War on drugs – Wikipedia

War on Drugs is an American term[6][7] usually applied to the U.S. federal government’s campaign of prohibition of drugs, military aid, and military intervention, with the stated aim being to reduce the illegal drug trade.[8][9] The initiative includes a set of drug policies that are intended to discourage the production, distribution, and consumption of psychoactive drugs that the participating governments and the UN have made illegal. The term was popularized by the media shortly after a press conference given on June 18, 1971, by President Richard Nixonthe day after publication of a special message from President Nixon to the Congress on Drug Abuse Prevention and Controlduring which he declared drug abuse “public enemy number one”. That message to the Congress included text about devoting more federal resources to the “prevention of new addicts, and the rehabilitation of those who are addicted”, but that part did not receive the same public attention as the term “war on drugs”.[10][11][12] However, two years prior to this, Nixon had formally declared a “war on drugs” that would be directed toward eradication, interdiction, and incarceration.[13] Today, the Drug Policy Alliance, which advocates for an end to the War on Drugs, estimates that the United States spends $51 billion annually on these initiatives.[14]

On May 13, 2009, Gil Kerlikowskethe Director of the Office of National Drug Control Policy (ONDCP)signaled that the Obama administration did not plan to significantly alter drug enforcement policy, but also that the administration would not use the term “War on Drugs”, because Kerlikowske considers the term to be “counter-productive”.[15] ONDCP’s view is that “drug addiction is a disease that can be successfully prevented and treated… making drugs more available will make it harder to keep our communities healthy and safe”.[16] One of the alternatives that Kerlikowske has showcased is the drug policy of Sweden, which seeks to balance public health concerns with opposition to drug legalization. The prevalence rates for cocaine use in Sweden are barely one-fifth of those in Spain, the biggest consumer of the drug.[17]

In June 2011, the Global Commission on Drug Policy released a critical report on the War on Drugs, declaring: “The global war on drugs has failed, with devastating consequences for individuals and societies around the world. Fifty years after the initiation of the UN Single Convention on Narcotic Drugs, and years after President Nixon launched the US government’s war on drugs, fundamental reforms in national and global drug control policies are urgently needed.”[18] The report was criticized by organizations that oppose a general legalization of drugs.[16]

The first U.S. law that restricted the distribution and use of certain drugs was the Harrison Narcotics Tax Act of 1914. The first local laws came as early as 1860.[19] In 1919, the United States passed the 18th Amendment, prohibiting the sale, manufacture, and transportation of alcohol, with exceptions for religious and medical use. In 1920, the United States passed the National Prohibition Act (Volstead Act), enacted to carry out the provisions in law of the 18th Amendment.

The Federal Bureau of Narcotics was established in the United States Department of the Treasury by an act of June 14, 1930 (46 Stat. 585).[20] In 1933, the federal prohibition for alcohol was repealed by passage of the 21st Amendment. In 1935, President Franklin D. Roosevelt publicly supported the adoption of the Uniform State Narcotic Drug Act. The New York Times used the headline “Roosevelt Asks Narcotic War Aid”.[21][22]

In 1937, the Marihuana Tax Act of 1937 was passed. Several scholars have claimed that the goal was to destroy the hemp industry,[23][24][25] largely as an effort of businessmen Andrew Mellon, Randolph Hearst, and the Du Pont family.[23][25] These scholars argue that with the invention of the decorticator, hemp became a very cheap substitute for the paper pulp that was used in the newspaper industry.[23][26] These scholars believe that Hearst felt[dubious discuss] that this was a threat to his extensive timber holdings. Mellon, United States Secretary of the Treasury and the wealthiest man in America, had invested heavily in the DuPont’s new synthetic fiber, nylon, and considered[dubious discuss] its success to depend on its replacement of the traditional resource, hemp.[23][27][28][29][30][31][32][33] However, there were circumstances that contradict these claims. One reason for doubts about those claims is that the new decorticators did not perform fully satisfactorily in commercial production.[34] To produce fiber from hemp was a labor-intensive process if you include harvest, transport and processing. Technological developments decreased the labor with hemp but not sufficient to eliminate this disadvantage.[35][36]

On October 27, 1970, Congress passes the Comprehensive Drug Abuse Prevention and Control Act of 1970, which, among other things, categorizes controlled substances based on their medicinal use and potential for addiction.[37] In 1971, two congressmen released an explosive report on the growing heroin epidemic among U.S. servicemen in Vietnam; ten to fifteen percent of the servicemen were addicted to heroin, and President Nixon declared drug abuse to be “public enemy number one”.[37][38]

Although Nixon declared “drug abuse” to be public enemy number one in 1971,[39] the policies that his administration implemented as part of the Comprehensive Drug Abuse Prevention and Control Act of 1970 were a continuation of drug prohibition policies in the U.S., which started in 1914.[37][40]

“The Nixon campaign in 1968, and the Nixon White House after that, had two enemies: the antiwar left and black people. You understand what I’m saying? We knew we couldn’t make it illegal to be either against the war or black, but by getting the public to associate the hippies with marijuana and blacks with heroin, and then criminalizing both heavily, we could disrupt those communities. We could arrest their leaders, raid their homes, break up their meetings, and vilify them night after night on the evening news. Did we know we were lying about the drugs? Of course we did.” John Ehrlichman, to Dan Baum[41][42][43] for Harper’s Magazine[44] in 1994, about President Richard Nixon’s war on drugs, declared in 1971.[45][46]

In 1973, the Drug Enforcement Administration was created to replace the Bureau of Narcotics and Dangerous Drugs.[37]

The Nixon Administration also repealed the federal 210-year mandatory minimum sentences for possession of marijuana and started federal demand reduction programs and drug-treatment programs. Robert DuPont, the “Drug czar” in the Nixon Administration, stated it would be more accurate to say that Nixon ended, rather than launched, the “war on drugs”. DuPont also argued that it was the proponents of drug legalization that popularized the term “war on drugs”.[16][unreliable source?]

In 1982, Vice President George H. W. Bush and his aides began pushing for the involvement of the CIA and U.S. military in drug interdiction efforts.[47]

The Office of National Drug Control Policy (ONDCP) was originally established by the National Narcotics Leadership Act of 1988,[48][49] which mandated a national anti-drug media campaign for youth, which would later become the National Youth Anti-Drug Media Campaign.[50] The director of ONDCP is commonly known as the Drug czar,[37] and it was first implemented in 1989 under President George H. W. Bush,[51] and raised to cabinet-level status by Bill Clinton in 1993.[52] These activities were subsequently funded by the Treasury and General Government Appropriations Act of 1998.[53][54] The Drug-Free Media Campaign Act of 1998 codified the campaign at 21 U.S.C.1708.[55]

The Global Commission on Drug Policy released a report on June 2, 2011, alleging that “The War On Drugs Has Failed.” The commissioned was made up of 22 self-appointed members including a number of prominent international politicians and writers. U.S. Surgeon General Regina Benjamin also released the first ever National Prevention Strategy.[56]

On May 21, 2012, the U.S. Government published an updated version of its Drug Policy.[57] The director of ONDCP stated simultaneously that this policy is something different from the “War on Drugs”:

At the same meeting was a declaration signed by the representatives of Italy, the Russian Federation, Sweden, the United Kingdom and the United States in line with this: “Our approach must be a balanced one, combining effective enforcement to restrict the supply of drugs, with efforts to reduce demand and build recovery; supporting people to live a life free of addiction.”[59]

In March 2016 the International Narcotics Control Board stated that the International Drug Control treaties do not mandate a “war on drugs.”[60]

According to Human Rights Watch, the War on Drugs caused soaring arrest rates that disproportionately targeted African Americans due to various factors.[62] John Ehrlichman, an aide to Nixon, said that Nixon used the war on drugs to criminalize and disrupt black and hippie communities and their leaders.[63]

The present state of incarceration in the U.S. as a result of the war on drugs arrived in several stages. By 1971, different stops on drugs had been implemented for more than 50 years (for e.g. since 1914, 1937 etc.) with only a very small increase of inmates per 100,000 citizens. During the first 9 years after Nixon coined the expression “War on Drugs”, statistics showed only a minor increase in the total number of imprisoned.

After 1980, the situation began to change. In the 1980s, while the number of arrests for all crimes had risen by 28%, the number of arrests for drug offenses rose 126%.[64] The result of increased demand was the development of privatization and the for-profit prison industry.[65] The US Department of Justice, reporting on the effects of state initiatives, has stated that, from 1990 through 2000, “the increasing number of drug offenses accounted for 27% of the total growth among black inmates, 7% of the total growth among Hispanic inmates, and 15% of the growth among white inmates.” In addition to prison or jail, the United States provides for the deportation of many non-citizens convicted of drug offenses.[66]

In 1994, the New England Journal of Medicine reported that the “War on Drugs” resulted in the incarceration of one million Americans each year.[67] In 2008, the Washington Post reported that of 1.5 million Americans arrested each year for drug offenses, half a million would be incarcerated.[68] In addition, one in five black Americans would spend time behind bars due to drug laws.[68]

Federal and state policies also impose collateral consequences on those convicted of drug offenses, such as denial of public benefits or licenses, that are not applicable to those convicted of other types of crime.[69] In particular, the passage of the 1990 SolomonLautenberg amendment led many states to impose mandatory driver’s license suspensions (of at least 6 months) for persons committing a drug offense, regardless of whether any motor vehicle was involved.[70][71] Approximately 191,000 licenses were suspended in this manner in 2016, according to a Prison Policy Initiative report.[72]

In 1986, the U.S. Congress passed laws that created a 100 to 1 sentencing disparity for the trafficking or possession of crack when compared to penalties for trafficking of powder cocaine,[73][74][75][76] which had been widely criticized as discriminatory against minorities, mostly blacks, who were more likely to use crack than powder cocaine.[77] This 100:1 ratio had been required under federal law since 1986.[78] Persons convicted in federal court of possession of 5grams of crack cocaine received a minimum mandatory sentence of 5 years in federal prison. On the other hand, possession of 500grams of powder cocaine carries the same sentence.[74][75] In 2010, the Fair Sentencing Act cut the sentencing disparity to 18:1.[77]

According to Human Rights Watch, crime statistics show thatin the United States in 1999compared to non-minorities, African Americans were far more likely to be arrested for drug crimes, and received much stiffer penalties and sentences.[79]

Statistics from 1998 show that there were wide racial disparities in arrests, prosecutions, sentencing and deaths. African-American drug users made up for 35% of drug arrests, 55% of convictions, and 74% of people sent to prison for drug possession crimes.[74] Nationwide African-Americans were sent to state prisons for drug offenses 13 times more often than other races,[80] even though they only supposedly comprised 13% of regular drug users.[74]

Anti-drug legislation over time has also displayed an apparent racial bias. University of Minnesota Professor and social justice author Michael Tonry writes, “The War on Drugs foreseeably and unnecessarily blighted the lives of hundreds and thousands of young disadvantaged black Americans and undermined decades of effort to improve the life chances of members of the urban black underclass.”[81]

In 1968, President Lyndon B. Johnson decided that the government needed to make an effort to curtail the social unrest that blanketed the country at the time. He decided to focus his efforts on illegal drug use, an approach which was in line with expert opinion on the subject at the time. In the 1960s, it was believed that at least half of the crime in the U.S. was drug related, and this number grew as high as 90 percent in the next decade.[82] He created the Reorganization Plan of 1968 which merged the Bureau of Narcotics and the Bureau of Drug Abuse to form the Bureau of Narcotics and Dangerous Drugs within the Department of Justice.[83] The belief during this time about drug use was summarized by journalist Max Lerner in his celebrated[citation needed] work America as a Civilization (1957):

As a case in point we may take the known fact of the prevalence of reefer and dope addiction in Negro areas. This is essentially explained in terms of poverty, slum living, and broken families, yet it would be easy to show the lack of drug addiction among other ethnic groups where the same conditions apply.[84]

Richard Nixon became president in 1969, and did not back away from the anti-drug precedent set by Johnson. Nixon began orchestrating drug raids nationwide to improve his “watchdog” reputation. Lois B. Defleur, a social historian who studied drug arrests during this period in Chicago, stated that, “police administrators indicated they were making the kind of arrests the public wanted”. Additionally, some of Nixon’s newly created drug enforcement agencies would resort to illegal practices to make arrests as they tried to meet public demand for arrest numbers. From 1972 to 1973, the Office of Drug Abuse and Law Enforcement performed 6,000 drug arrests in 18 months, the majority of the arrested black.[85]

The next two Presidents, Gerald Ford and Jimmy Carter, responded with programs that were essentially a continuation of their predecessors. Shortly after Ronald Reagan became President in 1981 he delivered a speech on the topic. Reagan announced, “We’re taking down the surrender flag that has flown over so many drug efforts; we’re running up a battle flag.”[86] For his first five years in office, Reagan slowly strengthened drug enforcement by creating mandatory minimum sentencing and forfeiture of cash and real estate for drug offenses, policies far more detrimental to poor blacks than any other sector affected by the new laws.[citation needed]

Then, driven by the 1986 cocaine overdose of black basketball star Len Bias,[dubious discuss] Reagan was able to pass the Anti-Drug Abuse Act through Congress. This legislation appropriated an additional $1.7 billion to fund the War on Drugs. More importantly, it established 29 new, mandatory minimum sentences for drug offenses. In the entire history of the country up until that point, the legal system had only seen 55 minimum sentences in total.[87] A major stipulation of the new sentencing rules included different mandatory minimums for powder and crack cocaine. At the time of the bill, there was public debate as to the difference in potency and effect of powder cocaine, generally used by whites, and crack cocaine, generally used by blacks, with many believing that “crack” was substantially more powerful and addictive. Crack and powder cocaine are closely related chemicals, crack being a smokeable, freebase form of powdered cocaine hydrochloride which produces a shorter, more intense high while using less of the drug. This method is more cost effective, and therefore more prevalent on the inner-city streets, while powder cocaine remains more popular in white suburbia. The Reagan administration began shoring public opinion against “crack”, encouraging DEA official Robert Putnam to play up the harmful effects of the drug. Stories of “crack whores” and “crack babies” became commonplace; by 1986, Time had declared “crack” the issue of the year.[88] Riding the wave of public fervor, Reagan established much harsher sentencing for crack cocaine, handing down stiffer felony penalties for much smaller amounts of the drug.[89]

Reagan protg and former Vice-President George H. W. Bush was next to occupy the oval office, and the drug policy under his watch held true to his political background. Bush maintained the hard line drawn by his predecessor and former boss, increasing narcotics regulation when the First National Drug Control Strategy was issued by the Office of National Drug Control in 1989.[90]

The next three presidents Clinton, Bush and Obama continued this trend, maintaining the War on Drugs as they inherited it upon taking office.[91] During this time of passivity by the federal government, it was the states that initiated controversial legislation in the War on Drugs. Racial bias manifested itself in the states through such controversial policies as the “stop and frisk” police practices in New York city and the “three strikes” felony laws began in California in 1994.[92]

In August 2010, President Obama signed the Fair Sentencing Act into law that dramatically reduced the 100-to-1 sentencing disparity between powder and crack cocaine, which disproportionately affected minorities.[93]

Commonly used illegal drugs include heroin, cocaine, methamphetamine, and, marijuana.

Heroin is an opiate that is highly addictive. If caught selling or possessing heroin, a perpetrator can be charged with a felony and face twofour years in prison and could be fined to a maximum of $20,000.[94]

Crystal meth is composed of methamphetamine hydrochloride. It is marketed as either a white powder or in a solid (rock) form. The possession of crystal meth can result in a punishment varying from a fine to a jail sentence. As with other drug crimes, sentencing length may increase depending on the amount of the drug found in the possession of the defendant.[95]

Cocaine possession is illegal across the U.S., with the cheaper crack cocaine incurring even greater penalties. Having possession is when the accused knowingly has it on their person, or in a backpack or purse. The possession of cocaine with no prior conviction, for the first offense, the person will be sentenced to a maximum of one year in prison or fined $1,000, or both. If the person has a prior conviction, whether it is a narcotic or cocaine, they will be sentenced to two years in prison, a $2,500 fine, or both. With two or more convictions of possession prior to this present offense, they can be sentenced to 90 days in prison along with a $5,000 fine.[96]

Marijuana is the most popular illegal drug worldwide. The punishment for possession of it is less than for the possession of cocaine or heroin. In some U.S. states, the drug is legal. Over 80 million Americans have tried marijuana. The Criminal Defense Lawyer article claims that, depending on the age of person and how much the person has been caught for possession, they will be fined and could plea bargain into going to a treatment program versus going to prison. In each state the convictions differ along with how much marijuana they have on their person.[97]

Some scholars have claimed that the phrase “War on Drugs” is propaganda cloaking an extension of earlier military or paramilitary operations.[9] Others have argued that large amounts of “drug war” foreign aid money, training, and equipment actually goes to fighting leftist insurgencies and is often provided to groups who themselves are involved in large-scale narco-trafficking, such as corrupt members of the Colombian military.[8]

From 1963 to the end of the Vietnam War in 1975, marijuana usage became common among U.S. soldiers in non-combat situations. Some servicemen also used heroin. Many of the servicemen ended the heroin use after returning to the United States but came home addicted. In 1971, the U.S. military conducted a study of drug use among American servicemen and women. It found that daily usage rates for drugs on a worldwide basis were as low as two percent.[98] However, in the spring of 1971, two congressmen released an alarming report alleging that 15% of the servicemen in Vietnam were addicted to heroin. Marijuana use was also common in Vietnam. Soldiers who used drugs had more disciplinary problems. The frequent drug use had become an issue for the commanders in Vietnam; in 1971 it was estimated that 30,000 servicemen were addicted to drugs, most of them to heroin.[11]

From 1971 on, therefore, returning servicemen were required to take a mandatory heroin test. Servicemen who tested positive upon returning from Vietnam were not allowed to return home until they had passed the test with a negative result. The program also offered a treatment for heroin addicts.[99]

Elliot Borin’s article “The U.S. Military Needs its Speed”published in Wired on February 10, 2003reports:

But the Defense Department, which distributed millions of amphetamine tablets to troops during World War II, Vietnam and the Gulf War, soldiers on, insisting that they are not only harmless but beneficial.

In a news conference held in connection with Schmidt and Umbach’s Article 32 hearing, Dr. Pete Demitry, an Air Force physician and a pilot, claimed that the “Air Force has used (Dexedrine) safely for 60 years” with “no known speed-related mishaps.”

