of information.[60]

Nanotechnology may have the ability to make existing medical applications cheaper and easier to use in places like the general practitioner’s office and at home.[61] Cars are being manufactured with nanomaterials so they may need fewer metals and less fuel to operate in the future.[62]

Scientists are now turning to nanotechnology in an attempt to develop diesel engines with cleaner exhaust fumes. Platinum is currently used as the diesel engine catalyst in these engines. The catalyst is what cleans the exhaust fume particles. First a reduction catalyst is employed to take nitrogen atoms from NOx molecules in order to free oxygen. Next the oxidation catalyst oxidizes the hydrocarbons and carbon monoxide to form carbon dioxide and water.[63] Platinum is used in both the reduction and the oxidation catalysts.[64] Using platinum though, is inefficient in that it is expensive and unsustainable. Danish company InnovationsFonden invested DKK 15 million in a search for new catalyst substitutes using nanotechnology. The goal of the project, launched in the autumn of 2014, is to maximize surface area and minimize the amount of material required. Objects tend to minimize their surface energy; two drops of water, for example, will join to form one drop and decrease surface area. If the catalyst’s surface area that is exposed to the exhaust fumes is maximized, efficiency of the catalyst is maximized. The team working on this project aims to create nanoparticles that will not merge. Every time the surface is optimized, material is saved. Thus, creating these nanoparticles will increase the effectiveness of the resulting diesel engine catalystin turn leading to cleaner exhaust fumesand will decrease cost. If successful, the team hopes to reduce platinum use by 25%.[65]

Nanotechnology also has a prominent role in the fast developing field of Tissue Engineering. When designing scaffolds, researchers attempt to the mimic the nanoscale features of a Cell’s microenvironment to direct its differentiation down a suitable lineage.[66] For example, when creating scaffolds to support the growth of bone, researchers may mimic osteoclast resorption pits.[67]

Researchers have successfully used DNA origami-based nanobots capable of carrying out logic functions to achieve targeted drug delivery in cockroaches. It is said that the computational power of these nanobots can be scaled up to that of a Commodore 64.[68]

An area of concern is the effect that industrial-scale manufacturing and use of nanomaterials would have on human health and the environment, as suggested by nanotoxicology research. For these reasons, some groups advocate that nanotechnology be regulated by governments. Others counter that overregulation would stifle scientific research and the development of beneficial innovations. Public health research agencies, such as the National Institute for Occupational Safety and Health are actively conducting research on potential health effects stemming from exposures to nanoparticles.[69][70]

Some nanoparticle products may have unintended consequences. Researchers have discovered that bacteriostatic silver nanoparticles used in socks to reduce foot odor are being released in the wash.[71] These particles are then flushed into the waste water stream and may destroy bacteria which are critical components of natural ecosystems, farms, and waste treatment processes.[72]

Public deliberations on risk perception in the US and UK carried out by the Center for Nanotechnology in Society found that participants were more positive about nanotechnologies for energy applications than for health applications, with health applications raising moral and ethical dilemmas such as cost and availability.[73]

Experts, including director of the Woodrow Wilson Center’s Project on Emerging Nanotechnologies David Rejeski, have testified[74] that successful commercialization depends on adequate oversight, risk research strategy, and public engagement. Berkeley, California is currently the only city in the United States to regulate nanotechnology;[75] Cambridge, Massachusetts in 2008 considered enacting a similar law,[76] but ultimately rejected it.[77] Relevant for both research on and application of nanotechnologies, the insurability of nanotechnology is contested.[78] Without state regulation of nanotechnology, the availability of private insurance for potential damages is seen as necessary to ensure that burdens are not socialised implicitly. Over the next several decades, applications of nanotechnology will likely include much higher-capacity computers, active materials of various kinds, and cellular-scale biomedical devices.[10]

Nanofibers are used in several areas and in different products, in everything from aircraft wings to tennis rackets. Inhaling airborne nanoparticles and nanofibers may lead to a number of pulmonary diseases, e.g. fibrosis.[79] Researchers have found that when rats breathed in nanoparticles, the particles settled in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress response[80] and that nanoparticles induce skin aging through oxidative stress in hairless mice.[81][82]

A two-year study at UCLA’s School of Public Health found lab mice consuming nano-titanium dioxide showed DNA and chromosome damage to a degree “linked to all the big killers of man, namely cancer, heart disease, neurological disease and aging”.[83]

A major study published more recently in Nature Nanotechnology suggests some forms of carbon nanotubes a poster child for the “nanotechnology revolution” could be as harmful as asbestos if inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh, Scotland, who contributed to the article on carbon nanotubes said “We know that some of them probably have the potential to cause mesothelioma. So those sorts of materials need to be handled very carefully.”[84] In the absence of specific regulation forthcoming from governments, Paull and Lyons (2008) have called for an exclusion of engineered nanoparticles in food.[85] A newspaper article reports that workers in a paint factory developed serious lung disease and nanoparticles were found in their lungs.[86][87][88][89]

Calls for tighter regulation of nanotechnology have occurred alongside a growing debate related to the human health and safety risks of nanotechnology.[90] There is significant debate about who is responsible for the regulation of nanotechnology. Some regulatory agencies currently cover some nanotechnology products and processes (to varying degrees) by “bolting on” nanotechnology to existing regulations there are clear gaps in these regimes.[91] Davies (2008) has proposed a regulatory road map describing steps to deal with these shortcomings.[92]

Stakeholders concerned by the lack of a regulatory framework to assess and control risks associated with the release of nanoparticles and nanotubes have drawn parallels with bovine spongiform encephalopathy (“mad cow” disease), thalidomide, genetically modified food,[93] nuclear energy, reproductive technologies, biotechnology, and asbestosis. Dr. Andrew Maynard, chief science advisor to the Woodrow Wilson Center’s Project on Emerging Nanotechnologies, concludes that there is insufficient funding for human health and safety research, and as a result there is currently limited understanding of the human health and safety risks associated with nanotechnology.[94] As a result, some academics have called for stricter application of the precautionary principle, with delayed marketing approval, enhanced labelling and additional safety data development requirements in relation to certain forms of nanotechnology.[95][96]

The Royal Society report[15] identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that “manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure” (p. xiii).