The need for speed, Demitry added “is a life-and-death issue for our military.”[100]

One of the first anti-drug efforts in the realm of foreign policy was President Nixon’s Operation Intercept, announced in September 1969, targeted at reducing the amount of cannabis entering the United States from Mexico. The effort began with an intense inspection crackdown that resulted in an almost shutdown of cross-border traffic.[101] Because the burden on border crossings was controversial in border states, the effort only lasted twenty days.[102]

On December 20, 1989, the United States invaded Panama as part of Operation Just Cause, which involved 25,000 American troops. Gen. Manuel Noriega, head of the government of Panama, had been giving military assistance to Contra groups in Nicaragua at the request of the U.S. which, in exchange, tolerated his drug trafficking activities, which they had known about since the 1960s.[103][104] When the Drug Enforcement Administration (DEA) tried to indict Noriega in 1971, the CIA prevented them from doing so.[103] The CIA, which was then directed by future president George H. W. Bush, provided Noriega with hundreds of thousands of dollars per year as payment for his work in Latin America.[103] When CIA pilot Eugene Hasenfus was shot down over Nicaragua by the Sandinistas, documents aboard the plane revealed many of the CIA’s activities in Latin America, and the CIA’s connections with Noriega became a public relations “liability” for the U.S. government, which finally allowed the DEA to indict him for drug trafficking, after decades of tolerating his drug operations.[103] Operation Just Cause, whose purpose was to capture Noriega and overthrow his government; Noriega found temporary asylum in the Papal Nuncio, and surrendered to U.S. soldiers on January 3, 1990.[105] He was sentenced by a court in Miami to 45 years in prison.[103]

As part of its Plan Colombia program, the United States government currently provides hundreds of millions of dollars per year of military aid, training, and equipment to Colombia,[106] to fight left-wing guerrillas such as the Revolutionary Armed Forces of Colombia (FARC-EP), which has been accused of being involved in drug trafficking.[107]

Private U.S. corporations have signed contracts to carry out anti-drug activities as part of Plan Colombia. DynCorp, the largest private company involved, was among those contracted by the State Department, while others signed contracts with the Defense Department.[108]

Colombian military personnel have received extensive counterinsurgency training from U.S. military and law enforcement agencies, including the School of Americas (SOA). Author Grace Livingstone has stated that more Colombian SOA graduates have been implicated in human rights abuses than currently known SOA graduates from any other country. All of the commanders of the brigades highlighted in a 2001 Human Rights Watch report on Colombia were graduates of the SOA, including the III brigade in Valle del Cauca, where the 2001 Alto Naya Massacre occurred. US-trained officers have been accused of being directly or indirectly involved in many atrocities during the 1990s, including the Massacre of Trujillo and the 1997 Mapiripn Massacre.

In 2000, the Clinton administration initially waived all but one of the human rights conditions attached to Plan Colombia, considering such aid as crucial to national security at the time.[109]

The efforts of U.S. and Colombian governments have been criticized for focusing on fighting leftist guerrillas in southern regions without applying enough pressure on right-wing paramilitaries and continuing drug smuggling operations in the north of the country.[110][111] Human Rights Watch, congressional committees and other entities have documented the existence of connections between members of the Colombian military and the AUC, which the U.S. government has listed as a terrorist group, and that Colombian military personnel have committed human rights abuses which would make them ineligible for U.S. aid under current laws.[citation needed]

In 2010, the Washington Office on Latin America concluded that both Plan Colombia and the Colombian government’s security strategy “came at a high cost in lives and resources, only did part of the job, are yielding diminishing returns and have left important institutions weaker.”[112]

A 2014 report by the RAND Corporation, which was issued to analyze viable strategies for the Mexican drug war considering successes experienced in Columbia, noted:

Between 1999 and 2002, the United States gave Colombia $2.04 billion in aid, 81 percent of which was for military purposes, placing Colombia just below Israel and Egypt among the largest recipients of U.S. military assistance. Colombia increased its defense spending from 3.2 percent of gross domestic product (GDP) in 2000 to 4.19 percent in 2005. Overall, the results were extremely positive. Greater spending on infrastructure and social programs helped the Colombian government increase its political legitimacy, while improved security forces were better able to consolidate control over large swaths of the country previously overrun by insurgents and drug cartels.

It also notes that, “Plan Colombia has been widely hailed as a success, and some analysts believe that, by 2010, Colombian security forces had finally gained the upper hand once and for all.”[113]

The Mrida Initiative is a security cooperation between the United States and the government of Mexico and the countries of Central America. It was approved on June 30, 2008, and its stated aim is combating the threats of drug trafficking and transnational crime. The Mrida Initiative appropriated $1.4 billion in a three-year commitment (20082010) to the Mexican government for military and law enforcement training and equipment, as well as technical advice and training to strengthen the national justice systems. The Mrida Initiative targeted many very important government officials, but it failed to address the thousands of Central Americans who had to flee their countries due to the danger they faced everyday because of the war on drugs. There is still not any type of plan that addresses these people. No weapons are included in the plan.[114][115]

The United States regularly sponsors the spraying of large amounts of herbicides such as glyphosate over the jungles of Central and South America as part of its drug eradication programs. Environmental consequences resulting from aerial fumigation have been criticized as detrimental to some of the world’s most fragile ecosystems;[116] the same aerial fumigation practices are further credited with causing health problems in local populations.[117]

In 2012, the U.S. sent DEA agents to Honduras to assist security forces in counternarcotics operations. Honduras has been a major stop for drug traffickers, who use small planes and landing strips hidden throughout the country to transport drugs. The U.S. government made agreements with several Latin American countries to share intelligence and resources to counter the drug trade. DEA agents, working with other U.S. agencies such as the State Department, the CBP, and Joint Task Force-Bravo, assisted Honduras troops in conducting raids on traffickers’ sites of operation.[118]

The War on Drugs has been a highly contentious issue since its inception. A poll on October 2, 2008, found that three in four Americans believed that the War On Drugs was failing.[119]

At a meeting in Guatemala in 2012, three former presidents from Guatemala, Mexico and Colombia said that the war on drugs had failed and that they would propose a discussion on alternatives, including decriminalization, at the Summit of the Americas in April of that year.[120] Guatemalan President Otto Prez Molina said that the war on drugs was exacting too high a price on the lives of Central Americans and that it was time to “end the taboo on discussing decriminalization”.[121] At the summit, the government of Colombia pushed for the most far-reaching change to drugs policy since the war on narcotics was declared by Nixon four decades prior, citing the catastrophic effects it had had in Colombia.[122]

Several critics have compared the wholesale incarceration of the dissenting minority of drug users to the wholesale incarceration of other minorities in history. Psychiatrist Thomas Szasz, for example, writes in 1997 “Over the past thirty years, we have replaced the medical-political persecution of illegal sex users (‘perverts’ and ‘psychopaths’) with the even more ferocious medical-political persecution of illegal drug users.”[123]

Penalties for drug crimes among American youth almost always involve permanent or semi-permanent removal from opportunities for education, strip them of voting rights, and later involve creation of criminal records which make employment more difficult.[124] Thus, some authors maintain that the War on Drugs has resulted in the creation of a permanent underclass of people who have few educational or job opportunities, often as a result of being punished for drug offenses which in turn have resulted from attempts to earn a living in spite of having no education or job opportunities.[124]

According to a 2008 study published by Harvard economist Jeffrey A. Miron, the annual savings on enforcement and incarceration costs from the legalization of drugs would amount to roughly $41.3 billion, with $25.7 billion being saved among the states and over $15.6 billion accrued for the federal government. Miron further estimated at least $46.7 billion in tax revenue based on rates comparable to those on tobacco and alcohol ($8.7 billion from marijuana, $32.6 billion from cocaine and heroin, remainder from other drugs).[125]

Low taxation in Central American countries has been credited with weakening the region’s response in dealing with drug traffickers. Many cartels, especially Los Zetas have taken advantage of the limited resources of these nations. 2010 tax revenue in El Salvador, Guatemala, and Honduras, composed just 13.53% of GDP. As a comparison, in Chile and the U.S., taxes were 18.6% and 26.9% of GDP respectively. However, direct taxes on income are very hard to enforce and in some cases tax evasion is seen as a national pastime.[126]

The status of coca and coca growers has become an intense political issue in several countries, including Colombia and particularly Bolivia, where the president, Evo Morales, a former coca growers’ union leader, has promised to legalise the traditional cultivation and use of coca.[127] Indeed, legalization efforts have yielded some successes under the Morales administration when combined with aggressive and targeted eradication efforts. The country saw a 1213% decline in coca cultivation[127] in 2011 under Morales, who has used coca growers’ federations to ensure compliance with the law rather than providing a primary role for security forces.[127]

The coca eradication policy has been criticised for its negative impact on the livelihood of coca growers in South America. In many areas of South America the coca leaf has traditionally been chewed and used in tea and for religious, medicinal and nutritional purposes by locals.[128] For this reason many insist that the illegality of traditional coca cultivation is unjust. In many areas the U.S. government and military has forced the eradication of coca without providing for any meaningful alternative crop for farmers, and has additionally destroyed many of their food or market crops, leaving them starving and destitute.[128]

The CIA, DEA, State Department, and several other U.S. government agencies have been alleged to have relations with various groups which are involved in drug trafficking.

Senator John Kerry’s 1988 U.S. Senate Committee on Foreign Relations report on Contra drug links concludes that members of the U.S. State Department “who provided support for the Contras are involved in drug trafficking… and elements of the Contras themselves knowingly receive financial and material assistance from drug traffickers.”[129] The report further states that “the Contra drug links include… payments to drug traffickers by the U.S. State Department of funds authorized by the Congress for humanitarian assistance to the Contras, in some cases after the traffickers had been indicted by federal law enforcement agencies on drug charges, in others while traffickers were under active investigation by these same agencies.”

In 1996, journalist Gary Webb published reports in the San Jose Mercury News, and later in his book Dark Alliance, detailing how Contras, had been involved in distributing crack cocaine into Los Angeles whilst receiving money from the CIA.[citation needed] Contras used money from drug trafficking to buy weapons.[citation needed]

Webb’s premise regarding the U.S. Government connection was initially attacked at the time by the media. It is now widely accepted that Webb’s main assertion of government “knowledge of drug operations, and collaboration with and protection of known drug traffickers” was correct.[130][not in citation given] In 1998, CIA Inspector General Frederick Hitz published a two-volume report[131] that while seemingly refuting Webb’s claims of knowledge and collaboration in its conclusions did not deny them in its body.[citation needed] Hitz went on to admit CIA improprieties in the affair in testimony to a House congressional committee. There has been a reversal amongst mainstream media of its position on Webb’s work, with acknowledgement made of his contribution to exposing a scandal it had ignored.

According to Rodney Campbell, an editorial assistant to Nelson Rockefeller, during World War II, the United States Navy, concerned that strikes and labor disputes in U.S. eastern shipping ports would disrupt wartime logistics, released the mobster Lucky Luciano from prison, and collaborated with him to help the mafia take control of those ports. Labor union members were terrorized and murdered by mafia members as a means of preventing labor unrest and ensuring smooth shipping of supplies to Europe.[132]

According to Alexander Cockburn and Jeffrey St. Clair, in order to prevent Communist party members from being elected in Italy following World War II, the CIA worked closely with the Sicilian Mafia, protecting them and assisting in their worldwide heroin smuggling operations. The mafia was in conflict with leftist groups and was involved in assassinating, torturing, and beating leftist political organizers.[133]

In 1986, the US Defense Department funded a two-year study by the RAND Corporation, which found that the use of the armed forces to interdict drugs coming into the United States would have little or no effect on cocaine traffic and might, in fact, raise the profits of cocaine cartels and manufacturers. The 175-page study, “Sealing the Borders: The Effects of Increased Military Participation in Drug Interdiction”, was prepared by seven researchers, mathematicians and economists at the National Defense Research Institute, a branch of the RAND, and was released in 1988. The study noted that seven prior studies in the past nine years, including one by the Center for Naval Research and the Office of Technology Assessment, had come to similar conclusions. Interdiction efforts, using current armed forces resources, would have almost no effect on cocaine importation into the United States, the report concluded.[135]

During the early-to-mid-1990s, the Clinton administration ordered and funded a major cocaine policy study, again by RAND. The Rand Drug Policy Research Center study concluded that $3 billion should be switched from federal and local law enforcement to treatment. The report said that treatment is the cheapest way to cut drug use, stating that drug treatment is twenty-three times more effective than the supply-side “war on drugs”.[136]

The National Research Council Committee on Data and Research for Policy on Illegal Drugs published its findings in 2001 on the efficacy of the drug war. The NRC Committee found that existing studies on efforts to address drug usage and smuggling, from U.S. military operations to eradicate coca fields in Colombia, to domestic drug treatment centers, have all been inconclusive, if the programs have been evaluated at all: “The existing drug-use monitoring systems are strikingly inadequate to support the full range of policy decisions that the nation must make…. It is unconscionable for this country to continue to carry out a public policy of this magnitude and cost without any way of knowing whether and to what extent it is having the desired effect.”[137] The study, though not ignored by the press, was ignored by top-level policymakers, leading Committee Chair Charles Manski to conclude, as one observer notes, that “the drug war has no interest in its own results”.[138]

In mid-1995, the US government tried to reduce the supply of methamphetamine precursors to disrupt the market of this drug. According to a 2009 study, this effort was successful, but its effects were largely temporary.[139]

During alcohol prohibition, the period from 1920 to 1933, alcohol use initially fell but began to increase as early as 1922. It has been extrapolated that even if prohibition had not been repealed in 1933, alcohol consumption would have quickly surpassed pre-prohibition levels.[140] One argument against the War on Drugs is that it uses similar measures as Prohibition and is no more effective.

In the six years from 2000 to 2006, the U.S. spent $4.7 billion on Plan Colombia, an effort to eradicate coca production in Colombia. The main result of this effort was to shift coca production into more remote areas and force other forms of adaptation. The overall acreage cultivated for coca in Colombia at the end of the six years was found to be the same, after the U.S. Drug Czar’s office announced a change in measuring methodology in 2005 and included new areas in its surveys.[141] Cultivation in the neighboring countries of Peru and Bolivia increased, some would describe this effect like squeezing a balloon.[142]

Richard Davenport-Hines, in his book The Pursuit of Oblivion,[143] criticized the efficacy of the War on Drugs by pointing out that

1015% of illicit heroin and 30% of illicit cocaine is intercepted. Drug traffickers have gross profit margins of up to 300%. At least 75% of illicit drug shipments would have to be intercepted before the traffickers’ profits were hurt.

Alberto Fujimori, president of Peru from 1990 to 2000, described U.S. foreign drug policy as “failed” on grounds that “for 10 years, there has been a considerable sum invested by the Peruvian government and another sum on the part of the American government, and this has not led to a reduction in the supply of coca leaf offered for sale. Rather, in the 10 years from 1980 to 1990, it grew 10-fold.”[144]

At least 500 economists, including Nobel Laureates Milton Friedman,[145] George Akerlof and Vernon L. Smith, have noted that reducing the supply of marijuana without reducing the demand causes the price, and hence the profits of marijuana sellers, to go up, according to the laws of supply and demand.[146] The increased profits encourage the producers to produce more drugs despite the risks, providing a theoretical explanation for why attacks on drug supply have failed to have any lasting effect. The aforementioned economists published an open letter to President George W. Bush stating “We urge…the country to commence an open and honest debate about marijuana prohibition… At a minimum, this debate will force advocates of current policy to show that prohibition has benefits sufficient to justify the cost to taxpayers, foregone tax revenues and numerous ancillary consequences that result from marijuana prohibition.”

The declaration from the World Forum Against Drugs, 2008 state that a balanced policy of drug abuse prevention, education, treatment, law enforcement, research, and supply reduction provides the most effective platform to reduce drug abuse and its associated harms and call on governments to consider demand reduction as one of their first priorities in the fight against drug abuse.[147]

Despite over $7 billion spent annually towards arresting[148] and prosecuting nearly 800,000 people across the country for marijuana offenses in 2005[citation needed] (FBI Uniform Crime Reports), the federally funded Monitoring the Future Survey reports about 85% of high school seniors find marijuana “easy to obtain”. That figure has remained virtually unchanged since 1975, never dropping below 82.7% in three decades of national surveys.[149] The Drug Enforcement Administration states that the number of users of marijuana in the U.S. declined between 2000 and 2005 even with many states passing new medical marijuana laws making access easier,[150] though usage rates remain higher than they were in the 1990s according to the National Survey on Drug Use and Health.[151]

ONDCP stated in April 2011 that there has been a 46 percent drop in cocaine use among young adults over the past five years, and a 65 percent drop in the rate of people testing positive for cocaine in the workplace since 2006.[152] At the same time, a 2007 study found that up to 35% of college undergraduates used stimulants not prescribed to them.[153]

A 2013 study found that prices of heroin, cocaine and cannabis had decreased from 1990 to 2007, but the purity of these drugs had increased during the same time.[154]

The War on Drugs is often called a policy failure.[155][156][157][158][159]

The legality of the War on Drugs has been challenged on four main grounds in the U.S.

Several authors believe that the United States’ federal and state governments have chosen wrong methods for combatting the distribution of illicit substances. Aggressive, heavy-handed enforcement funnels individuals through courts and prisons; instead of treating the cause of the addiction, the focus of government efforts has been on punishment. By making drugs illegal rather than regulating them, the War on Drugs creates a highly profitable black market. Jefferson Fish has edited scholarly collections of articles offering a wide variety of public health based and rights based alternative drug policies.[160][161][162]

In the year 2000, the United States drug-control budget reached 18.4 billion dollars,[163] nearly half of which was spent financing law enforcement while only one sixth was spent on treatment. In the year 2003, 53 percent of the requested drug control budget was for enforcement, 29 percent for treatment, and 18 percent for prevention.[164] The state of New York, in particular, designated 17 percent of its budget towards substance-abuse-related spending. Of that, a mere one percent was put towards prevention, treatment, and research.

In a survey taken by Substance Abuse and Mental Health Services Administration (SAMHSA), it was found that substance abusers that remain in treatment longer are less likely to resume their former drug habits. Of the people that were studied, 66 percent were cocaine users. After experiencing long-term in-patient treatment, only 22 percent returned to the use of cocaine. Treatment had reduced the number of cocaine abusers by two-thirds.[163] By spending the majority of its money on law enforcement, the federal government had underestimated the true value of drug-treatment facilities and their benefit towards reducing the number of addicts in the U.S.

In 2004 the federal government issued the National Drug Control Strategy. It supported programs designed to expand treatment options, enhance treatment delivery, and improve treatment outcomes. For example, the Strategy provided SAMHSA with a $100.6 million grant to put towards their Access to Recovery (ATR) initiative. ATR is a program that provides vouchers to addicts to provide them with the means to acquire clinical treatment or recovery support. The project’s goals are to expand capacity, support client choice, and increase the array of faith-based and community based providers for clinical treatment and recovery support services.[165] The ATR program will also provide a more flexible array of services based on the individual’s treatment needs.