The Center for Nanotechnology in Society has found that people respond to nanotechnologies differently, depending on application with participants in public deliberations more positive about nanotechnologies for energy than health applications suggesting that any public calls for nano regulations may differ by technology sector.[73]

Excerpt from:

Nanotechnology – Wikipedia

What is Nanotechnology? | Nano

Nanotechnology is science, engineering, and technologyconductedat the nanoscale, which is about 1 to 100 nanometers.

Physicist Richard Feynman, the father of nanotechnology.

Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

The ideas and concepts behind nanoscience and nanotechnology started with a talk entitled Theres Plenty of Room at the Bottom by physicist Richard Feynman at an American Physical Society meeting at the California Institute of Technology (CalTech) on December 29, 1959, long before the term nanotechnology was used. In his talk, Feynman described a process in which scientists would be able to manipulate and control individual atoms and molecules. Over a decade later, in his explorations of ultraprecision machining, Professor Norio Taniguchi coined the term nanotechnology. It wasn’t until 1981, with the development of the scanning tunneling microscope that could “see” individual atoms, that modern nanotechnology began.

Its hard to imagine just how small nanotechnology is. One nanometer is a billionth of a meter, or 10-9 of a meter. Here are a few illustrative examples:

Nanoscience and nanotechnology involve the ability to see and to control individual atoms and molecules. Everything on Earth is made up of atomsthe food we eat, the clothes we wear, the buildings and houses we live in, and our own bodies.

But something as small as an atom is impossible to see with the naked eye. In fact, its impossible to see with the microscopes typically used in a high school science classes. The microscopes needed to see things at the nanoscale were invented relatively recentlyabout 30 years ago.

Once scientists had the right tools, such as thescanning tunneling microscope (STM)and the atomic force microscope (AFM), the age of nanotechnology was born.

Although modern nanoscience and nanotechnology are quite new, nanoscale materialswereused for centuries. Alternate-sized gold and silver particles created colors in the stained glass windows of medieval churches hundreds of years ago. The artists back then just didnt know that the process they used to create these beautiful works of art actually led to changes in the composition of the materials they were working with.

Today’s scientists andengineers are finding a wide variety of ways to deliberatelymake materials at the nanoscale to take advantage of their enhanced properties such as higher strength, lighter weight,increased control oflight spectrum, and greater chemical reactivity than theirlarger-scale counterparts.

Read the original:

What is Nanotechnology? | Nano

Nanotechnology | Britannica.com

Nanotechnology, the manipulation and manufacture of materials and devices on the scale of atoms or small groups of atoms. The nanoscale is typically measured in nanometres, or billionths of a metre (nanos, the Greek word for dwarf, being the source of the prefix), and materials built at this scale often exhibit distinctive physical and chemical properties due to quantum mechanical effects. Although usable devices this small may be decades away (see microelectromechanical system), techniques for working at the nanoscale have become essential to electronic engineering, and nanoengineered materials have begun to appear in consumer products. For example, billions of microscopic nanowhiskers, each about 10 nanometres in length, have been molecularly hooked onto natural and synthetic fibres to impart stain resistance to clothing and other fabrics; zinc oxide nanocrystals have been used to create invisible sunscreens that block ultraviolet light; and silver nanocrystals have been embedded in bandages to kill bacteria and prevent infection.

Possibilities for the future are numerous. Nanotechnology may make it possible to manufacture lighter, stronger, and programmable materials that require less energy to produce than conventional materials, that produce less waste than with conventional manufacturing, and that promise greater fuel efficiency in land transportation, ships, aircraft, and space vehicles. Nanocoatings for both opaque and translucent surfaces may render them resistant to corrosion, scratches, and radiation. Nanoscale electronic, magnetic, and mechanical devices and systems with unprecedented levels of information processing may be fabricated, as may chemical, photochemical, and biological sensors for protection, health care, manufacturing, and the environment; new photoelectric materials that will enable the manufacture of cost-efficient solar-energy panels; and molecular-semiconductor hybrid devices that may become engines for the next revolution in the information age. The potential for improvements in health, safety, quality of life, and conservation of the environment are vast.

At the same time, significant challenges must be overcome for the benefits of nanotechnology to be realized. Scientists must learn how to manipulate and characterize individual atoms and small groups of atoms reliably. New and improved tools are needed to control the properties and structure of materials at the nanoscale; significant improvements in computer simulations of atomic and molecular structures are essential to the understanding of this realm. Next, new tools and approaches are needed for assembling atoms and molecules into nanoscale systems and for the further assembly of small systems into more-complex objects. Furthermore, nanotechnology products must provide not only improved performance but also lower cost. Finally, without integration of nanoscale objects with systems at the micro- and macroscale (that is, from millionths of a metre up to the millimetre scale), it will be very difficult to exploit many of the unique properties found at the nanoscale.

Nanotechnology is highly interdisciplinary, involving physics, chemistry, biology, materials science, and the full range of the engineering disciplines. The word nanotechnology is widely used as shorthand to refer to both the science and the technology of this emerging field. Narrowly defined, nanoscience concerns a basic understanding of physical, chemical, and biological properties on atomic and near-atomic scales. Nanotechnology, narrowly defined, employs controlled manipulation of these properties to create materials and functional systems with unique capabilities.

In contrast to recent engineering efforts, nature developed nanotechnologies over billions of years, employing enzymes and catalysts to organize with exquisite precision different kinds of atoms and molecules into complex microscopic structures that make life possible. These natural products are built with great efficiency and have impressive capabilities, such as the power to harvest solar energy, to convert minerals and water into living cells, to store and process massive amounts of data using large arrays of nerve cells, and to replicate perfectly billions of bits of information stored in molecules of deoxyribonucleic acid (DNA).

There are two principal reasons for qualitative differences in material behaviour at the nanoscale (traditionally defined as less than 100 nanometres). First, quantum mechanical effects come into play at very small dimensions and lead to new physics and chemistry. Second, a defining feature at the nanoscale is the very large surface-to-volume ratio of these structures. This means that no atom is very far from a surface or interface, and the behaviour of atoms at these higher-energy sites have a significant influence on the properties of the material. For example, the reactivity of a metal catalyst particle generally increases appreciably as its size is reducedmacroscopic gold is chemically inert, whereas at nanoscales gold becomes extremely reactive and catalytic and even melts at a lower temperature. Thus, at nanoscale dimensions material properties depend on and change with size, as well as composition and structure.

Using the processes of nanotechnology, basic industrial production may veer dramatically from the course followed by steel plants and chemical factories of the past. Raw materials will come from the atoms of abundant elementscarbon, hydrogen, and siliconand these will be manipulated into precise configurations to create nanostructured materials that exhibit exactly the right properties for each particular application. For example, carbon atoms can be bonded together in a number of different geometries to create variously a fibre, a tube, a molecular coating, or a wire, all with the superior strength-to-weight ratio of another carbon materialdiamond. Additionally, such material processing need not require smokestacks, power-hungry industrial machinery, or intensive human labour. Instead, it may be accomplished either by growing new structures through some combination of chemical catalysts and synthetic enzymes or by building them through new techniques based on patterning and self-assembly of nanoscale materials into useful predetermined designs. Nanotechnology ultimately may allow people to fabricate almost any type of material or product allowable under the laws of physics and chemistry. While such possibilities seem remote, even approaching natures virtuosity in energy-efficient fabrication would be revolutionary.

Even more revolutionary would be the fabrication of nanoscale machines and devices for incorporation into micro- and macroscale systems. Once again, nature has led the way with the fabrication of both linear and rotary molecular motors. These biological machines carry out such tasks as muscle contraction (in organisms ranging from clams to humans) and shuttling little packets of material around within cells while being powered by the recyclable, energy-efficient fuel adenosine triphosphate. Scientists are only beginning to develop the tools to fabricate functioning systems at such small scales, with most advances based on electronic or magnetic information processing and storage systems. The energy-efficient, reconfigurable, and self-repairing aspects of biological systems are just becoming understood.

The potential impact of nanotechnology processes, machines, and products is expected to be far-reaching, affecting nearly every conceivable information technology, energy source, agricultural product, medical device, pharmaceutical, and material used in manufacturing. Meanwhile, the dimensions of electronic circuits on semiconductors continue to shrink, with minimum feature sizes now reaching the nanorealm, under 100 nanometres. Likewise, magnetic memory materials, which form the basis of hard disk drives, have achieved dramatically greater memory density as a result of nanoscale structuring to exploit new magnetic effects at nanodimensions. These latter two areas represent another major trend, the evolution of critical elements of microtechnology into the realm of nanotechnology to enhance performance. They are immense markets driven by the rapid advance of information technology.

In a lecture in 1959 to the American Physical Society, Theres Plenty of Room at the Bottom, American Nobelist Richard P. Feynman presented his audience with a vision of what could be done with extreme miniaturization. He began his lecture by noting that the Lords Prayer had been written on the head of a pin and asked,

Why cannot we write the entire 24 volumes of the Encyclopdia Britannica on the head of a pin? Lets see what would be involved. The head of a pin is a sixteenth of an inch across. If you magnify it by 25,000 diameters, the area of the head of the pin is then equal to the area of all the pages of the Encyclopdia Britannica. Therefore, all it is necessary to do is to reduce in size all the writing in the Encyclopdia by 25,000 times. Is that possible? The resolving power of the eye is about 1/120 of an inchthat is roughly the diameter of one of the little dots on the fine half-tone reproductions in the Encyclopdia. This, when you demagnify it by 25,000 times, is still 80 angstroms in diameter32 atoms across, in an ordinary metal. In other words, one of those dots still would contain in its area 1,000 atoms. So, each dot can easily be adjusted in size as required by the photoengraving, and there is no question that there is enough room on the head of a pin to put all of the Encyclopdia Britannica.

Feynman was intrigued by biology and pointed out that

cells are very tiny, but they are very active; they manufacture various substances; they walk around; they wiggle; and they do all kinds of marvelous thingsall on a very small scale. Also, they store information. Consider the possibility that we too can make a thing very small which does what we wantthat we can manufacture an object that maneuvers at that level!

He also considered using big tools to make smaller tools that could make yet smaller tools, eventually obtaining nanoscale tools for directly manipulating atoms and molecules. In considering what all this might mean, Feynman declared,

I can hardly doubt that when we have some control of the arrangement of things on a small scale we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.

Perhaps the biggest barrier to following these prophetic thoughts was simply the immediate lack of tools to manipulate and visualize matter at such a small scale. The availability of tools has always been an enabling aspect of the advance of all science and technology, and some of the key tools for nanotechnology are discussed in the next section, Pioneers.