The 2004 Strategy additionally declared a significant 32 million dollar raise in the Drug Courts Program, which provides drug offenders with alternatives to incarceration. As a substitute for imprisonment, drug courts identify substance-abusing offenders and place them under strict court monitoring and community supervision, as well as provide them with long-term treatment services.[166] According to a report issued by the National Drug Court Institute, drug courts have a wide array of benefits, with only 16.4 percent of the nation’s drug court graduates rearrested and charged with a felony within one year of completing the program (versus the 44.1% of released prisoners who end up back in prison within 1-year). Additionally, enrolling an addict in a drug court program costs much less than incarcerating one in prison.[167] According to the Bureau of Prisons, the fee to cover the average cost of incarceration for Federal inmates in 2006 was $24,440.[168] The annual cost of receiving treatment in a drug court program ranges from $900 to $3,500. Drug courts in New York State alone saved $2.54 million in incarceration costs.[167]

Describing the failure of the War on Drugs, New York Times columnist Eduardo Porter noted:

Jeffrey Miron, an economist at Harvard who studies drug policy closely, has suggested that legalizing all illicit drugs would produce net benefits to the United States of some $65 billion a year, mostly by cutting public spending on enforcement as well as through reduced crime and corruption. A study by analysts at the RAND Corporation, a California research organization, suggested that if marijuana were legalized in California and the drug spilled from there to other states, Mexican drug cartels would lose about a fifth of their annual income of some $6.5 billion from illegal exports to the United States.[169]

Many believe that the War on Drugs has been costly and ineffective largely because inadequate emphasis is placed on treatment of addiction. The United States leads the world in both recreational drug usage and incarceration rates. 70% of men arrested in metropolitan areas test positive for an illicit substance,[170] and 54% of all men incarcerated will be repeat offenders.[171]

There are also programs in the United States to combat public health risks of injecting drug users such as the Needle exchange programme. The “needle exchange programme” is intended to provide injecting drug users with new needles in exchange for used needles to prevent needle sharing.

Covert activities and foreign policy

Read the original:

War on drugs – Wikipedia

Homepage – The War On Drugs

Postal Code

Country Select CountryUnited StatesAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia & HerzegovinaBotswanaBouvet IslandBrazilBritish Ind Ocean Ter Brunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepChadChileChinaChristmas IslandCocos (Keeling Is)ColombiaComorosCongoCook IslandsCosta RicaCote D’Ivoire Croatia (Hrvatska)CubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands Faroe IslandsFijiFinlandFranceFrance, MetroFrench GuianaFrench PolynesiaFrench Southern TerGabonGambiaGeorgiaGeorgia and S. Sand IsGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHeard & McDonald IsHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea (North) Korea (South)KuwaitKyrgyzstan LaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNeutral Zone Saudi/IraqNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IsNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint Kitts and NevisSaint LuciaSt. Vincent/Grenadines SamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSeychellesSierra LeoneSingaporeSlovakia (Slovak Rep)SloveniaSolomon IslandsSomaliaSouth AfricaSoviet Union (former)SpainSri LankaSt. HelenaSt. Pierre and Miquelo SudanSurinameSvalbard & Jan MayenSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos TuvaluUS Minor Outlying IsUgandaUkraineUnited Arab EmiratesUnited Kingdom UruguayUzbekistanVanuatuVatican City State VenezuelaViet NamVirgin Islands (Brit)Virgin Islands (US)Wallis and Futuna IsWestern SaharaYemenYugoslaviaZaireZambiaZimbabwe

First Name

Birth Date

MonthJanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember

Date12345678910111213141516171819202122232425262728293031

Read more here:

Homepage – The War On Drugs

Philippines War on Drugs | Human Rights Watch

Tilted election playing field in Turkey; European Court of Justice confirms rights of same-sex couples; Philippine policepromoting abusers; Vietnam’s cyber security law; Nigerian military trying to smear Amnesty International; Paris names imprisoned Bahrainrights activist Nabeel Rajaban honorary citizen; Intimidation ofjournalists in the US; Brutal US treatment of refugees; and Russia’s World Cup amid Syria slaughter.

Read more from the original source:

Philippines War on Drugs | Human Rights Watch

The War on Drugs (band) – Wikipedia

The War on Drugs is an American indie rock band from Philadelphia, Pennsylvania, formed in 2005. The band consists of Adam Granduciel (lyrics, vocals, guitar), David Hartley (bass), Robbie Bennett (keyboards), Charlie Hall (drums), Jon Natchez (saxophone, keyboards) and Anthony LaMarca (guitar).

Founded by close collaborators Granduciel and Kurt Vile, The War on Drugs released their debut studio album, Wagonwheel Blues, in 2008. Vile departed shortly after its release to focus on his solo career. The band’s second studio album Slave Ambient was released in 2011 to favorable reviews and extensive touring.

The band’s third album, Lost in the Dream, was released in 2014 following extensive touring and a period of loneliness and depression for primary songwriter Granduciel. The album was released to widespread critical acclaim and increased exposure. Previous collaborator Hall joined the band as its full-time drummer during the recording process, with saxophonist Natchez and additional guitarist LaMarca accompanying the band for its world tour. Signing to Atlantic Records, the six-piece band released their fourth album, A Deeper Understanding, in 2017, which won the Grammy Award for Best Rock Album at the 60th Annual Grammy Awards.

In 2003, frontman Adam Granduciel moved from Oakland, California to Philadelphia, where he met Kurt Vile, who had also recently moved back to Philadelphia after living in Boston for two years.[2] The duo subsequently began writing, recording and performing music together.[3] Vile stated, “Adam was the first dude I met when I moved back to Philadelphia in 2003. We saw eye-to-eye on a lot of things. I was obsessed with Bob Dylan at the time, and we totally geeked-out on that. We started playing together in the early days and he would be in my band, The Violators. Then, eventually I played in The War On Drugs.”[4]

Granduciel and Vile began playing together as The War on Drugs in 2005. Regarding the band’s name, Granduciel noted, “My friend Julian and I came up with it a few years ago over a couple bottles of red wine and a few typewriters when we were living in Oakland. We were writing a lot back then, working on a dictionary, and it just came out and we were like “hey, good band name” so eventually when I moved to Philadelphia and got a band together I used it. It was either that or The Rigatoni Danzas. I think we made the right choice. I always felt though that it was the kind of name I could record all sorts of different music under without any sort of predictability inherent in the name”[5]

While Vile and Granduciel formed the backbone of the band, they had a number of accompanists early in the group’s career, before finally settling on a lineup that added Charlie Hall as drummer/organist, Kyle Lloyd as drummer and Dave Hartley on bass.[6] Granduciel had previously toured and recorded with The Capitol Years, and Vile has several solo albums.[7] The group gave away its Barrel of Batteries EP for free early in 2008.[8] Their debut LP for Secretly Canadian, Wagonwheel Blues, was released in 2008.[9]

Following the album’s release, and subsequent European tour, Vile departed from the band to focus on his solo career, stating, “I only went on the first European tour when their album came out, and then I basically left the band. I knew if I stuck with that, it would be all my time and my goal was to have my own musical career.”[4] Fellow Kurt Vile & the Violators bandmate Mike Zanghi joined the band at this time, with Vile noting, “Mike was my drummer first and then when The War On Drugs’ first record came out I thought I was lending Mike to Adam for the European tour but then he just played with them all the time so I kind of had to like, while they were touring a lot, figure out my own thing.”[10]

The lineup underwent several changes, and by the end of 2008, Kurt Vile, Charlie Hall, and Kyle Lloyd had all exited the group. At that time Granduciel and Hartley were joined by drummer Mike Zanghi, whom Granduciel also played with in Kurt Vile’s backing band, the Violators.

After recording much of the band’s forthcoming studio album, Slave Ambient, Zanghi departed from the band in 2010. Drummer Steven Urgo subsequently joined the band, with keyboardist Robbie Bennett also joining at around this time. Regarding Zanghi’s exit, Granduciel noted: “I loved Mike, and I loved the sound of The Violators, but then he wasn’t really the sound of my band. But you have things like friendship, and he’s down to tour and he’s a great guy, but it wasn’t the sound of what this band was.”[11]

Slave Ambient was released to favorable reviews in 2011.[citation needed]

In 2012, Patrick Berkery replaced Urgo as the band’s drummer.[12]

On December 4, 2013 the band announced the upcoming release of its third studio album, Lost in the Dream (March 18, 2014). The band streamed the album in its entirety on NPR’s First Listen site for a week before its release.[13]

Lost in the Dream was featured as the Vinyl Me, Please record of the month in August 2014. The pressing was a limited edition pressing on mint green colored vinyl.

In June 2015, The War on Drugs signed with Atlantic Records for a two-album deal.[14]

On Record Store Day, April 22, 2017, The War on Drugs released their new single “Thinking of a Place.”[15] The single was produced by frontman Granduciel and Shawn Everett.[16] April 28, 2017, The War on Drugs announced a fall 2017 tour in North America and Europe and that a new album was imminent.[17] On June 1, 2017, a new song, “Holding On”, was released, and it was announced that the album would be titled A Deeper Understanding and was released on August 25, 2017.[18]

The 2017 tour begins in September, opening in the band’s hometown, Philadelphia, and it concludes in November in Sweden.[19]

A Deeper Understanding was nominated for the International Album of the Year award at the 2018 UK Americana Awards[20].

At the 60th Annual Grammy Awards, on January 28th, 2018, A Deeper Understanding won the Grammy for Best Rock Album [21]

Granduciel and Zanghi are both former members of founding guitarist Vile’s backing band The Violators, with Granduciel noting, “There was never, despite what lazy journalists have assumed, any sort of falling out, or resentment”[22] following Vile’s departure from The War on Drugs. In 2011, Vile stated, “When my record came out, I assumed Adam would want to focus on The War On Drugs but he came with us in The Violators when we toured the States. The Violators became a unit, and although the cast does rotate, we’ve developed an even tighter unity and sound. Adam is an incredible guitar player these days and there is a certain feeling [between us] that nobody else can tap into. We don’t really have to tell each other what to play, it just happens.”

Both Hartley and Granduciel contributed to singer-songwriter Sharon Van Etten’s fourth studio album, Are We There (2014). Hartley performs bass guitar on the entire album, with Granduciel contributing guitar on two tracks.

Granduciel is currently[when?] producing the new Sore Eros album. They have been recording it in Philadelphia and Los Angeles on and off for the past several years.[4]

In 2016, The War on Drugs contributed a cover of “Touch of Grey” for a Grateful Dead tribute album called Day of the Dead. The album was curated by The National’s Aaron and Bryce Dessner.[19]

Current members

Former members

See original here:

The War on Drugs (band) – Wikipedia

A Brief History of the Drug War | Drug Policy Alliance

This video from hip hop legend Jay Z and acclaimed artist Molly Crabapple depicts the drug wars devastating impact on the Black community from decades of biased law enforcement.

The video traces the drug war from President Nixon to the draconian Rockefeller Drug Laws to the emerging aboveground marijuana market that is poised to make legal millions for wealthy investors doing the same thing that generations of people of color have been arrested and locked up for. After you watch the video, read on to learn more about the discriminatory history of the war on drugs.

Many currently illegal drugs, such as marijuana, opium, coca, and psychedelics have been used for thousands of years for both medical and spiritual purposes. So why are some drugs legal and other drugs illegal today? It’s not based on any scientific assessment of the relative risks of these drugs but it has everything to do with who is associated with these drugs.

The first anti-opium laws in the 1870s were directed at Chinese immigrants. The first anti-cocaine laws in the early 1900s were directed at black men in the South. The first anti-marijuana laws, in the Midwest and the Southwest in the 1910s and 20s, were directed at Mexican migrants and Mexican Americans. Today, Latino and especially black communities are still subject to wildly disproportionate drug enforcement and sentencing practices.

In the 1960s, as drugs became symbols of youthful rebellion, social upheaval, and political dissent, the government halted scientific research to evaluate their medical safety and efficacy.

In June 1971, President Nixon declared a war on drugs. He dramatically increased the size and presence of federal drug control agencies, and pushed through measures such as mandatory sentencing and no-knock warrants.

A top Nixon aide, John Ehrlichman, later admitted: You want to know what this was really all about. The Nixon campaign in 1968, and the Nixon White House after that, had two enemies: the antiwar left and black people. You understand what Im saying. We knew we couldnt make it illegal to be either against the war or black, but by getting the public to associate the hippies with marijuana and blacks with heroin, and then criminalizing both heavily, we could disrupt those communities. We could arrest their leaders, raid their homes, break up their meetings, and vilify them night after night on the evening news. Did we know we were lying about the drugs? Of course we did.Nixon temporarily placed marijuana in Schedule One, the most restrictive category of drugs, pending review by a commission he appointed led by Republican Pennsylvania Governor Raymond Shafer.

In 1972, the commission unanimously recommended decriminalizing the possession and distribution of marijuana for personal use. Nixon ignored the report and rejected its recommendations.

Between 1973 and 1977, however, eleven states decriminalized marijuana possession. In January 1977, President Jimmy Carter was inaugurated on a campaign platform that included marijuana decriminalization. In October 1977, the Senate Judiciary Committee voted to decriminalize possession of up to an ounce of marijuana for personal use.

Within just a few years, though, the tide had shifted. Proposals to decriminalize marijuana were abandoned as parents became increasingly concerned about high rates of teen marijuana use. Marijuana was ultimately caught up in a broader cultural backlash against the perceived permissiveness of the 1970s.

The presidency of Ronald Reagan marked the start of a long period of skyrocketing rates of incarceration, largely thanks to his unprecedented expansion of the drug war. The number of people behind bars for nonviolent drug law offenses increased from 50,000 in 1980 to over 400,000 by 1997.

Public concern about illicit drug use built throughout the 1980s, largely due to media portrayals of people addicted to the smokeable form of cocaine dubbed crack. Soon after Ronald Reagan took office in 1981, his wife, Nancy Reagan, began a highly-publicized anti-drug campaign, coining the slogan “Just Say No.”

This set the stage for the zero tolerance policies implemented in the mid-to-late 1980s. Los Angeles Police Chief Daryl Gates, who believed that casual drug users should be taken out and shot, founded the DARE drug education program, which was quickly adopted nationwide despite the lack of evidence of its effectiveness. The increasingly harsh drug policies also blocked the expansion of syringe access programs and other harm reduction policies to reduce the rapid spread of HIV/AIDS.

In the late 1980s, a political hysteria about drugs led to the passage of draconian penalties in Congress and state legislatures that rapidly increased the prison population. In 1985, the proportion of Americans polled who saw drug abuse as the nation’s “number one problem” was just 2-6 percent. The figure grew through the remainder of the 1980s until, in September 1989, it reached a remarkable 64 percent one of the most intense fixations by the American public on any issue in polling history. Within less than a year, however, the figure plummeted to less than 10 percent, as the media lost interest. The draconian policies enacted during the hysteria remained, however, and continued to result in escalating levels of arrests and incarceration.

Although Bill Clinton advocated for treatment instead of incarceration during his 1992 presidential campaign, after his first few months in the White House he reverted to the drug war strategies of his Republican predecessors by continuing to escalate the drug war. Notoriously, Clinton rejected a U.S. Sentencing Commission recommendation to eliminate the disparity between crack and powder cocaine sentences.

He also rejected, with the encouragement of drug czar General Barry McCaffrey, Health Secretary Donna Shalalas advice to end the federal ban on funding for syringe access programs. Yet, a month before leaving office, Clinton asserted in a Rolling Stone interview that “we really need a re-examination of our entire policy on imprisonment” of people who use drugs, and said that marijuana use “should be decriminalized.”

At the height of the drug war hysteria in the late 1980s and early 1990s, a movement emerged seeking a new approach to drug policy. In 1987, Arnold Trebach and Kevin Zeese founded the Drug Policy Foundation describing it as the loyal opposition to the war on drugs. Prominent conservatives such as William Buckley and Milton Friedman had long advocated for ending drug prohibition, as had civil libertarians such as longtime ACLU Executive Director Ira Glasser. In the late 1980s they were joined by Baltimore Mayor Kurt Schmoke, Federal Judge Robert Sweet, Princeton professor Ethan Nadelmann, and other activists, scholars and policymakers.

In 1994, Nadelmann founded The Lindesmith Center as the first U.S. project of George Soros Open Society Institute. In 2000, the growing Center merged with the Drug Policy Foundation to create the Drug Policy Alliance.

George W. Bush arrived in the White House as the drug war was running out of steam yet he allocated more money than ever to it. His drug czar, John Walters, zealously focused on marijuana and launched a major campaign to promote student drug testing. While rates of illicit drug use remained constant, overdose fatalities rose rapidly.

The era of George W. Bush also witnessed the rapid escalation of the militarization of domestic drug law enforcement. By the end of Bush’s term, there were about 40,000 paramilitary-style SWAT raids on Americans every year mostly for nonviolent drug law offenses, often misdemeanors. While federal reform mostly stalled under Bush, state-level reforms finally began to slow the growth of the drug war.

Politicians now routinely admit to having used marijuana, and even cocaine, when they were younger. When Michael Bloomberg was questioned during his 2001 mayoral campaign about whether he had ever used marijuana, he said, “You bet I did and I enjoyed it.” Barack Obama also candidly discussed his prior cocaine and marijuana use: “When I was a kid, I inhaled frequently that was the point.”

Public opinion has shifted dramatically in favor of sensible reforms that expand health-based approaches while reducing the role of criminalization in drug policy.

Marijuana reform has gained unprecedented momentum throughout the Americas. Alaska, California, Colorado, Nevada, Oregon, Maine, Massachusetts, Washington State, and Washington D.C. have legalized marijuana for adults. In December 2013, Uruguay became the first country in the world to legally regulate marijuana. In Canada, Prime Minister Justin Trudeau plans legalize marijuana for adults by 2018.

In response to a worsening overdose epidemic, dozens of U.S. states passed laws to increase access to the overdose antidote, naloxone, as well as 911 Good Samaritan laws to encourage people to seek medical help in the event of an overdose.

Yet the assault on American citizens and others continues, with 700,000 people still arrested for marijuana offenses each year and almost 500,000 people still behind bars for nothing more than a drug law violation.

President Obama, despite supporting several successful policy changes such as reducing the crack/powder sentencing disparity, ending the ban on federal funding for syringe access programs, and ending federal interference with state medical marijuana laws did not shift the majority of drug policy funding to a health-based approach.

Now, the new administration is threatening to take us backward toward a 1980s style drug war. President Trump is calling for a wall to keep drugs out of the country, and Attorney General Jeff Sessions has made it clear that he does not support the sovereignty of states to legalize marijuana, and believes good people dont smoke marijuana.

Progress is inevitably slow, and even with an administration hostile to reform there is still unprecedented momentum behind drug policy reform in states and localities across the country. The Drug Policy Alliance and its allies will continue to advocate for health-based reforms such as marijuana legalization, drug decriminalization, safe consumption sites, naloxone access, bail reform, and more.

We look forward to a future where drug policies are shaped by science and compassion rather than political hysteria.

The rest is here:

A Brief History of the Drug War | Drug Policy Alliance

War on Drugs | United States history | Britannica.com

War on Drugs, the effort in the United States since the 1970s to combat illegal drug use by greatly increasing penalties, enforcement, and incarceration for drug offenders.

The War on Drugs began in June 1971 when U.S. Pres. Richard Nixon declared drug abuse to be public enemy number one and increased federal funding for drug-control agencies and drug-treatment efforts. In 1973 the Drug Enforcement Agency was created out of the merger of the Office for Drug Abuse Law Enforcement, the Bureau of Narcotics and Dangerous Drugs, and the Office of Narcotics Intelligence to consolidate federal efforts to control drug abuse.

The War on Drugs was a relatively small component of federal law-enforcement efforts until the presidency of Ronald Reagan, which began in 1981. Reagan greatly expanded the reach of the drug war and his focus on criminal punishment over treatment led to a massive increase in incarcerations for nonviolent drug offenses, from 50,000 in 1980 to 400,000 in 1997. In 1984 his wife, Nancy, spearheaded another facet of the War on Drugs with her Just Say No campaign, which was a privately funded effort to educate schoolchildren on the dangers of drug use. The expansion of the War on Drugs was in many ways driven by increased media coverage ofand resulting public nervousness overthe crack epidemic that arose in the early 1980s. This heightened concern over illicit drug use helped drive political support for Reagans hard-line stance on drugs. The U.S. Congress passed the Anti-Drug Abuse Act of 1986, which allocated $1.7 billion to the War on Drugs and established a series of mandatory minimum prison sentences for various drug offenses. A notable feature of mandatory minimums was the massive gap between the amounts of crack and of powder cocaine that resulted in the same minimum sentence: possession of five grams of crack led to an automatic five-year sentence while it took the possession of 500 grams of powder cocaine to trigger that sentence. Since approximately 80% of crack users were African American, mandatory minimums led to an unequal increase of incarceration rates for nonviolent black drug offenders, as well as claims that the War on Drugs was a racist institution.

Concerns over the effectiveness of the War on Drugs and increased awareness of the racial disparity of the punishments meted out by it led to decreased public support of the most draconian aspects of the drug war during the early 21st century. Consequently, reforms were enacted during that time, such as the legalization of recreational marijuana in a number of states and the passage of the Fair Sentencing Act of 2010 that reduced the discrepancy of crack-to-powder possession thresholds for minimum sentences from 100-to-1 to 18-to-1. While the War on Drugs is still technically being waged, it is done at much less intense level than it was during its peak in the 1980s.

See more here:

War on Drugs | United States history | Britannica.com

Institute of Bioengineering and Nanotechnology

Professor Jonathan ClaydenSchool of Chemistry, University of Bristol, UK

Tuesday, January 23, 2018 9:00 am to 10:00 am

Discovery Theatrette, Level 4 The Matrix, 30 Biopolis Street, Biopolis

AbstractBiology solves the problem of communicating information through cell membranes by means of conformationally switchable proteins, of which the most important are the G-protein coupled receptors (GPCRs). The lecture will describe the design and synthesis of dynamic foldamers as artificial mimics of GPCRs, with the ultimate aim of controlling function in the interior of an artificial vesicle. Techniques that allow detailed dynamic conformational information to be extracted both in solution and in the membrane phase will be described.

About the SpeakerJonathan Clayden was born in Uganda in 1968, grew up in the county of Essex, in the East of England, and was an undergraduate at Churchill College, Cambridge. In 1992 he completed a PhD at the University of Cambridge with Dr Stuart Warren. After postdoctoral work with Professor Marc Julia at the cole Normale Suprieure in Paris, he moved in 1994 to Manchester as a lecturer. In 2001 he was promoted to full professor, and in 2015 he moved to a position as Professor of Chemistry at the University of Bristol.

His research interests encompass various areas of synthesis and stereochemistry, particularly where conformation has a role to play: asymmetric synthesis, atropisomerism, organolithium chemistry, long-range stereocontrol. He has pioneered the field of dynamic foldamer chemistry for the synthesis of artificial molecules with biomimetic function.

He is a co-author of the widely used textbook Organic Chemistry, and his book Organolithiums: Selectivity for Synthesis was published by Pergamon in 2002.

He has received the Royal Society of Chemistrys Meldola (1997) and Corday Morgan (2003) medals, Stereochemistry Prize (2005), Hickinbottom Fellowship (2006) and Merck Prize (2011), and the Novartis Young European Investigator Award (2004). He held senior research fellowships from the Leverhulme Trust and the Royal Society in 2003-4 and 2009-10 and has held a Royal Society Wolfson Research Merit award and a European Research Council Advanced Investigator Grant (2.5M).

This seminar is free and no registration is required.

Follow this link:

Institute of Bioengineering and Nanotechnology

Molecular nanotechnology – Wikipedia

Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis.[1] This is distinct from nanoscale materials. Based on Richard Feynman’s vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing[2]) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

While conventional chemistry uses inexact processes obtaining inexact results, and biology exploits inexact processes to obtain definitive results, molecular nanotechnology would employ original definitive processes to obtain definitive results. The desire in molecular nanotechnology would be to balance molecular reactions in positionally-controlled locations and orientations to obtain desired chemical reactions, and then to build systems by further assembling the products of these reactions.

A roadmap for the development of MNT is an objective of a broadly based technology project led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute.[3] The roadmap was originally scheduled for completion by late 2006, but was released in January 2008.[4] The Nanofactory Collaboration[5] is a more focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda[6] specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development. In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology.[7]

One proposed application of MNT is so-called smart materials. This term refers to any sort of material designed and engineered at the nanometer scale for a specific task. It encompasses a wide variety of possible commercial applications. One example would be materials designed to respond differently to various molecules; such a capability could lead, for example, to artificial drugs which would recognize and render inert specific viruses. Another is the idea of self-healing structures, which would repair small tears in a surface naturally in the same way as self-sealing tires or human skin.

A MNT nanosensor would resemble a smart material, involving a small component within a larger machine that would react to its environment and change in some fundamental, intentional way. A very simple example: a photosensor might passively measure the incident light and discharge its absorbed energy as electricity when the light passes above or below a specified threshold, sending a signal to a larger machine. Such a sensor would supposedly cost less and use less power than a conventional sensor, and yet function usefully in all the same applications for example, turning on parking lot lights when it gets dark.

While smart materials and nanosensors both exemplify useful applications of MNT, they pale in comparison with the complexity of the technology most popularly associated with the term: the replicating nanorobot.

MNT nanofacturing is popularly linked with the idea of swarms of coordinated nanoscale robots working together, a popularization of an early proposal by K. Eric Drexler in his 1986 discussions of MNT, but superseded in 1992. In this early proposal, sufficiently capable nanorobots would construct more nanorobots in an artificial environment containing special molecular building blocks.

Critics have doubted both the feasibility of self-replicating nanorobots and the feasibility of control if self-replicating nanorobots could be achieved: they cite the possibility of mutations removing any control and favoring reproduction of mutant pathogenic variations. Advocates address the first doubt by pointing out that the first macroscale autonomous machine replicator, made of Lego blocks, was built and operated experimentally in 2002.[8] While there are sensory advantages present at the macroscale compared to the limited sensorium available at the nanoscale, proposals for positionally controlled nanoscale mechanosynthetic fabrication systems employ dead reckoning of tooltips combined with reliable reaction sequence design to ensure reliable results, hence a limited sensorium is no handicap; similar considerations apply to the positional assembly of small nanoparts. Advocates address the second doubt by arguing that bacteria are (of necessity) evolved to evolve, while nanorobot mutation could be actively prevented by common error-correcting techniques. Similar ideas are advocated in the Foresight Guidelines on Molecular Nanotechnology,[9] and a map of the 137-dimensional replicator design space[10] recently published by Freitas and Merkle provides numerous proposed methods by which replicators could, in principle, be safely controlled by good design.

However, the concept of suppressing mutation raises the question: How can design evolution occur at the nanoscale without a process of random mutation and deterministic selection? Critics argue that MNT advocates have not provided a substitute for such a process of evolution in this nanoscale arena where conventional sensory-based selection processes are lacking. The limits of the sensorium available at the nanoscale could make it difficult or impossible to winnow successes from failures. Advocates argue that design evolution should occur deterministically and strictly under human control, using the conventional engineering paradigm of modeling, design, prototyping, testing, analysis, and redesign.

In any event, since 1992 technical proposals for MNT do not include self-replicating nanorobots, and recent ethical guidelines put forth by MNT advocates prohibit unconstrained self-replication.[9][11]

One of the most important applications of MNT would be medical nanorobotics or nanomedicine, an area pioneered by Robert Freitas in numerous books[12] and papers.[13] The ability to design, build, and deploy large numbers of medical nanorobots would, at a minimum, make possible the rapid elimination of disease and the reliable and relatively painless recovery from physical trauma. Medical nanorobots might also make possible the convenient correction of genetic defects, and help to ensure a greatly expanded lifespan. More controversially, medical nanorobots might be used to augment natural human capabilities. One study has reported on the conditions like tumors, arteriosclerosis, blood clots leading to stroke, accumulation of scar tissue and localized pockets of infection can be possibly be addressed by employing medical nanorobots.[14][15]

Another proposed application of molecular nanotechnology is “utility fog”[16] in which a cloud of networked microscopic robots (simpler than assemblers) would change its shape and properties to form macroscopic objects and tools in accordance with software commands. Rather than modify the current practices of consuming material goods in different forms, utility fog would simply replace many physical objects.

Yet another proposed application of MNT would be phased-array optics (PAO).[17] However, this appears to be a problem addressable by ordinary nanoscale technology. PAO would use the principle of phased-array millimeter technology but at optical wavelengths. This would permit the duplication of any sort of optical effect but virtually. Users could request holograms, sunrises and sunsets, or floating lasers as the mood strikes. PAO systems were described in BC Crandall’s Nanotechnology: Molecular Speculations on Global Abundance in the Brian Wowk article “Phased-Array Optics.”[18]

Molecular manufacturing is a potential future subfield of nanotechnology that would make it possible to build complex structures at atomic precision.[19] Molecular manufacturing requires significant advances in nanotechnology, but once achieved could produce highly advanced products at low costs and in large quantities in nanofactories weighing a kilogram or more.[19][20] When nanofactories gain the ability to produce other nanofactories production may only be limited by relatively abundant factors such as input materials, energy and software.[20]

The products of molecular manufacturing could range from cheaper, mass-produced versions of known high-tech products to novel products with added capabilities in many areas of application. Some applications that have been suggested are advanced smart materials, nanosensors, medical nanorobots and space travel.[19] Additionally, molecular manufacturing could be used to cheaply produce highly advanced, durable weapons, which is an area of special concern regarding the impact of nanotechnology.[20] Being equipped with compact computers and motors these could be increasingly autonomous and have a large range of capabilities.[20]

According to Chris Phoenix and Mike Treder from the Center for Responsible Nanotechnology as well as Anders Sandberg from the Future of Humanity Institute molecular manufacturing is the application of nanotechnology that poses the most significant global catastrophic risk.[20][21] Several nanotechnology researchers state that the bulk of risk from nanotechnology comes from the potential to lead to war, arms races and destructive global government.[20][21][22] Several reasons have been suggested why the availability of nanotech weaponry may with significant likelihood lead to unstable arms races (compared to e.g. nuclear arms races): (1) A large number of players may be tempted to enter the race since the threshold for doing so is low;[20] (2) the ability to make weapons with molecular manufacturing will be cheap and easy to hide;[20] (3) therefore lack of insight into the other parties’ capabilities can tempt players to arm out of caution or to launch preemptive strikes;[20][23] (4) molecular manufacturing may reduce dependency on international trade,[20] a potential peace-promoting factor;[24] (5) wars of aggression may pose a smaller economic threat to the aggressor since manufacturing is cheap and humans may not be needed on the battlefield.[20]

Since self-regulation by all state and non-state actors seems hard to achieve,[25] measures to mitigate war-related risks have mainly been proposed in the area of international cooperation.[20][26] International infrastructure may be expanded giving more sovereignty to the international level. This could help coordinate efforts for arms control.[27] International institutions dedicated specifically to nanotechnology (perhaps analogously to the International Atomic Energy Agency IAEA) or general arms control may also be designed.[26] One may also jointly make differential technological progress on defensive technologies, a policy that players should usually favour.[20] The Center for Responsible Nanotechnology also suggest some technical restrictions.[28] Improved transparency regarding technological capabilities may be another important facilitator for arms-control.[29]

A grey goo is another catastrophic scenario, which was proposed by Eric Drexler in his 1986 book Engines of Creation,[30] has been analyzed by Freitas in “Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations” [31] and has been a theme in mainstream media and fiction.[32][33] This scenario involves tiny self-replicating robots that consume the entire biosphere using it as a source of energy and building blocks. Nanotech experts including Drexler now discredit the scenario. According to Chris Phoenix a “So-called grey goo could only be the product of a deliberate and difficult engineering process, not an accident”.[34] With the advent of nano-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating biological organisms engineered through nanotechnology.

Nanotechnology (or molecular nanotechnology to refer more specifically to the goals discussed here) will let us continue the historical trends in manufacturing right up to the fundamental limits imposed by physical law. It will let us make remarkably powerful molecular computers. It will let us make materials over fifty times lighter than steel or aluminium alloy but with the same strength. We’ll be able to make jets, rockets, cars or even chairs that, by today’s standards, would be remarkably light, strong, and inexpensive. Molecular surgical tools, guided by molecular computers and injected into the blood stream could find and destroy cancer cells or invading bacteria, unclog arteries, or provide oxygen when the circulation is impaired.

Nanotechnology will replace our entire manufacturing base with a new, radically more precise, radically less expensive, and radically more flexible way of making products. The aim is not simply to replace today’s computer chip making plants, but also to replace the assembly lines for cars, televisions, telephones, books, surgical tools, missiles, bookcases, airplanes, tractors, and all the rest. The objective is a pervasive change in manufacturing, a change that will leave virtually no product untouched. Economic progress and military readiness in the 21st Century will depend fundamentally on maintaining a competitive position in nanotechnology.

[35]

Despite the current early developmental status of nanotechnology and molecular nanotechnology, much concern surrounds MNT’s anticipated impact on economics[36][37] and on law. Whatever the exact effects, MNT, if achieved, would tend to reduce the scarcity of manufactured goods and make many more goods (such as food and health aids) manufacturable.

MNT should make possible nanomedical capabilities able to cure any medical condition not already cured by advances in other areas. Good health would be common, and poor health of any form would be as rare as smallpox and scurvy are today. Even cryonics would be feasible, as cryopreserved tissue could be fully repaired.

Molecular nanotechnology is one of the technologies that some analysts believe could lead to a technological singularity. Some feel that molecular nanotechnology would have daunting risks.[38] It conceivably could enable cheaper and more destructive conventional weapons. Also, molecular nanotechnology might permit weapons of mass destruction that could self-replicate, as viruses and cancer cells do when attacking the human body. Commentators generally agree that, in the event molecular nanotechnology were developed, its self-replication should be permitted only under very controlled or “inherently safe” conditions.

A fear exists that nanomechanical robots, if achieved, and if designed to self-replicate using naturally occurring materials (a difficult task), could consume the entire planet in their hunger for raw materials,[39] or simply crowd out natural life, out-competing it for energy (as happened historically when blue-green algae appeared and outcompeted earlier life forms). Some commentators have referred to this situation as the “grey goo” or “ecophagy” scenario. K. Eric Drexler considers an accidental “grey goo” scenario extremely unlikely and says so in later editions of Engines of Creation.

In light of this perception of potential danger, the Foresight Institute, founded by Drexler, has prepared a set of guidelines[40] for the ethical development of nanotechnology. These include the banning of free-foraging self-replicating pseudo-organisms on the Earth’s surface, at least, and possibly in other places.

The feasibility of the basic technologies analyzed in Nanosystems has been the subject of a formal scientific review by U.S. National Academy of Sciences, and has also been the focus of extensive debate on the internet and in the popular press.

In 2006, U.S. National Academy of Sciences released the report of a study of molecular manufacturing as part of a longer report, A Matter of Size: Triennial Review of the National Nanotechnology Initiative[41] The study committee reviewed the technical content of Nanosystems, and in its conclusion states that no current theoretical analysis can be considered definitive regarding several questions of potential system performance, and that optimal paths for implementing high-performance systems cannot be predicted with confidence. It recommends experimental research to advance knowledge in this area:

A section heading in Drexler’s Engines of Creation reads[42] “Universal Assemblers”, and the following text speaks of multiple types of assemblers which, collectively, could hypothetically “build almost anything that the laws of nature allow to exist.” Drexler’s colleague Ralph Merkle has noted that, contrary to widespread legend,[43] Drexler never claimed that assembler systems could build absolutely any molecular structure. The endnotes in Drexler’s book explain the qualification “almost”: “For example, a delicate structure might be designed that, like a stone arch, would self-destruct unless all its pieces were already in place. If there were no room in the design for the placement and removal of a scaffolding, then the structure might be impossible to build. Few structures of practical interest seem likely to exhibit such a problem, however.”

In 1992, Drexler published Nanosystems: Molecular Machinery, Manufacturing, and Computation,[44] a detailed proposal for synthesizing stiff covalent structures using a table-top factory. Diamondoid structures and other stiff covalent structures, if achieved, would have a wide range of possible applications, going far beyond current MEMS technology. An outline of a path was put forward in 1992 for building a table-top factory in the absence of an assembler. Other researchers have begun advancing tentative, alternative proposed paths [5] for this in the years since Nanosystems was published.

In 2004 Richard Jones wrote Soft Machines (nanotechnology and life), a book for lay audiences published by Oxford University. In this book he describes radical nanotechnology (as advocated by Drexler) as a deterministic/mechanistic idea of nano engineered machines that does not take into account the nanoscale challenges such as wetness, stickiness, Brownian motion, and high viscosity. He also explains what is soft nanotechnology or more appropriatelly biomimetic nanotechnology which is the way forward, if not the best way, to design functional nanodevices that can cope with all the problems at a nanoscale. One can think of soft nanotechnology as the development of nanomachines that uses the lessons learned from biology on how things work, chemistry to precisely engineer such devices and stochastic physics to model the system and its natural processes in detail.