Starting with a 1981 paper in the Proceedings of the National Academy of Sciences and following with two popular books, Engines of Creation (1986) and Nanosystems (1992), American scientist K. Eric Drexler became one of the foremost advocates of nanotechnology. In fact, Drexler was the first person anywhere to receive a Ph.D. in molecular nanotechnology (from the Massachusetts Institute of Technology). In his written works he takes a molecular view of the world and envisions molecular machines doing much of the work of the future. For example, he refers to assemblers, which will manipulate individual atoms to manufacture structures, and replicators, which will be able to make multiple copies of themselves in order to save time dealing with the billions of atoms needed to make objects of useful size. In an article for Encyclopdia Britannicas 1990 Yearbook of Science and the Future, Drexler wrote:

Cells and tissues in the human body are built and maintained by molecular machinery, but sometimes that machinery proves inadequate: viruses multiply, cancer cells spread, or systems age and deteriorate. As one might expect, new molecular machines and computers of subcellular size could support the bodys own mechanisms. Devices containing nanocomputers interfaced to molecular sensors and effectors could serve as an augmented immune system, searching out and destroying viruses and cancer cells. Similar devices programmed as repair machines could enter living cells to edit out viral DNA sequences and repair molecular damage. Such machines would bring surgical control to the molecular level, opening broad new horizons in medicine.

Drexlers futurist visions have stimulated much thought, but the assembler approach has failed to account for the strong influence of atomic and molecular forces (i.e., the chemistry) at such dimensions. The controversy surrounding these popularizations, and the potential dangers of entities such as intelligent replicators (however remote), have stimulated debate over the ethical and societal implications of nanotechnology.

A number of key technological milestones have been achieved by working pioneers. Molecular beam epitaxy, invented by Alfred Cho and John Arthur at Bell Labs in 1968 and developed in the 1970s, enabled the controlled deposition of single atomic layers. This tool provided for nanostructuring in one dimension as atomic layers were grown one upon the next. It subsequently became important in the area of compound semiconductor device fabrication. For example, sandwiching one-nanometre-thick layers of nonmagnetic-sensor materials between magnetic layers in computer disk drives resulted in large increases in storage capacity, and a similar use of nanostructuring resulted in more energy-efficient semiconductor lasers for use in compact disc players.

In 1981 Gerd Binnig and Heinrich Rohrer developed the scanning tunneling microscope at IBMs laboratories in Switzerland. This tool provided a revolutionary advance by enabling scientists to image the position of individual atoms on surfaces. It earned Binnig and Rohrer a Nobel Prize in 1986 and spawned a wide variety of scanning probe tools for nanoscale observations.

The observation of new carbon structures marked another important milestone in the advance of nanotechnology, with Nobel Prizes for the discoverers. In 1985 Robert F. Curl, Jr., Harold W. Kroto, and Richard E. Smalley discovered the first fullerene, the third known form of pure carbon (after diamond and graphite). They named their discovery buckminsterfullerene (buckyball) for its resemblance to the geodesic domes promoted by the American architect R. Buckminster Fuller. Technically called C60 for the 60 carbon atoms that form their hollow spherical structure, buckyballs resemble a football one nanometre in diameter (see figure). In 1991 Sumio Iijima of NEC Corporation in Japan discovered carbon nanotubes, in which the carbon ringlike structures are extended from spheres into long tubes of varying diameter. Taken together, these new structures surprised and excited the imaginations of scientists about the possibilities of forming well-defined nanostructures with unexpected new properties.

The scanning tunneling microscope not only allowed for the imaging of atoms by scanning a sharp probe tip over a surface, but it also allowed atoms to be pushed around on the surface. With a slight bias voltage applied to the probe tip, certain atoms could be made to adhere to the tip used for imaging and then to be released from it. Thus, in 1990 Donald Eigler spelled out the letters of his companys logo, IBM, by moving 35 xenon atoms into place on a nickel surface. This demonstration caught the publics attention because it showed the precision of the emerging nanoscale tools.

At nanoscale dimensions the properties of materials no longer depend solely on composition and structure in the usual sense. Nanomaterials display new phenomena associated with quantized effects and with the preponderance of surfaces and interfaces.

Quantized effects arise in the nanometre regime because the overall dimensions of objects are comparable to the characteristic wavelength for fundamental excitations in materials. For example, electron wave functions (see also de Broglie wave) in semiconductors are typically on the order of 10 to 100 nanometres. Such excitations include the wavelength of electrons, photons, phonons, and magnons, to name a few. These excitations carry the quanta of energy through materials and thus determine the dynamics of their propagation and transformation from one form to another. When the size of structures is comparable to the quanta themselves, it influences how these excitations move through and interact in the material. Small structures may limit flow, create wave interference effects, and otherwise bring into play quantum mechanical selection rules not apparent at larger dimensions.

Quantum mechanical properties for confinement of electrons in one dimension have long been exploited in solid-state electronics. Semiconductor devices are grown with thin layers of differing composition so that electrons (or holes in the case of missing electron charges) can be confined in specific regions of the structure (known as quantum wells). Thin layers with larger energy bandgaps can serve as barriers that restrict the flow of charges to certain conditions under which they can tunnel through these barriersthe basis of resonant tunneling diodes. Superlattices are periodic structures of repeating wells that set up a new set of selection rules which affect the conditions for charges to flow through the structure. Superlattices have been exploited in cascade lasers to achieve far infrared wavelengths. Modern telecommunications is based on semiconductor lasers that exploit the unique properties of quantum wells to achieve specific wavelengths and high efficiency.

The propagation of photons is altered dramatically when the size and periodicity of the transient structure approach the wavelength of visible light (400 to 800 nanometres). When photons propagate through a periodically varying dielectric constantfor example, semiconductor posts surrounded by airquantum mechanical rules define and limit the propagation of the photons depending on their energy (wavelength). This new behaviour is analogous to the quantum mechanical rules that define the motion of electrons through crystals, giving bandgaps for semiconductors. In one dimension, compound semiconductor superlattices can be grown epitaxially with the alternating layers having different dielectric constants, thus providing highly reflective mirrors for specific wavelengths as determined by the repeat distance of layers in the superlattice. These structures are used to provide built-in mirrors for vertical-cavity surface-emitting lasers, which are used in communications applications. In two and three dimensions, periodic structures known as photonic crystals offer additional control over photon propagation.