Several researchers, including Nobel Prize winner Dr. Richard Smalley (19432005),[45] attacked the notion of universal assemblers, leading to a rebuttal from Drexler and colleagues,[46] and eventually to an exchange of letters.[47] Smalley argued that chemistry is extremely complicated, reactions are hard to control, and that a universal assembler is science fiction. Drexler and colleagues, however, noted that Drexler never proposed universal assemblers able to make absolutely anything, but instead proposed more limited assemblers able to make a very wide variety of things. They challenged the relevance of Smalley’s arguments to the more specific proposals advanced in Nanosystems. Also, Smalley argued that nearly all of modern chemistry involves reactions that take place in a solvent (usually water), because the small molecules of a solvent contribute many things, such as lowering binding energies for transition states. Since nearly all known chemistry requires a solvent, Smalley felt that Drexler’s proposal to use a high vacuum environment was not feasible. However, Drexler addresses this in Nanosystems by showing mathematically that well designed catalysts can provide the effects of a solvent and can fundamentally be made even more efficient than a solvent/enzyme reaction could ever be. It is noteworthy that, contrary to Smalley’s opinion that enzymes require water, “Not only do enzymes work vigorously in anhydrous organic media, but in this unnatural milieu they acquire remarkable properties such as greatly enhanced stability, radically altered substrate and enantiomeric specificities, molecular memory, and the ability to catalyse unusual reactions.”[48]

For the future, some means have to be found for MNT design evolution at the nanoscale which mimics the process of biological evolution at the molecular scale. Biological evolution proceeds by random variation in ensemble averages of organisms combined with culling of the less-successful variants and reproduction of the more-successful variants, and macroscale engineering design also proceeds by a process of design evolution from simplicity to complexity as set forth somewhat satirically by John Gall: “A complex system that works is invariably found to have evolved from a simple system that worked. . . . A complex system designed from scratch never works and can not be patched up to make it work. You have to start over, beginning with a system that works.” [49] A breakthrough in MNT is needed which proceeds from the simple atomic ensembles which can be built with, e.g., an STM to complex MNT systems via a process of design evolution. A handicap in this process is the difficulty of seeing and manipulation at the nanoscale compared to the macroscale which makes deterministic selection of successful trials difficult; in contrast biological evolution proceeds via action of what Richard Dawkins has called the “blind watchmaker” [50] comprising random molecular variation and deterministic reproduction/extinction.

At present in 2007 the practice of nanotechnology embraces both stochastic approaches (in which, for example, supramolecular chemistry creates waterproof pants) and deterministic approaches wherein single molecules (created by stochastic chemistry) are manipulated on substrate surfaces (created by stochastic deposition methods) by deterministic methods comprising nudging them with STM or AFM probes and causing simple binding or cleavage reactions to occur. The dream of a complex, deterministic molecular nanotechnology remains elusive. Since the mid-1990s, thousands of surface scientists and thin film technocrats have latched on to the nanotechnology bandwagon and redefined their disciplines as nanotechnology. This has caused much confusion in the field and has spawned thousands of “nano”-papers on the peer reviewed literature. Most of these reports are extensions of the more ordinary research done in the parent fields.

The feasibility of Drexler’s proposals largely depends, therefore, on whether designs like those in Nanosystems could be built in the absence of a universal assembler to build them and would work as described. Supporters of molecular nanotechnology frequently claim that no significant errors have been discovered in Nanosystems since 1992. Even some critics concede[51] that “Drexler has carefully considered a number of physical principles underlying the ‘high level’ aspects of the nanosystems he proposes and, indeed, has thought in some detail” about some issues.

Other critics claim, however, that Nanosystems omits important chemical details about the low-level ‘machine language’ of molecular nanotechnology.[52][53][54][55] They also claim that much of the other low-level chemistry in Nanosystems requires extensive further work, and that Drexler’s higher-level designs therefore rest on speculative foundations. Recent such further work by Freitas and Merkle [56] is aimed at strengthening these foundations by filling the existing gaps in the low-level chemistry.

Drexler argues that we may need to wait until our conventional nanotechnology improves before solving these issues: “Molecular manufacturing will result from a series of advances in molecular machine systems, much as the first Moon landing resulted from a series of advances in liquid-fuel rocket systems. We are now in a position like that of the British Interplanetary Society of the 1930s which described how multistage liquid-fueled rockets could reach the Moon and pointed to early rockets as illustrations of the basic principle.”[57] However, Freitas and Merkle argue [58] that a focused effort to achieve diamond mechanosynthesis (DMS) can begin now, using existing technology, and might achieve success in less than a decade if their “direct-to-DMS approach is pursued rather than a more circuitous development approach that seeks to implement less efficacious nondiamondoid molecular manufacturing technologies before progressing to diamondoid”.

To summarize the arguments against feasibility: First, critics argue that a primary barrier to achieving molecular nanotechnology is the lack of an efficient way to create machines on a molecular/atomic scale, especially in the absence of a well-defined path toward a self-replicating assembler or diamondoid nanofactory. Advocates respond that a preliminary research path leading to a diamondoid nanofactory is being developed.[6]

A second difficulty in reaching molecular nanotechnology is design. Hand design of a gear or bearing at the level of atoms might take a few to several weeks. While Drexler, Merkle and others have created designs of simple parts, no comprehensive design effort for anything approaching the complexity of a Model T Ford has been attempted. Advocates respond that it is difficult to undertake a comprehensive design effort in the absence of significant funding for such efforts, and that despite this handicap much useful design-ahead has nevertheless been accomplished with new software tools that have been developed, e.g., at Nanorex.[59]

In the latest report A Matter of Size: Triennial Review of the National Nanotechnology Initiative[41] put out by the National Academies Press in December 2006 (roughly twenty years after Engines of Creation was published), no clear way forward toward molecular nanotechnology could yet be seen, as per the conclusion on page 108 of that report: “Although theoretical calculations can be made today, the eventually attainable range of chemical reaction cycles, error rates, speed of operation, and thermodynamic efficiencies of such bottom-up manufacturing systems cannot be reliably predicted at this time. Thus, the eventually attainable perfection and complexity of manufactured products, while they can be calculated in theory, cannot be predicted with confidence. Finally, the optimum research paths that might lead to systems which greatly exceed the thermodynamic efficiencies and other capabilities of biological systems cannot be reliably predicted at this time. Research funding that is based on the ability of investigators to produce experimental demonstrations that link to abstract models and guide long-term vision is most appropriate to achieve this goal.” This call for research leading to demonstrations is welcomed by groups such as the Nanofactory Collaboration who are specifically seeking experimental successes in diamond mechanosynthesis.[60] The “Technology Roadmap for Productive Nanosystems”[61] aims to offer additional constructive insights.

It is perhaps interesting to ask whether or not most structures consistent with physical law can in fact be manufactured. Advocates assert that to achieve most of the vision of molecular manufacturing it is not necessary to be able to build “any structure that is compatible with natural law.” Rather, it is necessary to be able to build only a sufficient (possibly modest) subset of such structuresas is true, in fact, of any practical manufacturing process used in the world today, and is true even in biology. In any event, as Richard Feynman once said, “It is scientific only to say what’s more likely or less likely, and not to be proving all the time what’s possible or impossible.”[62]

There is a growing body of peer-reviewed theoretical work on synthesizing diamond by mechanically removing/adding hydrogen atoms [63] and depositing carbon atoms [64][65][66][67][68][69] (a process known as mechanosynthesis). This work is slowly permeating the broader nanoscience community and is being critiqued. For instance, Peng et al. (2006)[70] (in the continuing research effort by Freitas, Merkle and their collaborators) reports that the most-studied mechanosynthesis tooltip motif (DCB6Ge) successfully places a C2 carbon dimer on a C(110) diamond surface at both 300K (room temperature) and 80K (liquid nitrogen temperature), and that the silicon variant (DCB6Si) also works at 80K but not at 300K. Over 100,000 CPU hours were invested in this latest study. The DCB6 tooltip motif, initially described by Merkle and Freitas at a Foresight Conference in 2002, was the first complete tooltip ever proposed for diamond mechanosynthesis and remains the only tooltip motif that has been successfully simulated for its intended function on a full 200-atom diamond surface.

The tooltips modeled in this work are intended to be used only in carefully controlled environments (e.g., vacuum). Maximum acceptable limits for tooltip translational and rotational misplacement errors are reported in Peng et al. (2006) — tooltips must be positioned with great accuracy to avoid bonding the dimer incorrectly. Peng et al. (2006) reports that increasing the handle thickness from 4 support planes of C atoms above the tooltip to 5 planes decreases the resonance frequency of the entire structure from 2.0THz to 1.8THz. More importantly, the vibrational footprints of a DCB6Ge tooltip mounted on a 384-atom handle and of the same tooltip mounted on a similarly constrained but much larger 636-atom “crossbar” handle are virtually identical in the non-crossbar directions. Additional computational studies modeling still bigger handle structures are welcome, but the ability to precisely position SPM tips to the requisite atomic accuracy has been repeatedly demonstrated experimentally at low temperature,[71][72] or even at room temperature[73][74] constituting a basic existence proof for this capability.

Further research[75] to consider additional tooltips will require time-consuming computational chemistry and difficult laboratory work.

A working nanofactory would require a variety of well-designed tips for different reactions, and detailed analyses of placing atoms on more complicated surfaces. Although this appears a challenging problem given current resources, many tools will be available to help future researchers: Moore’s law predicts further increases in computer power, semiconductor fabrication techniques continue to approach the nanoscale, and researchers grow ever more skilled at using proteins, ribosomes and DNA to perform novel chemistry.

See the rest here:

Molecular nanotechnology – Wikipedia

Nanotechnology – Wikipedia

Nanotechnology (“nanotech”) is manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter which occur below the given size threshold. It is therefore common to see the plural form “nanotechnologies” as well as “nanoscale technologies” to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through 2012, the USA has invested $3.7 billion using its National Nanotechnology Initiative, the European Union has invested $1.2 billion, and Japan has invested $750 million.[3]

Nanotechnology as defined by size is naturally very broad, including fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage,[4][5] microfabrication,[6] molecular engineering, etc.[7] The associated research and applications are equally diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly,[8] from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale.

Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in nanomedicine, nanoelectronics, biomaterials energy production, and consumer products. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials,[9] and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted.

The concepts that seeded nanotechnology were first discussed in 1959 by renowned physicist Richard Feynman in his talk There’s Plenty of Room at the Bottom, in which he described the possibility of synthesis via direct manipulation of atoms. The term “nano-technology” was first used by Norio Taniguchi in 1974, though it was not widely known.

Inspired by Feynman’s concepts, K. Eric Drexler used the term “nanotechnology” in his 1986 book Engines of Creation: The Coming Era of Nanotechnology, which proposed the idea of a nanoscale “assembler” which would be able to build a copy of itself and of other items of arbitrary complexity with atomic control. Also in 1986, Drexler co-founded The Foresight Institute (with which he is no longer affiliated) to help increase public awareness and understanding of nanotechnology concepts and implications.

Thus, emergence of nanotechnology as a field in the 1980s occurred through convergence of Drexler’s theoretical and public work, which developed and popularized a conceptual framework for nanotechnology, and high-visibility experimental advances that drew additional wide-scale attention to the prospects of atomic control of matter. In the 1980s, two major breakthroughs sparked the growth of nanotechnology in modern era.

First, the invention of the scanning tunneling microscope in 1981 which provided unprecedented visualization of individual atoms and bonds, and was successfully used to manipulate individual atoms in 1989. The microscope’s developers Gerd Binnig and Heinrich Rohrer at IBM Zurich Research Laboratory received a Nobel Prize in Physics in 1986.[10][11] Binnig, Quate and Gerber also invented the analogous atomic force microscope that year.

Second, Fullerenes were discovered in 1985 by Harry Kroto, Richard Smalley, and Robert Curl, who together won the 1996 Nobel Prize in Chemistry.[12][13] C60 was not initially described as nanotechnology; the term was used regarding subsequent work with related graphene tubes (called carbon nanotubes and sometimes called Bucky tubes) which suggested potential applications for nanoscale electronics and devices.

In the early 2000s, the field garnered increased scientific, political, and commercial attention that led to both controversy and progress. Controversies emerged regarding the definitions and potential implications of nanotechnologies, exemplified by the Royal Society’s report on nanotechnology.[14] Challenges were raised regarding the feasibility of applications envisioned by advocates of molecular nanotechnology, which culminated in a public debate between Drexler and Smalley in 2001 and 2003.[15]

Meanwhile, commercialization of products based on advancements in nanoscale technologies began emerging. These products are limited to bulk applications of nanomaterials and do not involve atomic control of matter. Some examples include the Silver Nano platform for using silver nanoparticles as an antibacterial agent, nanoparticle-based transparent sunscreens, carbon fiber strengthening using silica nanoparticles, and carbon nanotubes for stain-resistant textiles.[16][17]

Governments moved to promote and fund research into nanotechnology, such as in the U.S. with the National Nanotechnology Initiative, which formalized a size-based definition of nanotechnology and established funding for research on the nanoscale, and in Europe via the European Framework Programmes for Research and Technological Development.

By the mid-2000s new and serious scientific attention began to flourish. Projects emerged to produce nanotechnology roadmaps[18][19] which center on atomically precise manipulation of matter and discuss existing and projected capabilities, goals, and applications.

Nanotechnology is the engineering of functional systems at the molecular scale. This covers both current work and concepts that are more advanced. In its original sense, nanotechnology refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products.

One nanometer (nm) is one billionth, or 109, of a meter. By comparison, typical carbon-carbon bond lengths, or the spacing between these atoms in a molecule, are in the range 0.120.15 nm, and a DNA double-helix has a diameter around 2nm. On the other hand, the smallest cellular life-forms, the bacteria of the genus Mycoplasma, are around 200nm in length. By convention, nanotechnology is taken as the scale range 1 to 100 nm following the definition used by the National Nanotechnology Initiative in the US. The lower limit is set by the size of atoms (hydrogen has the smallest atoms, which are approximately a quarter of a nm kinetic diameter) since nanotechnology must build its devices from atoms and molecules. The upper limit is more or less arbitrary but is around the size below which phenomena not observed in larger structures start to become apparent and can be made use of in the nano device.[20] These new phenomena make nanotechnology distinct from devices which are merely miniaturised versions of an equivalent macroscopic device; such devices are on a larger scale and come under the description of microtechnology.[21]

To put that scale in another context, the comparative size of a nanometer to a meter is the same as that of a marble to the size of the earth.[22] Or another way of putting it: a nanometer is the amount an average man’s beard grows in the time it takes him to raise the razor to his face.[22]

Two main approaches are used in nanotechnology. In the “bottom-up” approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition.[23] In the “top-down” approach, nano-objects are constructed from larger entities without atomic-level control.[24]

Areas of physics such as nanoelectronics, nanomechanics, nanophotonics and nanoionics have evolved during the last few decades to provide a basic scientific foundation of nanotechnology.

Several phenomena become pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, quantum effects can become significant when the nanometer size range is reached, typically at distances of 100 nanometers or less, the so-called quantum realm. Additionally, a number of physical (mechanical, electrical, optical, etc.) properties change when compared to macroscopic systems. One example is the increase in surface area to volume ratio altering mechanical, thermal and catalytic properties of materials. Diffusion and reactions at nanoscale, nanostructures materials and nanodevices with fast ion transport are generally referred to nanoionics. Mechanical properties of nanosystems are of interest in the nanomechanics research. The catalytic activity of nanomaterials also opens potential risks in their interaction with biomaterials.

Materials reduced to the nanoscale can show different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances can become transparent (copper); stable materials can turn combustible (aluminium); insoluble materials may become soluble (gold). A material such as gold, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination with nanotechnology stems from these quantum and surface phenomena that matter exhibits at the nanoscale.[25]

Modern synthetic chemistry has reached the point where it is possible to prepare small molecules to almost any structure. These methods are used today to manufacture a wide variety of useful chemicals such as pharmaceuticals or commercial polymers. This ability raises the question of extending this kind of control to the next-larger level, seeking methods to assemble these single molecules into supramolecular assemblies consisting of many molecules arranged in a well defined manner.

These approaches utilize the concepts of molecular self-assembly and/or supramolecular chemistry to automatically arrange themselves into some useful conformation through a bottom-up approach. The concept of molecular recognition is especially important: molecules can be designed so that a specific configuration or arrangement is favored due to non-covalent intermolecular forces. The WatsonCrick basepairing rules are a direct result of this, as is the specificity of an enzyme being targeted to a single substrate, or the specific folding of the protein itself. Thus, two or more components can be designed to be complementary and mutually attractive so that they make a more complex and useful whole.

Such bottom-up approaches should be capable of producing devices in parallel and be much cheaper than top-down methods, but could potentially be overwhelmed as the size and complexity of the desired assembly increases. Most useful structures require complex and thermodynamically unlikely arrangements of atoms. Nevertheless, there are many examples of self-assembly based on molecular recognition in biology, most notably WatsonCrick basepairing and enzyme-substrate interactions. The challenge for nanotechnology is whether these principles can be used to engineer new constructs in addition to natural ones.

Molecular nanotechnology, sometimes called molecular manufacturing, describes engineered nanosystems (nanoscale machines) operating on the molecular scale. Molecular nanotechnology is especially associated with the molecular assembler, a machine that can produce a desired structure or device atom-by-atom using the principles of mechanosynthesis. Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.

When the term “nanotechnology” was independently coined and popularized by Eric Drexler (who at the time was unaware of an earlier usage by Norio Taniguchi) it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular scale biological analogies of traditional machine components demonstrated molecular machines were possible: by the countless examples found in biology, it is known that sophisticated, stochastically optimised biological machines can be produced.

It is hoped that developments in nanotechnology will make possible their construction by some other means, perhaps using biomimetic principles. However, Drexler and other researchers[26] have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles, namely, a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) that would enable programmable, positional assembly to atomic specification.[27] The physics and engineering performance of exemplar designs were analyzed in Drexler’s book Nanosystems.

In general it is very difficult to assemble devices on the atomic scale, as one has to position atoms on other atoms of comparable size and stickiness. Another view, put forth by Carlo Montemagno,[28] is that future nanosystems will be hybrids of silicon technology and biological molecular machines. Richard Smalley argued that mechanosynthesis are impossible due to the difficulties in mechanically manipulating individual molecules.

This led to an exchange of letters in the ACS publication Chemical & Engineering News in 2003.[29] Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley.[1] They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a nanotube nanomotor, a molecular actuator,[30] and a nanoelectromechanical relaxation oscillator.[31] See nanotube nanomotor for more examples.

An experiment indicating that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bound the CO to the Fe by applying a voltage.

The nanomaterials field includes subfields which develop or study materials having unique properties arising from their nanoscale dimensions.[34]

These seek to arrange smaller components into more complex assemblies.

These seek to create smaller devices by using larger ones to direct their assembly.

These seek to develop components of a desired functionality without regard to how they might be assembled.

These subfields seek to anticipate what inventions nanotechnology might yield, or attempt to propose an agenda along which inquiry might progress. These often take a big-picture view of nanotechnology, with more emphasis on its societal implications than the details of how such inventions could actually be created.

Nanomaterials can be classified in 0D, 1D, 2D and 3D nanomaterials. The dimensionality play a major role in determining the characteristic of nanomaterials including physical, chemical and biological characteristics. With the decrease in dimensionality, an increase in surface-to-volume ratio is observed. This indicate that smaller dimensional nanomaterials have higher surface area compared to 3D nanomaterials. Recently, two dimensional (2D) nanomaterials are extensively investigated for electronic, biomedical, drug delivery and biosensor applications.

There are several important modern developments. The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy. Although conceptually similar to the scanning confocal microscope developed by Marvin Minsky in 1961 and the scanning acoustic microscope (SAM) developed by Calvin Quate and coworkers in the 1970s, newer scanning probe microscopes have much higher resolution, since they are not limited by the wavelength of sound or light.

The tip of a scanning probe can also be used to manipulate nanostructures (a process called positional assembly). Feature-oriented scanning methodology may be a promising way to implement these nanomanipulations in automatic mode.[49][50] However, this is still a slow process because of low scanning velocity of the microscope.