Photonic crystals are being explored in a variety of materials and periodicities, such as two-dimensional hexagonal arrays of posts fabricated in compound semiconductors or stacked loglike arrays of silicon bars in three dimensions. The dimensions of these structures depend on the wavelength of light being propagated and are typically in the range of a few hundred nanometres for wavelengths in the visible and near infrared. Photonic crystal properties based on nanostructured materials offer the possibility of confining, steering, and separating light by wavelength on unprecedented small scales and of creating new devices such as lasers that require very low currents to initiate lasing (called near-thresholdless lasers). These structures are being extensively investigated as the tools for nanostructuring materials are steadily advancing. Researchers are particularly interested in the infrared wavelengths, where dimensional control is not as stringent as at the shorter visible wavelengths and where optical communications and chemical sensing provide motivation for potential new applications.

Nanoscale materials also have size-dependent magnetic behaviour, mechanical properties, and chemical reactivity. At very small sizes (a few nanometres), magnetic nanoclusters have a single magnetic domain, and the strongly coupled magnetic spins on each atom combine to produce a particle with a single giant spin. For example, the giant spin of a ferromagnetic iron particle rotates freely at room temperature for diameters below about 16 nanometres, an effect termed superparamagnetism. Mechanical properties of nanostructured materials can reach exceptional strengths. As a specific example, the introduction of two-nanometre aluminum oxide precipitates into thin films of pure nickel results in yield strengths increasing from 0.15 to 5 gigapascals, which is more than twice that for a hard bearing steel. Another example of exceptional mechanical properties at the nanoscale is the carbon nanotube, which exhibits great strength and stiffness along its longitudinal axis.

The preponderance of surfaces is a major reason for the change in behaviour of materials at the nanoscale. Since up to half of all the atoms in nanoparticles are surface atoms, properties such as electrical transport are no longer determined by solid-state bulk phenomena. Likewise, the atoms in nanostructures have a higher average energy than atoms in larger structures, because of the large proportion of surface atoms. For example, catalytic materials have a greater chemical activity per atom of exposed surface as the catalyst is reduced in size at the nanoscale. Defects and impurities may be attracted to surfaces and interfaces, and interactions between particles at these small dimensions can depend on the structure and nature of chemical bonding at the surface. Molecular monolayers may be used to change or control surface properties and to mediate the interaction between nanoparticles.

Surfaces and their interactions with molecular structures are basic to all biology. The intersection of nanotechnology and biotechnology offers the possibility of achieving new functions and properties with nanostructured surfaces. In this surface- and interface-dominated regime, biology does an exquisite job of selectively controlling functions through a combination of structure and chemical forces. The transcription of information stored in genes and the selectivity of biochemical reactions based on chemical recognition of complex molecules are examples where interfaces play the key role in establishing nanoscale behaviour. Atomic forces and chemical bonds dominate at these dimensions, while macroscopic effectssuch as convection, turbulence, and momentum (inertial forces)are of little consequence.

As discussed in the section Properties at the nanoscale, material propertieselectrical, optical, magnetic, mechanical, and chemicaldepend on their exact dimensions. This opens the way for development of new and improved materials through manipulation of their nanostructure. Hierarchical assemblies of nanoscale-engineered materials into larger structures, or their incorporation into devices, provide the basis for tailoring radically new materials and machines.

Natures assemblies point the way to improving structural materials. The often-cited abalone seashell provides a beautiful example of how the combination of a hard, brittle inorganic material with nanoscale structuring and a soft, tough organic material can produce a strong, durable nanocompositebasically, these nanocomposites are made of calcium carbonate bricks held together by a glycoprotein glue. New engineered materials are emergingsuch as polymer-clay nanocompositesthat are not only strong and tough but also lightweight and easier to recycle than conventional reinforced plastics. Such improvements in structural materials are particularly important for the transportation industry, where reduced weight directly translates into improved fuel economy. Other improvements can increase safety or decrease the impact on the environment of fabrication and recycling. Further advances, such as truly smart materials that signal their impending failure or are even able to self-repair flaws, may be possible with composites of the future.

Sensors are central to almost all modern control systems. For example, multiple sensors are used in automobiles for such diverse tasks as engine management, emission control, security, safety, comfort, vehicle monitoring, and diagnostics. While such traditional applications for physical sensing generally rely on microscale sensing devices, the advent of nanoscale materials and structures has led to new electronic, photonic, and magnetic nanosensors, sometimes known as smart dust. Because of their small size, nanosensors exhibit unprecedented speed and sensitivity, extending in some cases down to the detection of single molecules. For example, nanowires made of carbon nanotubes, silicon, or other semiconductor materials exhibit exceptional sensitivity to chemical species or biological agents. Electrical current through nanowires can be altered by having molecules attached to their surface that locally perturb their electronic band structure. By means of nanowire surfaces coated with sensor molecules that selectively attach particular species, charge-induced changes in current can be used to detect the presence of those species. This same strategy is adopted for many classes of sensing systems. New types of sensors with ultrahigh sensitivity and specificity will have many applications; for example, sensors that can detect cancerous tumours when they consist of only a few cells would be a very significant advance.

Nanomaterials also make excellent filters for trapping heavy metals and other pollutants from industrial wastewater. One of the greatest potential impacts of nanotechnology on the lives of the majority of people on Earth will be in the area of economical water desalination and purification. Nanomaterials will very likely find important use in fuel cells, bioconversion for energy, bioprocessing of food products, waste remediation, and pollution-control systems.