Various techniques of nanolithography such as optical lithography, X-ray lithography, dip pen nanolithography, electron beam lithography or nanoimprint lithography were also developed. Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.

Another group of nanotechnological techniques include those used for fabrication of nanotubes and nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. The precursors of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology and which were results of nanotechnology research.[51]

The top-down approach anticipates nanodevices that must be built piece by piece in stages, much as manufactured items are made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. By using, for example, feature-oriented scanning approach, atoms or molecules can be moved around on a surface with scanning probe microscopy techniques.[49][50] At present, it is expensive and time-consuming for mass production but very suitable for laboratory experimentation.

In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly. Dual polarisation interferometry is one tool suitable for characterisation of self assembled thin films. Another variation of the bottom-up approach is molecular beam epitaxy or MBE. Researchers at Bell Telephone Laboratories like John R. Arthur. Alfred Y. Cho, and Art C. Gossard developed and implemented MBE as a research tool in the late 1960s and 1970s. Samples made by MBE were key to the discovery of the fractional quantum Hall effect for which the 1998 Nobel Prize in Physics was awarded. MBE allows scientists to lay down atomically precise layers of atoms and, in the process, build up complex structures. Important for research on semiconductors, MBE is also widely used to make samples and devices for the newly emerging field of spintronics.

However, new therapeutic products, based on responsive nanomaterials, such as the ultradeformable, stress-sensitive Transfersome vesicles, are under development and already approved for human use in some countries.[52]

As of August 21, 2008, the Project on Emerging Nanotechnologies estimates that over 800 manufacturer-identified nanotech products are publicly available, with new ones hitting the market at a pace of 34 per week.[17] The project lists all of the products in a publicly accessible online database. Most applications are limited to the use of “first generation” passive nanomaterials which includes titanium dioxide in sunscreen, cosmetics, surface coatings,[53] and some food products; Carbon allotropes used to produce gecko tape; silver in food packaging, clothing, disinfectants and household appliances; zinc oxide in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide as a fuel catalyst.[16]

Further applications allow tennis balls to last longer, golf balls to fly straighter, and even bowling balls to become more durable and have a harder surface. Trousers and socks have been infused with nanotechnology so that they will last longer and keep people cool in the summer. Bandages are being infused with silver nanoparticles to heal cuts faster.[54] Video game consoles and personal computers may become cheaper, faster, and contain more memory thanks to nanotechnology.[55] Also, to build structures for on chip computing with light, for example on chip optical quantum information processing, and picosecond transmission of information.[56]

Nanotechnology may have the ability to make existing medical applications cheaper and easier to use in places like the general practitioner’s office and at home.[57] Cars are being manufactured with nanomaterials so they may need fewer metals and less fuel to operate in the future.[58]

Scientists are now turning to nanotechnology in an attempt to develop diesel engines with cleaner exhaust fumes. Platinum is currently used as the diesel engine catalyst in these engines. The catalyst is what cleans the exhaust fume particles. First a reduction catalyst is employed to take nitrogen atoms from NOx molecules in order to free oxygen. Next the oxidation catalyst oxidizes the hydrocarbons and carbon monoxide to form carbon dioxide and water.[59] Platinum is used in both the reduction and the oxidation catalysts.[60] Using platinum though, is inefficient in that it is expensive and unsustainable. Danish company InnovationsFonden invested DKK 15 million in a search for new catalyst substitutes using nanotechnology. The goal of the project, launched in the autumn of 2014, is to maximize surface area and minimize the amount of material required. Objects tend to minimize their surface energy; two drops of water, for example, will join to form one drop and decrease surface area. If the catalyst’s surface area that is exposed to the exhaust fumes is maximized, efficiency of the catalyst is maximized. The team working on this project aims to create nanoparticles that will not merge. Every time the surface is optimized, material is saved. Thus, creating these nanoparticles will increase the effectiveness of the resulting diesel engine catalystin turn leading to cleaner exhaust fumesand will decrease cost. If successful, the team hopes to reduce platinum use by 25%.[61]

Nanotechnology also has a prominent role in the fast developing field of Tissue Engineering. When designing scaffolds, researchers attempt to the mimic the nanoscale features of a Cell’s microenvironment to direct its differentiation down a suitable lineage.[62] For example, when creating scaffolds to support the growth of bone, researchers may mimic osteoclast resorption pits.[63]

Researchers have successfully used DNA origami-based nanobots capable of carrying out logic functions to achieve targeted drug delivery in cockroaches. It is said that the computational power of these nanobots can be scaled up to that of a Commodore 64.[64]

An area of concern is the effect that industrial-scale manufacturing and use of nanomaterials would have on human health and the environment, as suggested by nanotoxicology research. For these reasons, some groups advocate that nanotechnology be regulated by governments. Others counter that overregulation would stifle scientific research and the development of beneficial innovations. Public health research agencies, such as the National Institute for Occupational Safety and Health are actively conducting research on potential health effects stemming from exposures to nanoparticles.[65][66]

Some nanoparticle products may have unintended consequences. Researchers have discovered that bacteriostatic silver nanoparticles used in socks to reduce foot odor are being released in the wash.[67] These particles are then flushed into the waste water stream and may destroy bacteria which are critical components of natural ecosystems, farms, and waste treatment processes.[68]

Public deliberations on risk perception in the US and UK carried out by the Center for Nanotechnology in Society found that participants were more positive about nanotechnologies for energy applications than for health applications, with health applications raising moral and ethical dilemmas such as cost and availability.[69]

Experts, including director of the Woodrow Wilson Center’s Project on Emerging Nanotechnologies David Rejeski, have testified[70] that successful commercialization depends on adequate oversight, risk research strategy, and public engagement. Berkeley, California is currently the only city in the United States to regulate nanotechnology;[71] Cambridge, Massachusetts in 2008 considered enacting a similar law,[72] but ultimately rejected it.[73] Relevant for both research on and application of nanotechnologies, the insurability of nanotechnology is contested.[74] Without state regulation of nanotechnology, the availability of private insurance for potential damages is seen as necessary to ensure that burdens are not socialised implicitly.

Nanofibers are used in several areas and in different products, in everything from aircraft wings to tennis rackets. Inhaling airborne nanoparticles and nanofibers may lead to a number of pulmonary diseases, e.g. fibrosis.[75] Researchers have found that when rats breathed in nanoparticles, the particles settled in the brain and lungs, which led to significant increases in biomarkers for inflammation and stress response[76] and that nanoparticles induce skin aging through oxidative stress in hairless mice.[77][78]

A two-year study at UCLA’s School of Public Health found lab mice consuming nano-titanium dioxide showed DNA and chromosome damage to a degree “linked to all the big killers of man, namely cancer, heart disease, neurological disease and aging”.[79]

A major study published more recently in Nature Nanotechnology suggests some forms of carbon nanotubes a poster child for the “nanotechnology revolution” could be as harmful as asbestos if inhaled in sufficient quantities. Anthony Seaton of the Institute of Occupational Medicine in Edinburgh, Scotland, who contributed to the article on carbon nanotubes said “We know that some of them probably have the potential to cause mesothelioma. So those sorts of materials need to be handled very carefully.”[80] In the absence of specific regulation forthcoming from governments, Paull and Lyons (2008) have called for an exclusion of engineered nanoparticles in food.[81] A newspaper article reports that workers in a paint factory developed serious lung disease and nanoparticles were found in their lungs.[82][83][84][85]

Calls for tighter regulation of nanotechnology have occurred alongside a growing debate related to the human health and safety risks of nanotechnology.[86] There is significant debate about who is responsible for the regulation of nanotechnology. Some regulatory agencies currently cover some nanotechnology products and processes (to varying degrees) by “bolting on” nanotechnology to existing regulations there are clear gaps in these regimes.[87] Davies (2008) has proposed a regulatory road map describing steps to deal with these shortcomings.[88]

Stakeholders concerned by the lack of a regulatory framework to assess and control risks associated with the release of nanoparticles and nanotubes have drawn parallels with bovine spongiform encephalopathy (“mad cow” disease), thalidomide, genetically modified food,[89] nuclear energy, reproductive technologies, biotechnology, and asbestosis. Dr. Andrew Maynard, chief science advisor to the Woodrow Wilson Center’s Project on Emerging Nanotechnologies, concludes that there is insufficient funding for human health and safety research, and as a result there is currently limited understanding of the human health and safety risks associated with nanotechnology.[90] As a result, some academics have called for stricter application of the precautionary principle, with delayed marketing approval, enhanced labelling and additional safety data development requirements in relation to certain forms of nanotechnology.[91][92]

The Royal Society report[14] identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that “manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure” (p. xiii).

The Center for Nanotechnology in Society has found that people respond to nanotechnologies differently, depending on application with participants in public deliberations more positive about nanotechnologies for energy than health applications suggesting that any public calls for nano regulations may differ by technology sector.[69]

Read more from the original source:

Nanotechnology – Wikipedia

Molecular nanotechnology – Wikipedia

Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis.[1] This is distinct from nanoscale materials. Based on Richard Feynman’s vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing[2]) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

While conventional chemistry uses inexact processes obtaining inexact results, and biology exploits inexact processes to obtain definitive results, molecular nanotechnology would employ original definitive processes to obtain definitive results. The desire in molecular nanotechnology would be to balance molecular reactions in positionally-controlled locations and orientations to obtain desired chemical reactions, and then to build systems by further assembling the products of these reactions.

A roadmap for the development of MNT is an objective of a broadly based technology project led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute.[3] The roadmap was originally scheduled for completion by late 2006, but was released in January 2008.[4] The Nanofactory Collaboration[5] is a more focused ongoing effort involving 23 researchers from 10 organizations and 4 countries that is developing a practical research agenda[6] specifically aimed at positionally-controlled diamond mechanosynthesis and diamondoid nanofactory development. In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology.[7]

One proposed application of MNT is so-called smart materials. This term refers to any sort of material designed and engineered at the nanometer scale for a specific task. It encompasses a wide variety of possible commercial applications. One example would be materials designed to respond differently to various molecules; such a capability could lead, for example, to artificial drugs which would recognize and render inert specific viruses. Another is the idea of self-healing structures, which would repair small tears in a surface naturally in the same way as self-sealing tires or human skin.

A MNT nanosensor would resemble a smart material, involving a small component within a larger machine that would react to its environment and change in some fundamental, intentional way. A very simple example: a photosensor might passively measure the incident light and discharge its absorbed energy as electricity when the light passes above or below a specified threshold, sending a signal to a larger machine. Such a sensor would supposedly cost less and use less power than a conventional sensor, and yet function usefully in all the same applications for example, turning on parking lot lights when it gets dark.

While smart materials and nanosensors both exemplify useful applications of MNT, they pale in comparison with the complexity of the technology most popularly associated with the term: the replicating nanorobot.

MNT nanofacturing is popularly linked with the idea of swarms of coordinated nanoscale robots working together, a popularization of an early proposal by K. Eric Drexler in his 1986 discussions of MNT, but superseded in 1992. In this early proposal, sufficiently capable nanorobots would construct more nanorobots in an artificial environment containing special molecular building blocks.

Critics have doubted both the feasibility of self-replicating nanorobots and the feasibility of control if self-replicating nanorobots could be achieved: they cite the possibility of mutations removing any control and favoring reproduction of mutant pathogenic variations. Advocates address the first doubt by pointing out that the first macroscale autonomous machine replicator, made of Lego blocks, was built and operated experimentally in 2002.[8] While there are sensory advantages present at the macroscale compared to the limited sensorium available at the nanoscale, proposals for positionally controlled nanoscale mechanosynthetic fabrication systems employ dead reckoning of tooltips combined with reliable reaction sequence design to ensure reliable results, hence a limited sensorium is no handicap; similar considerations apply to the positional assembly of small nanoparts. Advocates address the second doubt by arguing that bacteria are (of necessity) evolved to evolve, while nanorobot mutation could be actively prevented by common error-correcting techniques. Similar ideas are advocated in the Foresight Guidelines on Molecular Nanotechnology,[9] and a map of the 137-dimensional replicator design space[10] recently published by Freitas and Merkle provides numerous proposed methods by which replicators could, in principle, be safely controlled by good design.

However, the concept of suppressing mutation raises the question: How can design evolution occur at the nanoscale without a process of random mutation and deterministic selection? Critics argue that MNT advocates have not provided a substitute for such a process of evolution in this nanoscale arena where conventional sensory-based selection processes are lacking. The limits of the sensorium available at the nanoscale could make it difficult or impossible to winnow successes from failures. Advocates argue that design evolution should occur deterministically and strictly under human control, using the conventional engineering paradigm of modeling, design, prototyping, testing, analysis, and redesign.

In any event, since 1992 technical proposals for MNT do not include self-replicating nanorobots, and recent ethical guidelines put forth by MNT advocates prohibit unconstrained self-replication.[9][11]

One of the most important applications of MNT would be medical nanorobotics or nanomedicine, an area pioneered by Robert Freitas in numerous books[12] and papers.[13] The ability to design, build, and deploy large numbers of medical nanorobots would, at a minimum, make possible the rapid elimination of disease and the reliable and relatively painless recovery from physical trauma. Medical nanorobots might also make possible the convenient correction of genetic defects, and help to ensure a greatly expanded lifespan. More controversially, medical nanorobots might be used to augment natural human capabilities. One study has reported on the conditions like tumors, arteriosclerosis, blood clots leading to stroke, accumulation of scar tissue and localized pockets of infection can be possibly be addressed by employing medical nanorobots.[14][15]

Another proposed application of molecular nanotechnology is “utility fog”[16] in which a cloud of networked microscopic robots (simpler than assemblers) would change its shape and properties to form macroscopic objects and tools in accordance with software commands. Rather than modify the current practices of consuming material goods in different forms, utility fog would simply replace many physical objects.

Yet another proposed application of MNT would be phased-array optics (PAO).[17] However, this appears to be a problem addressable by ordinary nanoscale technology. PAO would use the principle of phased-array millimeter technology but at optical wavelengths. This would permit the duplication of any sort of optical effect but virtually. Users could request holograms, sunrises and sunsets, or floating lasers as the mood strikes. PAO systems were described in BC Crandall’s Nanotechnology: Molecular Speculations on Global Abundance in the Brian Wowk article “Phased-Array Optics.”[18]

Molecular manufacturing is a potential future subfield of nanotechnology that would make it possible to build complex structures at atomic precision.[19] Molecular manufacturing requires significant advances in nanotechnology, but once achieved could produce highly advanced products at low costs and in large quantities in nanofactories weighing a kilogram or more.[19][20] When nanofactories gain the ability to produce other nanofactories production may only be limited by relatively abundant factors such as input materials, energy and software.[20]

The products of molecular manufacturing could range from cheaper, mass-produced versions of known high-tech products to novel products with added capabilities in many areas of application. Some applications that have been suggested are advanced smart materials, nanosensors, medical nanorobots and space travel.[19] Additionally, molecular manufacturing could be used to cheaply produce highly advanced, durable weapons, which is an area of special concern regarding the impact of nanotechnology.[20] Being equipped with compact computers and motors these could be increasingly autonomous and have a large range of capabilities.[20]

According to Chris Phoenix and Mike Treder from the Center for Responsible Nanotechnology as well as Anders Sandberg from the Future of Humanity Institute molecular manufacturing is the application of nanotechnology that poses the most significant global catastrophic risk.[20][21] Several nanotechnology researchers state that the bulk of risk from nanotechnology comes from the potential to lead to war, arms races and destructive global government.[20][21][22] Several reasons have been suggested why the availability of nanotech weaponry may with significant likelihood lead to unstable arms races (compared to e.g. nuclear arms races): (1) A large number of players may be tempted to enter the race since the threshold for doing so is low;[20] (2) the ability to make weapons with molecular manufacturing will be cheap and easy to hide;[20] (3) therefore lack of insight into the other parties’ capabilities can tempt players to arm out of caution or to launch preemptive strikes;[20][23] (4) molecular manufacturing may reduce dependency on international trade,[20] a potential peace-promoting factor;[24] (5) wars of aggression may pose a smaller economic threat to the aggressor since manufacturing is cheap and humans may not be needed on the battlefield.[20]

Since self-regulation by all state and non-state actors seems hard to achieve,[25] measures to mitigate war-related risks have mainly been proposed in the area of international cooperation.[20][26] International infrastructure may be expanded giving more sovereignty to the international level. This could help coordinate efforts for arms control.[27] International institutions dedicated specifically to nanotechnology (perhaps analogously to the International Atomic Energy Agency IAEA) or general arms control may also be designed.[26] One may also jointly make differential technological progress on defensive technologies, a policy that players should usually favour.[20] The Center for Responsible Nanotechnology also suggest some technical restrictions.[28] Improved transparency regarding technological capabilities may be another important facilitator for arms-control.[29]

A grey goo is another catastrophic scenario, which was proposed by Eric Drexler in his 1986 book Engines of Creation,[30] has been analyzed by Freitas in “Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations” [31] and has been a theme in mainstream media and fiction.[32][33] This scenario involves tiny self-replicating robots that consume the entire biosphere using it as a source of energy and building blocks. Nanotech experts including Drexler now discredit the scenario. According to Chris Phoenix a “So-called grey goo could only be the product of a deliberate and difficult engineering process, not an accident”.[34] With the advent of nano-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating biological organisms engineered through nanotechnology.

Nanotechnology (or molecular nanotechnology to refer more specifically to the goals discussed here) will let us continue the historical trends in manufacturing right up to the fundamental limits imposed by physical law. It will let us make remarkably powerful molecular computers. It will let us make materials over fifty times lighter than steel or aluminium alloy but with the same strength. We’ll be able to make jets, rockets, cars or even chairs that, by today’s standards, would be remarkably light, strong, and inexpensive. Molecular surgical tools, guided by molecular computers and injected into the blood stream could find and destroy cancer cells or invading bacteria, unclog arteries, or provide oxygen when the circulation is impaired.

Nanotechnology will replace our entire manufacturing base with a new, radically more precise, radically less expensive, and radically more flexible way of making products. The aim is not simply to replace today’s computer chip making plants, but also to replace the assembly lines for cars, televisions, telephones, books, surgical tools, missiles, bookcases, airplanes, tractors, and all the rest. The objective is a pervasive change in manufacturing, a change that will leave virtually no product untouched. Economic progress and military readiness in the 21st Century will depend fundamentally on maintaining a competitive position in nanotechnology.

[35]

Despite the current early developmental status of nanotechnology and molecular nanotechnology, much concern surrounds MNT’s anticipated impact on economics[36][37] and on law. Whatever the exact effects, MNT, if achieved, would tend to reduce the scarcity of manufactured goods and make many more goods (such as food and health aids) manufacturable.

MNT should make possible nanomedical capabilities able to cure any medical condition not already cured by advances in other areas. Good health would be common, and poor health of any form would be as rare as smallpox and scurvy are today. Even cryonics would be feasible, as cryopreserved tissue could be fully repaired.

Molecular nanotechnology is one of the technologies that some analysts believe could lead to a technological singularity. Some feel that molecular nanotechnology would have daunting risks.[38] It conceivably could enable cheaper and more destructive conventional weapons. Also, molecular nanotechnology might permit weapons of mass destruction that could self-replicate, as viruses and cancer cells do when attacking the human body. Commentators generally agree that, in the event molecular nanotechnology were developed, its self-replication should be permitted only under very controlled or “inherently safe” conditions.

A fear exists that nanomechanical robots, if achieved, and if designed to self-replicate using naturally occurring materials (a difficult task), could consume the entire planet in their hunger for raw materials,[39] or simply crowd out natural life, out-competing it for energy (as happened historically when blue-green algae appeared and outcompeted earlier life forms). Some commentators have referred to this situation as the “grey goo” or “ecophagy” scenario. K. Eric Drexler considers an accidental “grey goo” scenario extremely unlikely and says so in later editions of Engines of Creation.

In light of this perception of potential danger, the Foresight Institute, founded by Drexler, has prepared a set of guidelines[40] for the ethical development of nanotechnology. These include the banning of free-foraging self-replicating pseudo-organisms on the Earth’s surface, at least, and possibly in other places.

The feasibility of the basic technologies analyzed in Nanosystems has been the subject of a formal scientific review by U.S. National Academy of Sciences, and has also been the focus of extensive debate on the internet and in the popular press.

In 2006, U.S. National Academy of Sciences released the report of a study of molecular manufacturing as part of a longer report, A Matter of Size: Triennial Review of the National Nanotechnology Initiative[41] The study committee reviewed the technical content of Nanosystems, and in its conclusion states that no current theoretical analysis can be considered definitive regarding several questions of potential system performance, and that optimal paths for implementing high-performance systems cannot be predicted with confidence. It recommends experimental research to advance knowledge in this area:

A section heading in Drexler’s Engines of Creation reads[42] “Universal Assemblers”, and the following text speaks of multiple types of assemblers which, collectively, could hypothetically “build almost anything that the laws of nature allow to exist.” Drexler’s colleague Ralph Merkle has noted that, contrary to widespread legend,[43] Drexler never claimed that assembler systems could build absolutely any molecular structure. The endnotes in Drexler’s book explain the qualification “almost”: “For example, a delicate structure might be designed that, like a stone arch, would self-destruct unless all its pieces were already in place. If there were no room in the design for the placement and removal of a scaffolding, then the structure might be impossible to build. Few structures of practical interest seem likely to exhibit such a problem, however.”

In 1992, Drexler published Nanosystems: Molecular Machinery, Manufacturing, and Computation,[44] a detailed proposal for synthesizing stiff covalent structures using a table-top factory. Diamondoid structures and other stiff covalent structures, if achieved, would have a wide range of possible applications, going far beyond current MEMS technology. An outline of a path was put forward in 1992 for building a table-top factory in the absence of an assembler. Other researchers have begun advancing tentative, alternative proposed paths [5] for this in the years since Nanosystems was published.

In 2004 Richard Jones wrote Soft Machines (nanotechnology and life), a book for lay audiences published by Oxford University. In this book he describes radical nanotechnology (as advocated by Drexler) as a deterministic/mechanistic idea of nano engineered machines that does not take into account the nanoscale challenges such as wetness, stickiness, Brownian motion, and high viscosity. He also explains what is soft nanotechnology or more appropriatelly biomimetic nanotechnology which is the way forward, if not the best way, to design functional nanodevices that can cope with all the problems at a nanoscale. One can think of soft nanotechnology as the development of nanomachines that uses the lessons learned from biology on how things work, chemistry to precisely engineer such devices and stochastic physics to model the system and its natural processes in detail.

Several researchers, including Nobel Prize winner Dr. Richard Smalley (19432005),[45] attacked the notion of universal assemblers, leading to a rebuttal from Drexler and colleagues,[46] and eventually to an exchange of letters.[47] Smalley argued that chemistry is extremely complicated, reactions are hard to control, and that a universal assembler is science fiction. Drexler and colleagues, however, noted that Drexler never proposed universal assemblers able to make absolutely anything, but instead proposed more limited assemblers able to make a very wide variety of things. They challenged the relevance of Smalley’s arguments to the more specific proposals advanced in Nanosystems. Also, Smalley argued that nearly all of modern chemistry involves reactions that take place in a solvent (usually water), because the small molecules of a solvent contribute many things, such as lowering binding energies for transition states. Since nearly all known chemistry requires a solvent, Smalley felt that Drexler’s proposal to use a high vacuum environment was not feasible. However, Drexler addresses this in Nanosystems by showing mathematically that well designed catalysts can provide the effects of a solvent and can fundamentally be made even more efficient than a solvent/enzyme reaction could ever be. It is noteworthy that, contrary to Smalley’s opinion that enzymes require water, “Not only do enzymes work vigorously in anhydrous organic media, but in this unnatural milieu they acquire remarkable properties such as greatly enhanced stability, radically altered substrate and enantiomeric specificities, molecular memory, and the ability to catalyse unusual reactions.”[48]

For the future, some means have to be found for MNT design evolution at the nanoscale which mimics the process of biological evolution at the molecular scale. Biological evolution proceeds by random variation in ensemble averages of organisms combined with culling of the less-successful variants and reproduction of the more-successful variants, and macroscale engineering design also proceeds by a process of design evolution from simplicity to complexity as set forth somewhat satirically by John Gall: “A complex system that works is invariably found to have evolved from a simple system that worked. . . . A complex system designed from scratch never works and can not be patched up to make it work. You have to start over, beginning with a system that works.” [49] A breakthrough in MNT is needed which proceeds from the simple atomic ensembles which can be built with, e.g., an STM to complex MNT systems via a process of design evolution. A handicap in this process is the difficulty of seeing and manipulation at the nanoscale compared to the macroscale which makes deterministic selection of successful trials difficult; in contrast biological evolution proceeds via action of what Richard Dawkins has called the “blind watchmaker” [50] comprising random molecular variation and deterministic reproduction/extinction.

At present in 2007 the practice of nanotechnology embraces both stochastic approaches (in which, for example, supramolecular chemistry creates waterproof pants) and deterministic approaches wherein single molecules (created by stochastic chemistry) are manipulated on substrate surfaces (created by stochastic deposition methods) by deterministic methods comprising nudging them with STM or AFM probes and causing simple binding or cleavage reactions to occur. The dream of a complex, deterministic molecular nanotechnology remains elusive. Since the mid-1990s, thousands of surface scientists and thin film technocrats have latched on to the nanotechnology bandwagon and redefined their disciplines as nanotechnology. This has caused much confusion in the field and has spawned thousands of “nano”-papers on the peer reviewed literature. Most of these reports are extensions of the more ordinary research done in the parent fields.

The feasibility of Drexler’s proposals largely depends, therefore, on whether designs like those in Nanosystems could be built in the absence of a universal assembler to build them and would work as described. Supporters of molecular nanotechnology frequently claim that no significant errors have been discovered in Nanosystems since 1992. Even some critics concede[51] that “Drexler has carefully considered a number of physical principles underlying the ‘high level’ aspects of the nanosystems he proposes and, indeed, has thought in some detail” about some issues.

Other critics claim, however, that Nanosystems omits important chemical details about the low-level ‘machine language’ of molecular nanotechnology.[52][53][54][55] They also claim that much of the other low-level chemistry in Nanosystems requires extensive further work, and that Drexler’s higher-level designs therefore rest on speculative foundations. Recent such further work by Freitas and Merkle [56] is aimed at strengthening these foundations by filling the existing gaps in the low-level chemistry.

Drexler argues that we may need to wait until our conventional nanotechnology improves before solving these issues: “Molecular manufacturing will result from a series of advances in molecular machine systems, much as the first Moon landing resulted from a series of advances in liquid-fuel rocket systems. We are now in a position like that of the British Interplanetary Society of the 1930s which described how multistage liquid-fueled rockets could reach the Moon and pointed to early rockets as illustrations of the basic principle.”[57] However, Freitas and Merkle argue [58] that a focused effort to achieve diamond mechanosynthesis (DMS) can begin now, using existing technology, and might achieve success in less than a decade if their “direct-to-DMS approach is pursued rather than a more circuitous development approach that seeks to implement less efficacious nondiamondoid molecular manufacturing technologies before progressing to diamondoid”.

To summarize the arguments against feasibility: First, critics argue that a primary barrier to achieving molecular nanotechnology is the lack of an efficient way to create machines on a molecular/atomic scale, especially in the absence of a well-defined path toward a self-replicating assembler or diamondoid nanofactory. Advocates respond that a preliminary research path leading to a diamondoid nanofactory is being developed.[6]

A second difficulty in reaching molecular nanotechnology is design. Hand design of a gear or bearing at the level of atoms might take a few to several weeks. While Drexler, Merkle and others have created designs of simple parts, no comprehensive design effort for anything approaching the complexity of a Model T Ford has been attempted. Advocates respond that it is difficult to undertake a comprehensive design effort in the absence of significant funding for such efforts, and that despite this handicap much useful design-ahead has nevertheless been accomplished with new software tools that have been developed, e.g., at Nanorex.[59]

In the latest report A Matter of Size: Triennial Review of the National Nanotechnology Initiative[41] put out by the National Academies Press in December 2006 (roughly twenty years after Engines of Creation was published), no clear way forward toward molecular nanotechnology could yet be seen, as per the conclusion on page 108 of that report: “Although theoretical calculations can be made today, the eventually attainable range of chemical reaction cycles, error rates, speed of operation, and thermodynamic efficiencies of such bottom-up manufacturing systems cannot be reliably predicted at this time. Thus, the eventually attainable perfection and complexity of manufactured products, while they can be calculated in theory, cannot be predicted with confidence. Finally, the optimum research paths that might lead to systems which greatly exceed the thermodynamic efficiencies and other capabilities of biological systems cannot be reliably predicted at this time. Research funding that is based on the ability of investigators to produce experimental demonstrations that link to abstract models and guide long-term vision is most appropriate to achieve this goal.” This call for research leading to demonstrations is welcomed by groups such as the Nanofactory Collaboration who are specifically seeking experimental successes in diamond mechanosynthesis.[60] The “Technology Roadmap for Productive Nanosystems”[61] aims to offer additional constructive insights.

It is perhaps interesting to ask whether or not most structures consistent with physical law can in fact be manufactured. Advocates assert that to achieve most of the vision of molecular manufacturing it is not necessary to be able to build “any structure that is compatible with natural law.” Rather, it is necessary to be able to build only a sufficient (possibly modest) subset of such structuresas is true, in fact, of any practical manufacturing process used in the world today, and is true even in biology. In any event, as Richard Feynman once said, “It is scientific only to say what’s more likely or less likely, and not to be proving all the time what’s possible or impossible.”[62]

There is a growing body of peer-reviewed theoretical work on synthesizing diamond by mechanically removing/adding hydrogen atoms [63] and depositing carbon atoms [64][65][66][67][68][69] (a process known as mechanosynthesis). This work is slowly permeating the broader nanoscience community and is being critiqued. For instance, Peng et al. (2006)[70] (in the continuing research effort by Freitas, Merkle and their collaborators) reports that the most-studied mechanosynthesis tooltip motif (DCB6Ge) successfully places a C2 carbon dimer on a C(110) diamond surface at both 300K (room temperature) and 80K (liquid nitrogen temperature), and that the silicon variant (DCB6Si) also works at 80K but not at 300K. Over 100,000 CPU hours were invested in this latest study. The DCB6 tooltip motif, initially described by Merkle and Freitas at a Foresight Conference in 2002, was the first complete tooltip ever proposed for diamond mechanosynthesis and remains the only tooltip motif that has been successfully simulated for its intended function on a full 200-atom diamond surface.

The tooltips modeled in this work are intended to be used only in carefully controlled environments (e.g., vacuum). Maximum acceptable limits for tooltip translational and rotational misplacement errors are reported in Peng et al. (2006) — tooltips must be positioned with great accuracy to avoid bonding the dimer incorrectly. Peng et al. (2006) reports that increasing the handle thickness from 4 support planes of C atoms above the tooltip to 5 planes decreases the resonance frequency of the entire structure from 2.0THz to 1.8THz. More importantly, the vibrational footprints of a DCB6Ge tooltip mounted on a 384-atom handle and of the same tooltip mounted on a similarly constrained but much larger 636-atom “crossbar” handle are virtually identical in the non-crossbar directions. Additional computational studies modeling still bigger handle structures are welcome, but the ability to precisely position SPM tips to the requisite atomic accuracy has been repeatedly demonstrated experimentally at low temperature,[71][72] or even at room temperature[73][74] constituting a basic existence proof for this capability.

Further research[75] to consider additional tooltips will require time-consuming computational chemistry and difficult laboratory work.

A working nanofactory would require a variety of well-designed tips for different reactions, and detailed analyses of placing atoms on more complicated surfaces. Although this appears a challenging problem given current resources, many tools will be available to help future researchers: Moore’s law predicts further increases in computer power, semiconductor fabrication techniques continue to approach the nanoscale, and researchers grow ever more skilled at using proteins, ribosomes and DNA to perform novel chemistry.

See the original post:

Molecular nanotechnology – Wikipedia

What is Nanotechnology? Webopedia Definition

Main TERM N

By Vangie Beal

A field of science whose goal is to control individual atoms and molecules to create computer chips and other devices that are thousands of times smaller than current technologies permit. Current manufacturing processes use lithography to imprint circuits on semiconductor materials. While lithography has improved dramatically over the last two decades — to the point where some manufacturing plants can produce circuits smaller than one micron (1,000 nanometers) — it still deals with aggregates of millions of atoms. It is widely believed that lithography is quickly approaching its physical limits. To continue reducing the size of semiconductors, new technologies that juggle individual atoms will be necessary. This is the realm of nanotechnology.

Although research in this field dates back to Richard P. Feynman’s classic talk in 1959, the term nanotechnology was first coined by K. Eric Drexler in 1986 in the book Engines of Creation.

In the popular press, the term nanotechnology is sometimes used to refer to any sub-micron process, including lithography. Because of this, many scientists are beginning to use the term molecular nanotechnologywhen talking about true nanotechnology at the molecular level.

Stay up to date on the latest developments in Internet terminology with a free weekly newsletter from Webopedia. Join to subscribe now.

See the rest here:

What is Nanotechnology? Webopedia Definition

Nanotechnology meetings 2018 | Nanotechnology conferences …

Nanotechnology:

Nanotechnology is the engineering ofefficient structures atthe molecular scale. Thisprotections both existing work and concepts that are more innovative inits original sense. Nanotechnology as demarcated by size is unsurprisingly very broad, containing fieldsof science as diverse as surface science, organic chemistry, molecular biology,semiconductor physics, micro fabrication, molecular engineering. The related research and applications aresimilarly diverse, fluctuating from extensions of conventional device physicsto totally new methods based upon molecular self-assembly, from emerging new materials withmeasurements on the Nano scale to straight regulator of matter on the atomicscale.

Relevant conferencesonNanotechnology:

International Conference on Nanoscience and Nanotechnology,29 Jan -2 Feb 2018, Australia. 6th World Congress and Expo on Nanotechnology and Material Science,April 16-18, 2018, Spain. Nanomaterialsand Nanotechnology, March 15-16, 2018 London, UK, World Nano Conference,May 07-08, 2018 Rome, Italy. International conference on Nano and material science,Florida, USA. International NanotechnologyExhibition and Conference February 14-15, 2018, Tokyo, Japan.

Related Societies:

AmericanBar Association Section Nanotechnology Project

American ChemicalSociety – Nanotechnology Safety Resources

American Societyfor Precision Engineering (ASPE)

ConvergingTechnologies Bar Association

Nanorobotics:

Nanoroboticsis a developing technologyfield manufacture machines or robots which mechanisms are at or near the scaleof a nanometer. More precisely, Nanorobotics refers to the nanotechnologyengineering discipline of deceitful and erection nanorobots, with devicesvacillating in size from micrometersand constructed of Nanoscale or molecular modules. The terms nanobot,nanoid, nanite, nanomachine, or nanometer have also been used to describe suchdevices at present beneath research and improvementand even a large machine such as an atomic force microscope can be deliberateda Nanoroboticsinstrument when configured to perform nanomanipulation.

Relevant conferencesonNanotechnology:

InternationalConference on Robotics andAutomation, 21-26 April, 2018, Brisbane, Australia. Global summit on Nanotechnology andRobotics, 20-21 November, 2017, New York, USA. International conference on Nano and material science,Florida, USA. International NanotechnologyExhibition and Conference February 14-15, 2018, Tokyo, Japan.

Related Societies:

GrapheneStakeholders Association

IEEE (Institute ofElectrical and Electronics Engineers)

International Association ofNanotechnology (IANT)

MaterialsResearch Society

Nanomedicine:

Nanomedicineis the medical application of nanotechnology.Nanomedicine varieties from the medical solicitations of Nano materials andbiological devices, to Nanoelectronicbiosensors, and even potential future applications of molecular nanotechnologysuch as biological machineries. Current snags for Nanomedicineimplicate appreciative the issues related to toxicity and environmentalimpression of Nanoscale materials. Nanomedicine seeks to deliver a cherishedset of research tools and clinically worthwhile devices in the near future. TheNational NanotechnologyInitiative expects new viable applications in the pharmaceutical industry thatmay contain innovative drug deliverysystems, new therapies, and in vivo imaging.

Relevant conferencesonNanotechnology:

International Nanomedicine Conference 3-5July 2017, Melbourne, Australia.

Nanomedicine andNanotechnology in Health Care, Nov 23-24, 2017 Melbourne, Australia.

International Conference on Nanorobotics and IntelligentSystems, January 25 – 26, 2018, Paris, France.

INTERNATIONAL CONFERENCE ON NANOMEDICINE, DRUGDELIVERY, AND TISSUE ENGINEERING APRIL 10 – 12, 2018, BUDAPEST, HUNGARY.

Related Societies:

SemiconductorIndustry Association (SIA)

National CancerInstitute

Alliancefor Nanotechnology in Cancer

NationalInstitutes of Health

Nanomaterials:

Nano Materials and Nanoparticleexamination is right now a region of serious experimental exploration, becauseof a wide range of potential applicationsin biomedical, optical, and electronic fields. 27 research colleges are takingabout Nano-compositeseverywhere all over the world, and marketestimation over Asia Pacific is $2650 million, in US $786 million aredischarged per annum for Nano materials and Nano particles examination. Thecontrol of composition,size, shape, and morphologyof Nano materials and Nanoparticles is an essential foundation for the development and application ofNano scale devices in all over the world.