A recent concern regarding nanoparticles is whether their small sizes and novel properties may pose significant health or environmental risks. In general, ultrafine particlessuch as the carbon in photocopier toners or in soot produced by combustion engines and factorieshave adverse respiratory and cardiovascular effects on people and animals. Studies are under way to determine if specific nanoscale particles pose higher risks that may require special regulatory restrictions. Of particular concern are potential carcinogenic risks from inhaled particles and the possibility for very small nanoparticles to cross the blood-brain barrier to unknown effect. Nanomaterials currently receiving attention from health officials include carbon nanotubes, buckyballs, and cadmium selenide quantum dots. Studies of the absorption through the skin of titanium oxide nanoparticles (used in sunscreens) are also planned. More far-ranging studies of the toxicity, transport, and overall fate of nanoparticles in ecosystems and the environment have not yet been undertaken. Some early animal studies, involving the introduction of very high levels of nanoparticles which resulted in the rapid death of many of the subjects, are quite controversial.

Nanotechnology promises to impact medical treatment in multiple ways. First, advances in nanoscale particle design and fabrication provide new options for drug delivery and drug therapies. More than half of the new drugs developed each year are not water-soluble, which makes their delivery difficult. In the form of nanosized particles, however, these drugs are more readily transported to their destination, and they can be delivered in the conventional form of pills.

More important, nanotechnology may enable drugs to be delivered to precisely the right location in the body and to release drug doses on a predetermined schedule for optimal treatment. The general approach is to attach the drug to a nanosized carrier that will release the medicine in the body over an extended period of time or when specifically triggered to do so. In addition, the surfaces of these nanoscale carriers may be treated to seek out and become localized at a disease sitefor example, attaching to cancerous tumours. One type of molecule of special interest for these applications is an organic dendrimer. A dendrimer is a special class of polymeric molecule that weaves in and out from a hollow central region. These spherical fuzz balls are about the size of a typical protein but cannot unfold like proteins. Interest in dendrimers derives from the ability to tailor their cavity sizes and chemical properties to hold different therapeutic agents. Researchers hope to design different dendrimers that can swell and release their drug on exposure to specifically recognized molecules that indicate a disease target. This same general approach to nanoparticle-directed drug delivery is being explored for other types of nanoparticles as well.

Another approach involves gold-coated nanoshells whose size can be adjusted to absorb light energy at different wavelengths. In particular, infrared light will pass through several centimetres of body tissue, allowing a delicate and precise heating of such capsules in order to release the therapeutic substance within. Furthermore, antibodies may be attached to the outer gold surface of the shells to cause them to bind specifically to certain tumour cells, thereby reducing the damage to surrounding healthy cells.

A second area of intense study in nanomedicine is that of developing new diagnostic tools. Motivation for this work ranges from fundamental biomedical research at the level of single genes or cells to point-of-care applications for health delivery services. With advances in molecular biology, much diagnostic work now focuses on detecting specific biological signatures. These analyses are referred to as bioassays. Examples include studies to determine which genes are active in response to a particular disease or drug therapy. A general approach involves attaching fluorescing dye molecules to the target biomolecules in order to reveal their concentration.

Another approach to bioassays uses semiconductor nanoparticles, such as cadmium selenide, which emit light of a specific wavelength depending on their size. Different-size particles can be tagged to different receptors so that a wider variety of distinct colour tags are available than can be distinguished for dye molecules. The degradation in fluorescence with repeated excitation for dyes is avoided. Furthermore, various-size particles can be encapsulated in latex beads and their resulting wavelengths read like a bar code. This approach, while still in the exploratory stage, would allow for an enormous number of distinct labels for bioassays.

Another nanotechnology variation on bioassays is to attach one half of the single-stranded complementary DNA segment for the genetic sequence to be detected to one set of gold particles and the other half to a second set of gold particles. When the material of interest is present in a solution, the two attachments cause the gold balls to agglomerate, providing a large change in optical properties that can be seen in the colour of the solution. If both halves of the sequence do not match, no agglomeration will occur and no change will be observed.

Approaches that do not involve optical detection techniques are also being explored with nanoparticles. For example, magnetic nanoparticles can be attached to antibodies that in turn recognize and attach to specific biomolecules. The magnetic particles then act as tags and handlebars through which magnetic fields can be used for mixing, extracting, or identifying the attached biomolecules within microlitre- or nanolitre-sized samples. For example, magnetic nanoparticles stay magnetized as a single domain for a significant period, which enables them to be aligned and detected in a magnetic field. In particular, attached antibodymagnetic-nanoparticle combinations rotate slowly and give a distinctive magnetic signal. In contrast, magnetically tagged antibodies that are not attached to the biological material being detected rotate more rapidly and so do not give the same distinctive signal.

Microfluidic systems, or labs-on-chips, have been developed for biochemical assays of minuscule samples. Typically cramming numerous electronic and mechanical components into a portable unit no larger than a credit card, they are especially useful for conducting rapid analysis in the field. While these microfluidic systems primarily operate at the microscale (that is, millionths of a metre), nanotechnology has contributed new concepts and will likely play an increasing role in the future. For example, separation of DNA is sensitive to entropic effects, such as the entropy required to unfold DNA of a given length. A new approach to separating DNA could take advantage of its passage through a nanoscale array of posts or channels such that DNA molecules of different lengths would uncoil at different rates.

Other researchers have focused on detecting signal changes as nanometre-wide DNA strands are threaded through a nanoscale pore. Early studies used pores punched in membranes by viruses; artificially fabricated nanopores are also being tested. By applying an electric potential across the membrane in a liquid cell to pull the DNA through, changes in ion current can be measured as different repeating base units of the molecule pass through the pores. Nanotechnology-enabled advances in the entire area of bioassays will clearly impact health care in many ways, from early detection, rapid clinical analysis, and home monitoring to new understanding of molecular biology and genetic-based treatments for fighting disease.