Nanomaterials are the elementswhichhasat least one spatial measurement in the size range of 1 to100 nanometer. Nanomaterialscan be produced with various modulation dimensionalities. It can be distinctnanostructure such as quantum dots, nanocrystals, atomicclusters,nanotubes andnanowires,whilegatheringofnanostructures includes arrays, assemblies, andsuperlatticesofdistinctnanostructure. The chemical and physicalproperties of Nanomaterialscan considerably differ from the bulk materials or atomic-molecular of the same

Relevant conferencesonNanotechnology:

International Conference on Nanoscience and Nanotechnology,29 Jan -2 Feb 2018, Australia. 6th World Congress and Expo on Nanotechnology and Material Science,April 16-18, 2018, Spain. Nanomaterialsand Nanotechnology, March 15-16, 2018 London, UK, World Nano Conference,May 07-08, 2018 Rome, Italy. International conference on Nano and material science,Florida, USA. International NanotechnologyExhibition and Conference February 14-15, 2018, Tokyo, Japan.

Related Societies:

AmericanBar Association Section Nanotechnology Project

American ChemicalSociety – Nanotechnology Safety Resources

American Societyfor Precision Engineering (ASPE)

ConvergingTechnologies Bar Association

Molecular Nanotechnology:

Molecular nanotechnologyis a technology based on the knack to build structures to multifaceted, atomicconditions by means of mechanosynthesis.This is individual from Nanoscalematerials. Molecular Nanotechnology a technological insurrection which seeksnothing less than perfectibility. Molecular industrialized technology can beclean and self-contained. Molecular Nanomanufacturing will slowly renovate our associationtowards matter and molecules as clear as the computer changed our correlationto information and bits. It will help accurate, economicalcontrol of the structure of matter. Molecular nanotechnologywould involve relating physical principles revealed by biophysics, chemistry,other nanotechnologies, and the molecular machinery of life with the systemsengineering standards found in modern macroscaleplants.

Relevant conferencesonNanotechnology:

World Congress onRegulationsof NanotechnologyJuly 11-12, 2017 CHICAGO.

Nanotechnology 2017August 7-8, 2017 Beijing, China. InternationalConference on Nanoscience andNanotechnology, 29 Jan -2 Feb 2018. International Conference on Nanostructured Materials andNanotechnology, Miami, USA, March 12 – 13, 2018

Related Societies:

Nanomedicine Roadmap Initiative

American NationalStandards Institute Nanotechnology Panel(ANSI-NSP)

NanoNed

National NanotechnologyInitiative

DNA Nanotechnology:

Here is the original post:

Nanotechnology meetings 2018 | Nanotechnology conferences …

Nanotechnology – Chemistry (B.S.) | www.bloomu.edu

Bloomsburg Universitys nanotechnology option offers students an opportunity to gain additional skills in an advancing technological field with a growing need for skilled workers. This academic track seamlessly follows the chemistry bachelor’s of science program.

Nanotechnology gives us the ability to see and manipulate matter atom by atom and create materials, devices and systems with new and unique properties, such as creating nanoparticles for targeted drug delivery and producing odor-free shoes, socks and clothing.

Students finish the nanotechnology option with an 18-credit Capstone Semester at Penn State University, after completing prerequisites at Bloomsburg in chemistry.

According to the federal government, nanotechnology is likely to change the way almost everything is designed and made from vaccines to computers to car tires. Nanotechnology products can be found in commonly used items as cell phones, cosmetics and clothing.

Nanotechnology is used to help solve problems by:

Read more from the original source:

Nanotechnology – Chemistry (B.S.) | http://www.bloomu.edu

NanoTech Institute – The University of Texas at Dallas

Guided by theory and enabled by synthesis, the NanoTech Institute develops new science and technology exploiting the nanoscale.

Our researchers inspire students by creating an atmosphere of excitement, fun, and creativity.

Quick Links

Facilities Campus Maps Ray H. Baughman NanoWeb Forms Facebook YouTube

Mailing Address:

The University of Texas at Dallas [ Recipient’s Name ] * The Alan G MacDiarmid NanoTech Institute, BE 26 800 West Campbell Road Richardson, TX 75080-3021

Phone: 972-883-6530 Fax: 972-883-6529

Follow us on Facebook!

On August 20th, the 2013 class of NanoExplorers will presenting their research that they conducted along the researchers of the NanoTech Institute. See this flyer for more information. See the schedule here.

An article covering Ali Aliev’s and his collegues work on carbon nanotube thermoacustic transducers has been put online. You can read the whole article here.

The faculty, staff, and students of the Alan G. MacDiarmid NanoTech Institute at The University of Texas at Dallas welcome the 2013 class of NanoExplorers. We had over 200 highly qualified applicants this year. (see more)

The talk is devoted to recent achievements made by our Russian (NUST MISiS, Moscow) and French (G2Elab, Grenoble) groups in application of original shape memory composites for both microactuation and thermal energy harvesting. Novel prestrained scheme of shape memory composite allows creating actuators able to giant reversible bending deformation. (see more)

The faculty, staff, and students of the Alan G. MacDiarmid NanoTech Institute at The University of Texas at Dallas welcome the 2012 class of NanoExplorers. We had over 200 highly qualified applicants this year. (see more)

Read about former NanoExplorer Amy Chyao and her work at UT Dallas

Experience the collaboration of the NanoTech Institute with the University of Guanajuato (Guanajuato, Mexico) through the eyes of Raquel Ovalle Robles.

Discover the NanoTech Institute’s work through its library of publications.

Use the NanoTech Institute’s facilities to conduct cutting-edge research.

Read more:

NanoTech Institute – The University of Texas at Dallas

nanotechnology | Ancient Origins

AtAncient Origins, we believe that one of the most important fields of knowledge we can pursue as human beings is our beginnings. And while some people may seem content with the story as it stands, our view is that there exists countless mysteries, scientific anomalies and surprising artifacts thathave yet to be discovered and explained.

Thegoal of Ancient Origins is to highlight recent archaeological discoveries, peer-reviewed academic research and evidence, as well as offering alternative viewpoints and explanations of science, archaeology, mythology, religion and history around the globe.

Were theonlyPop Archaeology site combining scientific research with out-of-the-box perspectives.

By bringing together top experts and authors, this archaeology website explores lost civilizations, examines sacred writings, tours ancient places, investigates ancient discoveries and questions mysterious happenings. Our open community is dedicated to digging into the origins of our species on planet earth, and question wherever the discoveries might take us. We seek to retell the story of our beginnings.

More:

nanotechnology | Ancient Origins

Nanotechnology, Science and Applications – Dove Press

About JournalEditorsPublishing FeesPeer Reviewers ArticlesAims and ScopeCall For Papers

An international, peer-reviewed, open access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications.

To see the full Aims and Scope of the journal please click here.

This journal is a member of and subscribes to the principles of the Committee on Publication Ethics (COPE).

Indexed online:

The rest is here:

Nanotechnology, Science and Applications – Dove Press

Nanomaterials & Molecular Nanotechnology – High Impact …

Journal of Nanomaterials & Molecular Nanotechnology is a peer-reviewed scholarlyjournal and aims to publish the most complete and reliable source of information on the discoveries and current developments in the mode of original articles, review articles, case reports, short communications, etc. in all major themes pertaining to Nanotechnology and making them accessibleonline freely without any restrictions or any other subscriptions to researchers worldwide.

Journal of Nanomaterials & Molecular Nanotechnology focuses on the topics that include:

The journal is using Editorial Manager System for quality in review process. Editorial Manager is an online manuscript submission, review and tracking systems. Review processing is performed by the editorial board members of Journal of Nanomaterials & Molecular Nanotechnology or outside experts; at least two independent reviewers approval followed by editor approval is required for acceptance of any citable manuscript. Authors may submit manuscripts and track their progress through the system, hopefully to publication. Reviewers can download manuscripts and submit their opinions to the editor. Editors can manage the whole submission/review/revise/publish process.

Confirmed Special Issues:

Submit manuscript at Editorial Manager System or Online submissionor send as an e-mail attachment to the Editorial Office at [emailprotected] or [emailprotected]

2016 Journal Impact Factor is the ratio of the number of citations achieved in the year 2016 based on Google Search and Google Scholar Citations to the total number of articles published in the last two years i.e. in 2014 and 2015. Impact factor measures the quality of the Journal.

If X is the total number of articles published in 2014 and 2015, and Y is the number of times these articles were cited in indexed journals during 2016 then, impact factor = Y/X.

Nanotechnology

Nanotechnology is the manipulation or the engineering of functional matter on an atomic, molecular, and supramolecular scale. It is a science, engineering and technology conducted at Nanoscale level that involves the designing, manipulating and producing of very small objects or structures (products) ranged on the level of 100 nanometers.

Journals related to Nanotechnology

Journal of Industrial Electronics and Applications, Journal of Chromatography research, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, Journal of Pharmaceutics & Drug Delivery Research

Nanoethics

Nanoethics is a emerging field of study that concerns with the study of ethical and social implications of nanoscale science and technology. With these implications of Nanotechnologies, there has always been the need of regulation concerned with the associated risks. Nanoethics focus on these public and policy issues related to the Nanotechnology research and development.

Journals related to Nanoethics

Journal of Physics Research and Applications, Biomaterials and Medical Applications, Journal of Pharmaceutical Microbiology, Expert Opinion on Environmental Biology

Nanomaterials

Nanomaterials are one of the main objects or structures that are designed and produced by Nanotechnologies at the size level of approximately 1-100 nanometers. Nanomaterial research is a field that takes a materials science-based approach on nanotechnology.

Journals related to Nanomaterials

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Journal of Chromatography research, Research and Reports on Mathematics

Nanoparticles

Nanoparticles are small objects, behaves as a whole unit in terms of its properties and transport. Fine particle ranges from 100 to 2500 nanometers whereas ultrafine particles size range from 1 to 100.

Journals related to Nanoparticle

Journal of Applied Bioinformatics & Computational Biology, Geoinformatics & Geostatistics: An Overview, Journal of Chemistry and Applied Chemical Engineering, Journal of Hydrogeology & Hydrologic Engineering, Journal of Pharmaceutical Microbiology

Green Nanotechnology

Green nanotechnology is technology used to enhance the environmental sustainability of process producing negative externalities that include green nano products used in support of sustainability. This green nanotechnology described as the development of clean technologies to minimize potential environment and human health risks with the use of nanotechnology products.

Journals related to Green Nanotechnology

Journal of Physics Research and Applications, Journal of Ergonomics Research, Scientific Reviews and Chemical Communications, Journal of Clinical & Experimental Oncology

Quantum Dots

Quantum dots are nanocrystals or nanostructures made of semiconductor materials those are small enough to exhibit quantum mechanical properties and that confines motion of conduction band electrons valance band holes, or excitations in all three Spatial directions exhibiting unique electrical and optical properties which are useful potentially in biomedical imaging and other energy applications.

Journals related to Quantum Dots

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, Journal of Pharmaceutics & Drug Delivery Research

Molecular Nanotechnology

Molecular nanotechnology is a technology using molecular manufacturing, based on the ability to build structures to complex, atomic specification by means of mechanosynthesis. It would involve combining physical principles demonstrated by chemistry, nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.

Journals related to Molecular Nanotechnology

Journal of Molecular Biology and Methods, Journal of Pharmaceutical Sciences & Emerging Drugs, International Journal of Theranostics, Journal of Polymer Science & Applications, Journal of Chemistry and Applied Chemical Engineering

Nanomedicine

Nanomedicine is medical application of nanotechnology. Nanomedicine will employ molecular machine system to address medical problems. Nanomedicine will have extraordinary and far-reaching implications for the medical profession.

Journals related to Nanomedicine

Journal of Forensic Toxicology & Pharmacology, Journal of Chemistry and Applied Chemical Engineering, Journal of Regenerative Medicine, International Journal of Theranostics, Journal of Pharmaceutical Sciences & Emerging Drugs, Journal of Pharmaceutics & Drug Delivery Research

Polymer Nanotechnology

Polymer nanocomposites consist of a polymer or copolymer having Nano particles dispersed in the polymer matrix. Polymer nanotechnology group will develop enabling techniques for the patterning of functional surfaces.

Journals related to Polymer Nanotechnology

Journal of Polymer Science & Applications, Research and Reports in Gastroenterology, Journal of Proteomics & Enzymology, Journal of Chemistry and Applied Chemical Engineering

Nanoelectronics

Nanoelectronics refers to the use of nanotechnology in electronic components and it covers a diverse set of devices and materials. They are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively.

Journals related to Nanoelectronics

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, American Journal of Computer Science and Engineering Survey, Journal of Fashion Technology & Textile Engineering, Journal of Computer Engineering and Information Technology

Graphene

Graphene is allotrope of carbon in the form of a two-dimensional, atomic-scale, hexagonal lattice in which one atom forms each vertex. Graphene has unwittingly produced small quantities for centuries through the use of pencils and other similar applications of graphite.

Journals related to Graphene

Journal of Computer Engineering and Information Technology, Journal of Applied Bioinformatics & Computational Biology, Journal of Proteomics & Enzymology, Expert Opinion on Environmental Biology

Nanodevices

Nanodevices are the critical enablers that allow mankind to exploit the ultimate technological capabilities of magnetic, electronic, mechanical, and biological systems. Nanodevices will ultimately have an enormous impact on our ability to enhance energy conversion, produce food, control pollution, and improve human health and longevity.

Journals related to Nanodevices

Journal of Computer Engineering and Information Technology, Journal of Physics Research and Applications, Biomaterials and Medical Applications, Journal of Computer Engineering and Information Technology

Nanosensors

Nanosensors are chemical and mechanical sensors that can be used to detect the presence of chemical species and nanoparticles. These are any biological or surgery sensory points used to convey information about nanoparticles to the macroscopic world.

Journals related to Nanosensors

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, American Journal of Computer Science and Engineering Survey, Journal of Fashion Technology & Textile Engineering, Journal of Computer Engineering and Information Technology

Nanorobotics

Nanorobotics is the technology of creating robots or machines at or close to the scale of nanometer. Nanorobotics refers to the nanotechnology engineering of designing and building nanorobots. Nanomachines are largely in the research and development phase.

Journasl related to Nanorobotics

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, American Journal of Computer Science and Engineering Survey, Journal of Fashion Technology & Textile Engineering, Journal of Computer Engineering and Information Technology

Nanotoxicology

Nanotoxicology is a branch of bioscience deals with the study and applications of toxicity of nanomaterials.Because of quantum size effects and large surface area to volume ratio nanomaterials have unique properties compared with their larger counterparts. Nanotoxicity is toxic effect of nanomaterial on biological system and environment.

Journals related to Nanotoxicology

International Journal of Theranostics, Advanced Biomedical Research and Innovation, Acute Medicine Research: Open Access, Journal of Nursing & Patient Care, Journal of Diagnostic Techniques and Biomedical Analysis

Nanobiotechnology

Nanobiotechnology term refers to the intersection of nanotechnology and biology. Bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies. It helps to indicate the merger of biological research with various fields of nanotechnology.

Journals related to Nanobiotechnology

Journal of Genetics and Gene Therapy, Journal of Immunological Techniques in Infectious Diseases, Journal of Pharmaceutics & Drug Delivery Research, Journal of Diagnostic Techniques and Biomedical Analysis

Nanofabrication

Nanofabrication is the design and manufacture of devices with dimensions measured in nanometers. One nanometer is a millionth of millimeter. Topics of interest for Nanofabrication are all aspects of lithographic methods aiming at the submicron- to nanoscale, and the application of the created structures and devices in physical and biomedical experiments.

Journals related to Nanofabrication

Journal of Fashion Technology & Textile Engineering, Research and Reports on Mathematics, Journal of Electrical Engineering & Electronic Technology

Nanolithography

Nanolithography is the branch of nanotechnology concerned with the study and application of fabricating nanometer-scale structures and art of etching, writing, or printing at the microscopic level. The dimensions of characters are on the order of nanometers.

Journals related to Nanolithography

Journal of Industrial Electronics and Applications, Journal of Nuclear Energy Science & Power Generation Technology, Research and Reports on Metals, American Journal of Computer Science and Engineering Survey, Journal of Fashion Technology & Textile Engineering, Journal of Computer Engineering and Information Technology

Pharmaceutical Nanotechnology

Pharmaceutical Nanotechnology is being employed in the pharmaceutical field for many reasons. The leading goals are to improve drug solubility or bioavailability or delivery to various sites of action. It provides two basic types of nanotools, those are nanomaterials and nanodevices.

Journals related to Pharmaceutical Nanotechnology

Journal of Pharmaceutics & Drug Delivery Research, Journal of Neuroscience & Clinical Research, Journal of Clinical & Experimental Radiology, Acute Medicine Research: Open Access, Analgesia & Resuscitation: Current Research, Journal of Pharmaceutical Sciences & Emerging Drugs, Journal of Polymer Science & Applications, Journal of Current Chemical and Pharmaceutical Sciences, Journal of Chemistry and Applied Chemical Engineering

Carbon nanotubes

Carbon nanotubes are allotropes of carbon with a cylindrical Nano structure. Carbon nanotubes are long hollow structures and have mechanical, electrical, thermal, optical and chemical properties and these nanotubes are constructed with length to diameter ratio of 132,000,000:1.

Journals related to Carbon Nanotubes

Geoinformatics & Geostatistics: An Overview, Archives on Medical Biotechnology, Cell Biology: Research & Therapy, International Journal of Cardiovascular Research

Read more:

Nanomaterials & Molecular Nanotechnology – High Impact …

Nanotechnology | National Institute of Food and Agriculture

Nanotechnology entails the exploration and engineering of matter at the atomic and molecular level. At one-billionth of a meter, one nanometer is about how long a fingernail grows each second. A typical germ is about 1,000 nanometers in size. Conducting research at this level allows scientists to measure, control, and manipulate matter to change an objects properties and functions.

Scientists anticipate that research in nanotechnology will lead to an unprecedented understanding of matters fundamental building blocks, resulting in unlimited applications. These capabilities are expected to produce technological advances in a range of fields that affect agriculture, including food safety, processing, and product development. Applications underway include development of:

NIFA initiatives focus on conducting fundamental research and developing applications such as:

Primary Point of Contact:

See the original post here:

Nanotechnology | National Institute of Food and Agriculture

Nanotechnology – dummies

Dummies has always stood for taking on complex concepts and making them easy to understand. Dummies helps everyone be more knowledgeable and confident in applying what they know. Whether its to pass that big test, qualify for that big promotion or even master that cooking technique; people who rely on dummies, rely on it to learn the critical skills and relevant information necessary for success.

dummies

Learning Made Easy

See more here:

Nanotechnology – dummies

Nanotechnology | ETC Group

Nanotechnology refers to the manipulation of matter on the scale of the nanometer (one billionth of a meter). Nanoscale science operates in the realm of single atoms and molecules. At present, commercial nanotechnology involves materials science (i.e. researchers have been able to make materials that are stronger and more durable by taking advantage of property changes that occur when substances are reduced to nanoscale dimensions). As nanoscale molecular self-assembly becomes a commercial reality, nanotech will move into conventional manufacturing and it is already changing healthcare, food and drug production. Nanotechnology involves profound social , military and environmental risks, with new nanomaterials potentially threatening raw material economies of the south and posing new health risks to workers and the public at large.

Follow this link:

Nanotechnology | ETC Group