Another biomedical application of nanotechnology involves assistive devices for people who have lost or lack certain natural capabilities. For example, researchers hope to design retinal implants for vision-impaired individuals. The concept is to implant chips with photodetector arrays to transmit signals from the retina to the brain via the optic nerve. Meaningful spatial information, even if only at a rudimentary level, would be of great assistance to the blind. Such research illustrates the tremendous challenge of designing hybrid systems that work at the interface between inorganic devices and biological systems.

Closely related research involves implanting nanoscale neural probes in brain tissue to activate and control motor functions. This requires effective and stable wiring of many electrodes to neurons. It is exciting because of the possibility of recovery of control for motor-impaired individuals. Studies employing neural stimulation of damaged spinal cords by electrical signals have demonstrated the return of some locomotion. Researchers are also seeking ways to assist in the regeneration and healing of bone, skin, and cartilagefor example, developing synthetic biocompatible or biodegradable structures with nanosized voids that would serve as templates for regenerating specific tissue while delivering chemicals to assist in the repair process. At a more sophisticated level, researchers hope to someday build nanoscale or microscale machines that can repair, assist, or replace more-complex organs.

Semiconductor experts agree that the ongoing shrinkage in conventional electronic devices will inevitably reach fundamental limits due to quantum effects such as tunneling, in which electrons jump out of their prescribed circuit path and create atomic-scale interference between devices. At that point, radical new approaches to data storage and information processing will be required for further advances. For example, radically new systems have been imagined that are based on quantum computing or biomolecular computing.

The use of molecules for electronic devices was suggested by Mark Ratner of Northwestern University and Avi Aviram of IBM as early as the 1970s, but proper nanotechnology tools did not become available until the turn of the 21st century. Wiring up molecules some half a nanometre wide and a few nanometres long remains a major challenge, and an understanding of electrical transport through single molecules is only beginning to emerge. A number of groups have been able to demonstrate molecular switches, for example, that could conceivably be used in computer memory or logic arrays. Current areas of research include mechanisms to guide the selection of molecules, architectures for assembling molecules into nanoscale gates, and three-terminal molecules for transistor-like behaviour. More-radical approaches include DNA computing, where single-stranded DNA on a silicon chip would encode all possible variable values and complementary strand interactions would be used for a parallel processing approach to finding solutions. An area related to molecular electronics is that of organic thin-film transistors and light emitters, which promise new applications such as video displays that can be rolled out like wallpaper and flexible electronic newspapers.

Carbon nanotubes have remarkable electronic, mechanical, and chemical properties. Depending on their specific diameter and the bonding arrangement of their carbon atoms, nanotubes exhibit either metallic or semiconducting behaviour. Electrical conduction within a perfect nanotube is ballistic (negligible scattering), with low thermal dissipation. As a result, a wire made from a nanotube, or a nanowire, can carry much more current than an ordinary metal wire of comparable size. At 1.4 nanometres in diameter, nanotubes are about a hundred times smaller than the gate width of silicon semiconductor devices. In addition to nanowires for conduction, transistors, diodes, and simple logic circuits have been demonstrated by combining metallic and semiconductor carbon nanotubes. Similarly, silicon nanowires have been used to build experimental devices, such as field-effect transistors, bipolar transistors, inverters, light-emitting diodes, sensors, and even simple memory. A major challenge for nanowire circuits, as for molecular electronics, is connecting and integrating these devices into a workable high-density architecture. Ideally, the structure would be grown and assembled in place. Crossbar architectures that combine the function of wires and devices are of particular interest.

At nanoscale dimensions the energy required to add one additional electron to a small island (isolated physical region)for example, through a tunneling barrierbecomes significant. This change in energy provides the basis for devising single-electron transistors. At low temperatures, where thermal fluctuations are small, various single-electron-device nanostructures are readily achievable, and extensive research has been carried out for structures with confined electron flow. However, room-temperature applications will require that sizes be reduced significantly, to the one-nanometre range, to achieve stable operation. For large-scale application with millions of devices, as found in current integrated circuits, the need for structures with very uniform size to maintain uniform device characteristics presents a significant challenge. Also, in this and many new nanodevices being explored, the lack of gain is a serious drawback limiting implementation in large-scale electronic circuits.

Spintronics refers to electronic devices that perform logic operations based on not just the electrical charge of carriers but also their spin. For example, information could be transported or stored through the spin-up or spin-down states of electrons. This is a new area of research, and issues include the injection of spin-polarized carriers, their transport, and their detection. The role of nanoscale structure and electronic properties of the ferromagnetic-semiconductor interface on the spin injection process, the growth of new ferromagnetic semiconductors with nanoscale control, and the possible use of nanostructured features to manipulate spin are all of interest.

Current approaches to information storage and retrieval include high-density, high-speed, solid-state electronic memories, as well as slower (but generally more spacious) magnetic and optical discs (see computer memory). As the minimum feature size for electronic processing approaches 100 nanometres, nanotechnology provides ways to decrease further the bit size of the stored information, thus increasing density and reducing interconnection distances for obtaining still-higher speeds. For example, the basis of the current generation of magnetic disks is the giant magnetoresistance effect. A magnetic read/write head stores bits of information by setting the direction of the magnetic field in nanometre-thick metallic layers that alternate between ferromagnetic and nonferromagnetic. Differences in spin-dependent scattering of electrons at the interface layers lead to resistance differences that can be read by the magnetic head. Mechanical properties, particularly tribology (friction and wear of moving surfaces), also play an important role in magnetic hard disk drives, since magnetic heads float only about 10 nanometres above spinning magnetic disks.

Another approach to information storage that is dependent on designing nanometre-thick magnetic layers is under commercial development. Known as magnetic random access memory (MRAM), a line of electrically switchable magnetic material is separated from a permanently magnetized layer by a nanoscale nonmagnetic interlayer. A resistance change that depends on the relative alignment of the fields is read electrically from a large array of wires through cross lines. MRAM will require a relatively small evolution from conventional semiconductor manufacturing, and it has the added benefit of producing nonvolatile memory (no power or batteries are needed to maintain stored memory states).

Still at an exploratory stage, studies of electrical conduction through molecules have generated interest in their possible use as memory. While still very speculative, molecular and nanowire approaches to memory are intriguing because of the small volume in which the bits of memory are stored and the effectiveness with which biological systems store large amounts of information.

Nanoscale structuring of optical devices, such as vertical-cavity surface-emitting lasers (VCSELs), quantum dot lasers, and photonic crystal materials, is leading to additional advances in communications technology.

VCSELs have nanoscale layers of compound semiconductors epitaxially grown into their structurealternating dielectric layers as mirrors and quantum wells. Quantum wells allow the charge carriers to be confined in well-defined regions and provide the energy conversion into light at desired wavelengths. They are placed in the lasers cavity to confine carriers at the nodes of a standing wave and to tailor the band structure for more efficient radiative recombination. One-dimensional nanotechnology techniques involving precise growth of very thin epitaxial semiconductor layers were developed during the 1990s. Such nanostructuring has enhanced the efficiency of VCSELs and reduced the current required for lasing to start (called the threshold current). Because of improving performance and their compatibility with planar manufacturing technology, VCSELs are fast becoming a preferred laser source in a variety of communications applications.

More recently, the introduction of quantum dots (regions so small that they can be given a single electric charge) into semiconductor lasers has been investigated and found to give additional benefitsboth further reductions in threshold current and narrower line widths. Quantum dots further confine the optical emission modes within a very narrow spectrum and give the lowest threshold current densities for lasing achieved to date in VCSELs. The quantum dots are introduced into the laser during the growth of strained layers, by a process called Stransky-Krastanov growth. They arise because of the lattice mismatch stress and surface tension of the growing film. Improvements in ways to control precisely the resulting quantum dots to a more uniform single size are still being sought.

Photonic crystals provide a new means to control the steering and manipulation of photons based on periodic dielectric lattices with repeat dimensions on the order of the wavelength of light. These materials can have very exotic properties, such as not allowing light within certain wavelengths to be propagated in a material based on the particular periodic structure. Photonic lattices can act as perfect wavelength-selective mirrors to reflect back incident light from all orientations. They provide the basis for optical switching, steering, and wavelength separation on unprecedented small scales. The periodic structures required for these artificial crystals can be configured as both two- and three-dimensional lattices. Optical sources, switches, and routers are being considered, with two-dimensional planar geometries receiving the most attention, because of their greater ease of fabrication.

Another potentially important communications application for nanotechnology is microelectromechanical systems (MEMS), devices sized at the micrometre level (millionths of a metre). MEMS are currently poised to have a major impact on communications via optical switching. In the future, electromechanical devices may shrink to nanodimensions to take advantage of the higher frequencies of mechanical vibration at smaller masses. The natural (resonant) frequency of vibration for small mechanical beams increases as their size decreases, so that little power is needed to drive them as oscillators. Their efficiency is rated by a quality factor, known as Q, which is a ratio of the energy stored per cycle versus the energy dissipated per cycle. The higher the Q, the more precise the absolute frequency of an oscillator. The Q is very high for micro- and nanoscale mechanical oscillators, and these devices can reach very high frequencies (up to microwave frequencies), making them potential low-power replacements for electronic-based oscillators and filters.

Mechanical oscillators have been made from silicon at dimensions of 10 100 nanometres, where more than 10 percent of the atoms are less than one atomic distance from the surface. While highly homogeneous materials can be made at these dimensionsfor example, single-crystal silicon barssurfaces play an increasing role at nanoscales, and energy losses increase, presumably because of surface defects and molecular species absorbed on surfaces.

It is possible to envision even higher frequencies, in what might be viewed as the ultimate in nanomechanical systems, by moving from nanomachined structures to molecular systems. As an example, multiwalled carbon nanotubes are being explored for their mechanical properties. When the ends of the outer nanotube are removed, the inner tube may be pulled partway out from the outer tube where van der Waals forces between the two tubes will supply a restoring force. The inner tube can thus oscillate, sliding back and forth inside the outer tube. The resonant frequency of oscillation for such structures is predicted to be above one gigahertz (one billion cycles per second). It is unknown whether connecting such systems to the macro world and protecting them from surface effects will ever be practical.

Link:

Nanotechnology | Britannica.com

Nanotechnology

Overview

Nanotechnology is an exciting field that is enabling solutions in alternative energy, electronic devices, medical diagnostics and therapeutics. Our Masters degree prepares students for leadership roles in emerging high tech industries as well as traditional industries that utilize nanoscale phenomena.

The curriculum allows students to match their background and interests while preparing for exciting new challenges. Nanotechnology is a highly interdisciplinary field and students are able to take courses from the Schools of Engineering, Arts & Sciences and Business. The flexibility of the curriculum and the diversity of the student body create a dynamic learning environment.

Technical courses are organized into three core areas: synthesis, materials and nanofabrication; devices and fundamental properties; and biotechnology. In addition, courses are required in commercialization and entrepreneurship. Students design an individual curriculum or select a pre-designated plan in the areas listed above.

A research thesis is not a requirement of the Nanotechnology Masters Degree. However, some students take advantage of the faculty affiliated with the Nano/Bio Interface Center (NBIC) to conduct independent research as an elective course unit.

Read more:

Nanotechnology

Nanotechnology – 2019 News and Scientific Articles on Live …

January 24, 2018 | Article

Many people with diabetes need to prick their finger for a drop of blood up to eight times a day to monitor their glucose levels, an uncomfortable and cumbersome task. It can all add up to tens of thousands of finger pricks over a person’s lifetime. Read More

See the original post here:

Nanotechnology – 2019 News and Scientific Articles on Live …